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  Abstract          The   Flexible Global Ocean-Atmosphere-Land System Model-gamil (FGOALS-g) was used 
to study the spring prediction barrier (SPB) in an ensemble system. This coupled model was developed and 
maintained at the State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics (LASG). 
There are two steps in our hindcast experiments. The fi rst is to integrate the coupled model continuously 
with sea surface temperature (SST) nudging, from 1971 to 2006. The second is to carry out a series of 
one-year hindcasts without SST nudging, by adopting initial values from the fi rst step on January 1 st , April 
1 st , July 1 st , and October 1 st , from 1982 to 2005. We generate 10 ensemble members for a particular start 
date (1 st ) by choosing different atmospheric and land conditions around the hindcast start date (1 st  through 
10 th ). To estimate the predicted SST, two methods are used: (1) Anomaly Correlation Coeffi cient and its 
rate of decrease; and (2) Talagrand distribution and its standard deviation. Results show that FGOALS-g 
offers a reliable ensemble system with realistic initial atmospheric and oceanic conditions, and high 
anomaly correlation (>0.5) within 6 month lead time. Further, the ensemble approach is effective, in that 
the anomaly correlation of ensemble mean is much higher than that of most individual ensemble members. 
The SPB exists in the FGOALS-g ensemble system, as shown by anomaly correlation and equal likelihood. 
Nevertheless, the role of the ensemble mean in reducing the SPB of ENSO prediction is signifi cant. The 
rate of decrease of the ensemble mean is smaller than the largest deviations by 0.04–0.14. At the same time, 
the ensemble system “equal likelihood” declines during spring. An ensemble mean helps give a correct 
prediction direction, departing from largely-deviated ensemble members. 

  Keyword : spring prediction barrier; ensemble; ENSO; hindcast experiments; equal likelihood 

 1 INTRODUCTION 

 El Niño/Southern Oscillation (ENSO) is an 
important tropical air-sea interaction at the Earth’s 
surface. An interesting issue is that during boreal 
spring, model predictive skill drops sharply, regardless 
of the month in which prediction begins. This is called 
the “spring prediction barrier” (SPB hereafter), fi rst 
suggested by Webster and Yang (1992). A series of 
works has proven that SPB exists in models, from 
simple, dynamical, statistical, or hybrid ones to fully 
coupled ones (Balmaseda et al., 1994; Barnston et al., 
1994; Xue et al., 1994; Scheider et al., 2003; Dewitt, 
2005; Jin et al., 2008). 

 The SPB is an open question in ENSO predictability 
studies. Some explanations could be merged into one. 
In boreal spring, ENSO signal is weakest and, 
consequently, signal-to-noise ratio is lowest (Torrence 
and Webster, 1998; Clarke and van Gorder, 1999). 
Another plausible explanation is strong spring ocean-
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atmosphere coupled instability (Mu et al., 2007; Duan 
et al., 2009; Yu et al., 2009). There are other 
explanations, such as weakest east-west SST gradient 
and ocean-atmosphere coupling in spring (Webster 
and Yang, 1992; Webster, 1995). 

 Recently, Duan et al. (2009) demonstrated that 
SPB occurrence depends on the particular initial 
error mode. That is, there is the possibility that certain 
types of initial error cause the SPB, but other types 
fail to cause it. Similar results were forwarded by Yu 
et al. (2009). They found that if there are certain 
types of initial error in realistic ENSO predictions 
and if a target method or data assimilation approach 
can fi lter them, ENSO forecast ability can be 
improved. In addition to these intermediate-
complexity Zebiak-Cane model results, Wei and 
Duan (2010) used coupled model (FGOALS-g) 
outputs for actual El Niño and La Niña events. They 
found that the SPB tends to be more prominent in El 
Niño than in La Niña events, and is more signifi cant 
in the growth phase than in decay phase. Similar 
results were put forth by Zhang et al. (2012). In 
addition to FGOALS-g, they used retrospective 
results of three other models, containing both coupled 
models (Geophysical Fluid Dynamics Laboratory, 
GFDL, and University of Hawaii, UH) and a 
statistical-dynamical model (Seoul National 
University, SNU). All these results support the 
viewpoints of Chen et al. (1995, 2004) that SPB may 
be suppressed through assimilation. In addition, 
Zheng and Zhu (2010) suggested that reasonable 
consideration of model errors during the ensemble 
forecasting process can alleviate the SPB effect.  

 All these previous studies emphasized the role of 
accuracy of initial conditions. However, most of these 
results were obtained by using theoretical El Niño 
events generated by the Zebiak-Cane model, or ENSO 
events by another intermediate-complexity model. 
Therefore, further work to estimate SPB based on 
coupled models is natural. New studies have used 
actual ENSO events generated by a coupled 
FGOALS-g model (Wei and Duan, 2010), or still 
other climate models (Zhang et al., 2012); and the 
prediction errors in their study are estimated by the 
slope of L2 norm. In this article, we also use coupled 
FGOALS-g model results to investigate the SPB, but 
the main difference lies in the statistical methods to 
estimate prediction errors. We apply the Talagrand 
diagram to evaluate equal likelihood in an ensemble 
system. Furthermore, the function of ensemble mean 
is explicitly discussed.    

 This article presents the role of ensemble mean in 
actual ENSO predictions. The remainder of this paper 
is organized as follows: Section 2 describes the model, 
experimental design and method. Section 3 exhibits 
the SPB phenomenon of ensemble mean and ensemble 
members. Finally, main results are concluded and 
discussed in Section 4.  

 2 MODEL DESCRIPTION, EXPERIMENT 
DESIGN AND METHOD 

 2.1 Flexible Global Ocean Atmosphere Land 
System-gamil (FGOALS-g) 

 The coupled model used is the Flexible Global 
Ocean Atmosphere Land System-gamil (FGOALS-g), 
version 1.11, which originated from FGCM-1.0 (Yu 
et al., 2002, 2004, 2007) and was developed at the 
State Key Laboratory of Numerical Modeling for 
Atmospheric Sciences and Geophysical Fluid 
Dynamics (LASG) at the Institute of Atmospheric 
Physics (IAP). FGOALS-g has been applied to 
ENSO-related research (Yu et al., 2007; Zheng and 
Yu, 2007), the Indian Ocean Dipole (IOD) (Yu and 
Liu, 2004), closure of the Indonesian Seaway (Yu et 
al., 2003), paleoclimate (Zheng et al., 2008), 20 th  
century global warming (Zhou and Yu, 2006), scenario 
projection of future climate change (Li et al., 2010, 
2011), and others (Zhou et al., 2007; Yu et al., 2008). 
This model couples atmospheric, oceanic, land, and 
sea ice component models with the National Center 
for Atmospheric Research (NCAR) fl ux coupler. The 
frequency of coupling is one day for the oceanic 
model and one hour for the atmospheric, land and sea 
ice models. 

 The atmospheric component is a Grid-point 
Atmospheric Model of IAP/LASG (GAMIL), version 
1.1.0. This model is based on a new dynamic core 
(Wang et al., 2004) and physical parameterizations of 
the Community Atmospheric Model Version 2 
(CAM2) of NCAR (Kiehl et al., 1996), except for a 
modifi ed Tiedtke convective scheme (Li et al., 2007). 
The model uses a hybrid horizontal grid, with a 2.8° 
Gaussian grid between 65.58ºN and 65.58ºS, and a 
weighted, even-area grid elsewhere (Wang et al., 
2004). Vertically, there are 26 σ-layers from the 
surface to 2.194 hPa.  

 The oceanic component model is the LASG/IAP 
Climate system Ocean Model (LICOM), version 1.0 
(Zhang et al., 2003; Liu et al., 2004). It has thirty 
vertical layers, with twelve equal levels in the upper 
300 meters. Horizontal resolution was prescribed at 
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1°×1°. The oceanic model domain covers 75°S to 
88°N, and the North Pole is treated as an isolated 
island. More detailed description of the ocean model 
can be found in Zhang et al. (2003).  

 The land component model is known as Community 
Land Model Version 2 (CLM2) (Bonan et al., 2002). 
CLM2 uses ground and vegetation datasets derived 
from satellite data products. There are 10 vertical 
layers for soil temperature and soil water, with explicit 
treatment of liquid water and ice, along with a 
multilayer snowpack and runoff model.  

 The sea ice component is a thermodynamic-dynamic 
model known as Community Sea Ice Model version 4 
(CSIM4) (Bettege et al., 1996). The model has fi ve 
layers in the vertical. In this model, thermodynamic 
procedures take advantage of an energy-conserving 
treatment (Bitz and Lipscomb, 1999), and dynamic 
procedures are based on the elastic-viscous-plastic 
principle (Hunke and Dukowicz, 1997).  

 2.2 Ensemble hindcast experiment design 

 There were two steps to our ENSO hindcast 
experiments. The fi rst was integration of the coupled 
GCM with sea surface temperature (SST) nudged to 
observed from 1971 to 2006, to achieve continuous 
and compatible initial conditions for ocean and 
atmosphere. The SST nudging approach for generating 
initial conditions has been used in previous studies 
(Chen et al., 1997; Oberhuber et al., 1998; Luo et al., 
2005), and has been proven to effectively produce 
realistic thermocline and wind stress in the equatorial 
Pacifi c (Luo et al., 2005). The time scale for the SST 
nudging term (also called SST-relaxed or SST-
restored) is two days. For the period January 1971 to 
October 1981, SSTs were strongly nudged toward 
monthly Global sea-Ice and Sea Surface Temperature 
(GISST) observations (Rayner et al., 2006). For the 
period October 1981 to December 2005, SSTs were 
strongly nudged toward weekly National Oceanic and 
Atmospheric Administration (NOAA) Optimum 
Interpolation Sea Surface Temperature (OISST) 
observations (Reynolds et al., 2002). Both GISST and 
OISST were linearly interpolated to a daily mean 
before the SST nudging experiment. Results from the 
fi rst step were a set of balanced oceanic, atmospheric, 
land, ice, and coupler initial conditions. 

 The second step was to use the initial values from 
the SST nudging experiment on January 1 st , April 1 st , 
July 1 st , and October 1 st , from 1982 to 2005. In 
addition, there were 10 ensemble members for each 
start date. Ensemble members were generated by 

choosing different atmospheric and land conditions 
around the hindcast start date, to describe stochastic 
information. Meanwhile, oceanic and sea ice initial 
conditions were kept unchanged, to describe slowly 
varying lower boundaries. The coupled GCM was 
integrated for one year without SST nudging. In total, 
there were 960 hindcast experiments executed in the 
second step; each was integrated for 12 months. 

 2.3 Method 

 2.3.1 ACC score and rate of decrease  

 ACC (Anomaly Correlation Coeffi cient) score has 
been widely used for assessing model ability to 
predict ENSO (e.g., Zhou et al., 1998; Palmer et al., 
2004; Luo et al., 2005). Using this score, we can 
evaluate correlation between predicted and observed 
SST anomalies. To compute ACC, we use the 
following: 
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 where  i  represents the time index and Pi′ (Oi′) the 
predicted (observed) SST anomalies. ACC of the 
Niño 3.4 SST index is the average ACC over the Niño 
3.4 area. For each lead month and start season, there 
are 24 time points, corresponding to 24 total years 
(from 1982 to 2005). For each start season, we 
subtract a particular season’s climatology to get an 
anomalous series. Observed SSTs are from monthly 
NOAA Climate Diagnostic Center (CDC) data 
(Reynolds et al., 2002). 

 To evaluate the ACC score decrease during spring, 
we introduce the rate of decrease. It is defi ned by the 
following: 

  D  _rate = -(ACC(June)−ACC(April)).                        (2) 

 2.3.2 Talagrand diagram and its standard deviation 

 The Talagrand diagram is, in fact, a frequency 
distribution. It is an important evaluation standard for 
equal likelihood. If equal likelihood is adequate, then 
all member forecasts have a consistent tendency, and 
prediction by the ensemble system is more reliable 
(Kalnay, 2003). 

 The Talagrand diagram algorithm was fi rst 
described by Talagrand (1997). He showed that equal 
likelihood is perfect when hindcast results and 
verifying observations are sampled from the same 
probability distribution (e.g., Buizza and Palmer, 
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1998; Hamil, 2001). Talagrand diagrams are generated 
by computing the frequency of observation within 
intervals spaced by ensemble members, from smallest 
to largest. The process for attaining the Talagrand 
distribution can be described as follows. 

 Suppose the total number of ensemble members is 
 N  ( N =10), and in the proof-test area there are  K  grids, 
covering periods involving  T  time points. At each grid 
point  j  ( j  = 1, 2, 3, … ,  K ) at a certain time  t  ( t  = 1, 2, 
3, … ,  T ), the ensemble member forecast value is 
denoted xi,j,t

f  and verifying observation xj,t
o , where 

superscript  f  represents “forecast,”  o  represents 
“observation,” and subscript  i  ( i  = 1, 2, 3, … ,  N ) 
represents each ensemble member. With regard to a 
fi xed grid and fi xed time, hindcast values of 10 
ensemble members are ordered from smallest to 
largest,  
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  i  = 1, 2, 3, … ,  N –1                                           (3) 
 Then, according to Talagrand, the observation 

value must fall into one of intervals  d  i  ( i  = 1, 2, 3, … , 
 N +1). There are  N  members, with effective sample 
 M = K × T ; suppose that the time the verifying 
observation falls into a certain interval  d  i  is  S  i , and its 
expected value is E = M × N  / (N + 1) . Then, the 
probability distribution is Pi = Si / E, so 
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 The fl atness of frequency distribution represents 

the level of equal likelihood. This fl atness can be 
evaluated by standard deviation. We calculate the 
standard deviation  D  EVI  of Fi

nor with category index 
between 2 and 10 ( i =2–10), represented by 
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 where  i  represents the category index,  N  (=11) 
designates the total category numbers; 
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and 1.0 is just the average value of Fi
nor. 

 3 RESULT  

 3.1 Initial conditions 

 Thermocline depth variation is a foregleam of 
ENSO. Thus, for validation of oceanic initial 
conditions, 20°C isotherm depth anomalies in the 
equatorial Pacifi c (2°S–2°N) from both Global Ocean 
Data Assimilation System (GODAS: Xue et al., 2008) 
and model results are shown in Fig.1. The model can 
realistically reproduce eastward propagation of warm 
subsurface ocean signals during positive ENSO 
events, albeit with smaller-amplitude thermocline 
variations. In comparison to the GODAS assimilation, 
thermocline fl uctuations associated with interannual 
ENSO events over the past 20 years were well 
simulated. In this SST-nudging experiment, the SSTs 
infl uence wind stress through surface heat fl ux, and 
wind stress in turn infl uences thermocline depth via 
upwelling. Realistic subsurface signal simulation was 
produced by good simulation of wind stress (Fig.2). 
Both strong anomalous westerly signals (1982/1983, 
1997/1998) and weak ones (1986/1987, 1991/1992, 
2002/2003) were captured by the simulation, without 
magnitude decay. Negative signals related to La Niña 
events, as well as positive signal propagation, were 
also well simulated. 

 As mentioned by Luo et al. (2005), when the 
AGCM component is forced by such generated SSTs, 
which are very close to observed values, the model 
tends to produce realistic wind stress, heat and water 
fl uxes. Furthermore, the OGCM driven by the wind 
stress tends to produce realistic thermocline variations 
in the equatorial Pacifi c. Therefore, the success of the 
simple coupled SST-nudging scheme for initialization 
crucially depends on performance of the coupled 
GCM. The initial condition results show that the 
FGOALS-g 1.11 coupled model is able to reproduce 
realistic oceanic memory for ENSO prediction, using 
the simple SST-nudging scheme. This coupled model 
can simulate tropical air-sea interactions well, and 
gives a basis for a credible ensemble system.  

 3.2 SPB in ENSO ensemble hindcast experiments 

 Three important characteristics of the ENSO 
ensemble experiments were demonstrated through the 
ACC score (Fig.3): (1) Performance of the coupled 
model is credible. Regardless of ensemble mean or 
ensemble members, most predictive skills (ACC 
scores) were higher than 0.5 within 6-month lead 
time. This means that the model produced useful 
predictions (ACC scores   0.6) or near useful. Further, 
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the model is tenable for experiments beginning in 
different seasons. A model with such skill provides 
the basis for a perfect ensemble system; (2) The 
ensemble scheme is effective, because the ensemble 
mean enhances predictive skill. ACC scores of the 
ensemble mean were much higher than those of most 

ensemble members, especially for long lead time. 
Although the ACC score of the ensemble mean is at 
times not the highest, it is very close to that of the 
highest member; (3) After the ensemble, the SPB still 
exists. For the ensemble mean in boreal spring, 
predictive ability declines more rapidly than in other 

130°E

0 10 20 30 40 50 60 70

1982

1984

1986

1988

1990

1992

1994

1996

1998

2000

2002

2004

2006

a b

1982

1984

1986

1988

1990

1992

1994

1996

1998

2000

2002

2004

2006

Ti
m

e 
(y

ea
r)

Ti
m

e 
(y

ea
r)

160°E 170°W 140°W 110°W 80°W 130°E 160°E 170°W 140°W 110°W 80°W

 Fig.1 Depth anomalies of 20°C isotherm (contour: 10 m; units: m) along equatorial Pacifi c (2°S–2°N) from (a) GODAS, and 
(b) model results, based on SST nudging scheme 
 Regions with positive values are shaded. 
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seasons. In addition, it is tenable for experiments 
starting in all 4 seasons. This suggests that the 
ensemble mean can remove stochastic errors for 
improvement of predictive skill. Nevertheless, the 
ensemble cannot remove the SPB. However, the 
ensemble method is still functional—its function lies 

in avoiding the largest deviated prediction. If we 
adopt certain ensemble members (such as member 
01) in place of the ensemble mean, then in the 
experiments beginning in April (Fig.3b), the ACC 
scores are very low with lead time beyond 6 months 
(lower than the ensemble mean by about 0.2).  
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 Fig.2 Zonal wind stress anomalies (contour: 0.01 N/m 2 ; units: N/m 2 ) in the equatorial Pacifi c (2°S–2°N) from (a) GODAS, 
and (b) model results, based on SST-nudging scheme  
 Regions with positive values are shaded. 
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 To quantify SPB in ENSO ensemble hindcast 
experiments, we computed the difference in ACC 
scores between June and April (i.e., the rate of 
decrease). Table 1 shows the following: (1) The SPB 
exists after the ensemble. Every “enb” (ensemble 
mean) exceeds 0.20 during spring, regardless of the 
month hindcast experiments start. The “enb” values 
were 0.24, 0.20, 0.21, and 0.20. In all four-group 
experiments, such sharp decreases never occurred 
during other seasons; (2) Adopting the ensemble 
method helps avoid the largest SPB. First, the largest 
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 Fig.3 ACC (y-axis) as functions of lead time for Niño 3.4 anomalies, for model ensemble mean and for ten member hindcasts 
starting in January (a), April (b), July (c), October (d) 

 Table 1 Rate of decrease and better size 

  
 Hindcast experiments start in 

 Ave. 
 January  April  July  October 

 Biggest_D_rate  0.34  0.24  0.29  0.34  0.30 

 Enb_D_rate  0.24  0.20  0.21  0.20  0.21 

 Better_size  3  7  7  3  5 

 In the left column are: Maximum difference of ensemble member, denoted 
by “biggest_D_rate”; ensemble mean, denoted by “enb_D_rate”; and total 
size for which ensemble mean is better than ensemble member, denoted 
by “better_size.” “Ave” denotes average value of four group hindcast 
experiments. 
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rates of decrease were 0.34, 0.24, 0.29, and 0.34. 
They are larger than corresponding “enb” by 0.10, 
0.04, 0.08, and 0.14, respectively. On average, the 
extent ensemble mean (0.21) was better than the 
largest (0.30) by 0.09. The improvement is remarkable. 
Second, compared with all 10 ensemble members in 
each experiment group, “enb” was better than 3, 7, 7, 
3 ensemble members in total, respectively. On 
average, the ensemble mean performed better than 5 
ensemble members. Until now, we could not select 
the most accurate ensemble member. The ensemble 
mean is the best choice, which is tenable for reducing 
the SPB.  

 3.3 Equal likelihood SPB in ENSO ensemble 
hindcast experiments 

 For the full ensemble with 10 ( N =10) members, 
there are 11 intervals, and the value of the verifying 

observation then falls into one of the 11 categories. 
The Talagrand diagram for the Niño 3.4 SST 
anomalies (Fig.4) show that the frequency is a 
function of category index. This suggests that: (1) 
Regardless of when hindcast experiments start in the 
a–d series, the distribution for SST anomalies is even, 
although two extreme categories are signifi cantly 
higher than adjacent ones. Such frequency 
distributions indicate that the probability distribution 
of observations is well represented by our ensemble 
approach; (2) Regardless of when hindcast 
experiments start, for the target month of June (Fig.4b, 
4e, 4l, 4o), the probability distribution is more uneven 
than in other months. Since June is the end of spring, 
we suggest that the equal likelihood drops sharply 
during boreal spring (Fig.4). 

 Differences among ensemble members increase 
sharply from the beginning of spring (March) to its 
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 Fig.4 Talagrand diagram, showing frequencies of verifying observation within 11 categories, defi ned by 10 ordered ensemble 
members at each grid point for Niño 3.4 anomalies of ensemble hindcasts, starting in January (a–d), April (e–h), July 
(i–l), October (m–p), with 3, 6, 9, and 12 month lead times, respectively 

 Dashed line marks theoretical frequency (1/( N +1)), where  N  is number of ensemble members for a perfectly reliable ensemble prediction system. 
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end (near June). It is obvious (from Fig.5) that 
standard deviation increases sharply from March 
through June (Fig.5b, 5d) or near June (Fig.5a, 5c), 
regardless of prediction start month. Moreover, the 
standard deviations peak in June or thereabouts. This 

is quantitative evidence for the increase of standard 
deviation during spring, so that consistency of 
prediction of ensemble members decreases. Therefore, 
at least some ensemble members produce a prediction 
that deviates considerably from reality. The standard 
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 Fig.5 “Standard deviation” (y-axis) of Talagrand distribution, as function of calendar time/lead month.  For hindcasts 
starting in January (a), April (b), July (c), and October (d)

  Upper x-axis denotes target month, and lower x-axis lead month. Dashed lines show March and May/June/July. 
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deviation also ascends sharply from September to 
November (Fig.5b, 5d), but does not increase in this 
period with other start months (Fig.5a, 5c). This 
phenomenon is therefore not as common as the SPB, 
and there may be other factors causing this ascent in 
autumn.  

 4 DISCUSSION AND CONCLUSION  

 We discussed SPB in a FGOALS-g ensemble 
system from the standpoint of anomaly correlation 
and equal likelihood. The main results are as follows:  

 Coupled model FGOALS-g offers a reliable 
ensemble system. It can reproduce realistic 
atmospheric and oceanic initial conditions for 
seasonal prediction experiments, using the SST-
nudging approach (Figs.1, 2). The model also shows a 
high Anomaly Correlation Coeffi cient (ACC) score 
(>0.5) within 6-month lead time for SST in the Niño 
3.4 region (Fig.3). In addition, FGOALS predicts 
ENSO with a 6–9 month lead time, consistent with 
most state-of-the-art models (Yan et al., 2009). 
Furthermore, the ensemble approach is effective. The 
ACC score of the ensemble mean is much higher than 
that of most individual ensemble members, especially 
for long lead time (Fig.3). Although the ACC score of 
the ensemble mean is sometimes not the highest, it is 
very close to that of the highest member. The ensemble 
mean fi lters out uncertain elements (ensemble 
members differ from each other) to retain the 
consistent tendency portion of all members. In 
addition, equal likelihood is well represented by our 
ensemble approach, because the Talagrand distribution 
is  substantially    fl at (Fig.4).  

 The SPB exists in the FGOALS-g ensemble 
forecast system, from the viewpoint of anomaly 
correlation and equal likelihood. From the perspective 
of anomaly correlation, the SPB exists for both 
ensemble members and ensemble mean (Fig.3). 
During boreal spring, predictive skill declines very 
rapidly for all groups of hindcast experiments. During 
other target seasons, this skill decreases rapidly for 
only one or two particular group hindcast experiments.  

 From the standpoint of equal likelihood, an obvious 
decline during spring was observed (Figs.4, 5). This 
means that during spring, the difference among 
ensemble members increases. If the difference 
becomes suffi ciently large, it implies that some 
ensemble members make deviated predictions. The 
standard deviation of Talagrand distribution 
frequencies increases during spring, and peaks at the 
end of this season (Fig.5). This fi gure shows a 

quantitative increase of difference among members 
(i.e., a reduction of equal likelihood).  

 Nevertheless, the ensemble method can reduce the 
SPB (Table 1). Here, “reduce” means avoiding the 
largest deviated prediction. On average, the ensemble 
mean improves ACC scores by 0.09 during spring. 
Thus, the ensemble mean can greatly diminish the 
SPB, from the viewpoint that one never knows in 
advance the most accurate initial condition. With use 
of the most inaccurate initial condition as one member 
to make a prediction, the SPB will be more serious. In 
contrast, the ensemble mean can provide a correct 
tendency. 

 The ensemble mean effectively reduces the SPB by 
improving predictive skill. Since the SPB is very 
evident in the ensemble forecast system, the role of 
ensemble mean is signifi cant. Further, this mean is 
helpful in providing a correct prediction direction, 
avoiding deviated ensemble members. Therefore, it is 
very important in ENSO predictions. To further 
reduce the SPB, adding the total number of ensemble 
members can be attempted. Although this has been 
done using an intermediate coupled model (Zheng et 
al., 2009), it requires further investigation based on 
global ocean-atmosphere models. 
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