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ABSTRACT We demonstrate a new method to measure weak
birefringence of dielectric mirrors with excellent spatial reso-
lution and sensitivity (< 10−7 radians). We exploit a well-
known optical feedback scheme for line-width narrowing and
frequency locking of a diode laser to a high-finesse cavity.
Feedback comes from the intracavity field which builds up at
resonance, selected by its change in polarization with respect to
the incident field. This change, due to the residual birefringence
of the cavity mirror coatings, was already exploited for bire-
fringence measurements using an active laser-locking scheme.
Here we measure the optical feedback rate as a function of rota-
tion angle of one of the cavity mirrors (around the cavity axis).
A stable feedback signal is obtained since the laser, as soon as it
locks to a cavity resonance, effectively behaves as a monochro-
matic source. By fitting the data with a theoretical expression,
we determine quantitatively the local birefringence vectors of
both mirrors, which are around 10−6 radians. Our scheme is
simple, works with cavities of very high finesse (F ∼ 105), and
is promising for measuring birefringence in gases induced by
external fields.

PACS 42.25.Lc; 42.62.Eh; 42.55.Px

1 Introduction

Optical cavities (resonator or multipass) afford
a large effective interaction path in a limited physical vol-
ume, and have therefore been useful for measuring weak
polarization effects [1]. Recent examples are the sensitive de-
termination of the Verdet constant of air [2] (associated with
the rotatory power induced by a magnetic field) or the Kerr
constant of nitrogen, oxygen, and carbon dioxide [3] (associ-
ated with the linear birefringence induced by an electric field).
More ambitious programs are devoted to the measurement of
the magnetic birefringence of vacuum [4].

Some of these experiments [2–4] exploited an optical res-
onator (or Fabry–Pérot étalon cavity) by electronically lock-
ing the laser frequency to one of its resonances. One limitation
is that the bandwidth of electronic locking is not sufficient
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for reducing the laser line width, which puts a limit either to
the maximum cavity finesse or to the injection efficiency. In
addition, when the laser line width is broader than the cavity
resonance, cavity injection not only becomes less efficient but
also more noisy, since the cavity converts laser frequency fluc-
tuations (whose averaged envelope corresponds to the laser
line shape) into amplitude fluctuations [5, 6].

In order to measure small polarization effects [7, 8], mul-
tipass cells have also been used. These provide a smaller path
enhancement, but have the advantage of not requiring fre-
quency locking and not being critical with respect to laser line
width.

A source of error which must be considered when deter-
mining such small polarization effects is the parasitic linear
birefringence ε (see exact definition below) of interferential
dielectric coatings of mirrors composing cavities or multipass
cells [2, 3, 7–10]. At its origin is the residual stress in the di-
electric structure [2, 8]. One of the first determinations of ε
realized with a multipass cell [7] produced values on the order
of 10−4 radians per reflection, with rather negligible varia-
tions in amplitude and direction over the whole surface. In
another study [9] a birefringence of a few 10−4 was found
again, with rather small amplitude variations but with continu-
ous directional variations of up to 40◦ over the mirror surface.
More recently, values of ε of only a few 10−6 [10] or 10−5 [8]
were measured, which perhaps indicates improving dielectric
coating quality.

We present here an original measurement of the residual
mirror birefringence in a stable two-mirror resonator [11].
The light field in reflection from a cavity results from the su-
perposition of the direct input mirror reflection plus a return-
ing fraction of the intracavity field. The intracavity component
becomes important when build-up occurs at one of the cav-
ity resonance frequencies. A polarizer followed by a Faraday
rotator (which tilts the linear polarization axis by π/4), con-
stitutes a sort of half-optical isolator. The direct reflection,
which experiences a negligible polarization change, is further
rotated by another π/4 on its way back; it becomes thus orth-
ogonal to the polarizer axis and is rejected. On the other hand,
the multipass effect makes the intracavity field much more
sensitive to mirror birefringence, and the linear polarization
of the field at the cavity input is appreciably modified. Light
coming from inside the cavity is therefore partially transmit-
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ted by the half-isolator and produces locking of the diode laser
frequency to the cavity resonance, accompanied by a spectac-
ular line-width narrowing effect to well below the cavity res-
onance line width [12–17]. The feedback level can be rather
strong and can be observed directly, providing a means to
measure intracavity birefringence effects.

We have just outlined a well-known cavity self-locking
scheme based upon optical feedback, already employed for
diode laser line-width narrowing and frequency stabilization
[18–20]. Diode laser optical self-locking is attractive since it
is robust and easy to implement. The only control parameter
is the laser–cavity distance, which determines the phase of the
feedback field at the laser. For phase values close to multiples
of 2π, locking is stable, the cavity can be completely filled,
and the feedback level is maximum. An active phase-locking
mechanism would then be quite easy to implement. However,
for a demonstration we simply used laser frequency sweeps in
order to obtain transient locking in succession to several cav-
ity modes. The feedback level for zero phase is then obtained
without phase locking by taking the maximum feedback value
over a sweep, since some of the swept modes always happen
to have a feedback phase close enough to zero.

Using this scheme, important changes in the feedback
level can be observed when rotating the cavity mirrors. If this
is modeled by polarization matrix theory (Jones matrices), an
approximate expression is found, well adapted to fit the feed-
back as a function of mirror rotation angle. This fit allows the
determination of the mirror birefringences at the spots defined
on their surfaces by the TEM00 mode profile (if transverse
mode matching is used).

In previous experiments [2, 3] electronic frequency lock-
ing was used in order to obtain a stable and reproducible
resonator transmission signal. Here, birefringence itself is
exploited to obtain optical self-locking, whose superior per-
formance resides in the dramatic laser line-width narrowing.
In fact, cavities much narrower than the free-running laser line
width can be used. In our demonstration, we used a diode laser
with about 3-MHz FWHM line width and a cavity with mode
line width close to 10 kHz.

Finally, we believe that our scheme can be used for gas-
phase field-induced anisotropy measurements. We will show
that the best detection limit should be obtained by rotating the
mirrors to produce a minimum level of static cavity birefrin-
gence just sufficient for laser locking. In these conditions one
could measure intracavity birefringence variations, induced
by external field modulation, at the level of 10−8 radians per
pass.

2 Experimental

We describe here details of our setup, following
the scheme of Fig. 1. We used a distributed-feedback (DFB)
multiple-quantum-well InGaAsP Mitsubishi diode laser at
1312 nm (model ML776H11F) stabilized close to room tem-
perature to better than 0.01 K. As for all DFB diodes, this
laser operates in a single mode and can be continuously tuned
by temperature or current. This specific model has an excel-
lent beam quality, with very small astigmatism and ellipticity
of only 1.2. A line width of about 3 MHz was estimated by
looking at the width of the high-finesse cavity resonances in

FIGURE 1 Experimental setup, with Jones matrices associated with each
relevant optical component: P for the polarizer, Rπ/4 for the Faraday rota-
tor, and R1,2 and T1,2 for the mirrors’ reflectivity and transmittivity, including
their parasitic birefringence

transmission (adding an optical isolator temporarily). For this
measurement, two stages of optical isolation (> 60 dB) were
needed for unperturbed laser operation.

We used an aspheric lens (numerical aperture 0.55) to ob-
tain a collimated beam of almost Gaussian profile. Diode laser
frequency tuning by a linear current ramp was provided by
a low-noise ILX current driver (model LDX3620), used in
battery mode.

A beam splitter placed after the laser directed a small,
calibrated, fraction of the feedback from the cavity towards
a InGaAs photodiode PD1, in order to measure its inten-
sity behavior. Additionally, a fraction of the laser beam was
sent to a reference Fabry–Pérot étalon (a 3-cm-thick fused-
silica uncoated flat, having a 3.45-GHz free spectral range –
FSR). Fringes in reflection from this étalon were monitored by
a small-area InGaAs amplified photodiode PD2. This is useful
to get a picture of laser frequency tuning. A smooth sine-like
signal is obtained when tuning is continuous and unperturbed.
Any wanted or unwanted feedback effects were clearly visible
as perturbations to this sinusoidal signal (as for the upper trace
in Fig. 2).

Two mirrors where then used for alignment of the laser
beam to the cavity axis. A single lens was then inserted in
order to obtain preferential TEM00 cavity injection. Its focal
length and position were determined by a mode-matching cal-
culation taking into account the collimated laser beam diam-
eter and other geometrical parameters of the system (cavity
length, mirror curvature, laser–cavity distance, . . . ).

The half-isolator optics were then placed along the cavity
axis, with no other element interposed before the cavity in-
put. A CVI-Laser (CPAS-8) uncoated calcite polarizer, with
a specified extinction ratio of 2 ×10−6, was aligned with the
polarization axis of the laser (vertical). The Faraday rotator
was an antireflection-coated yttrium iron garnet (YIG) crys-
tal (Isowave), of thickness 2.15 mm, adapted for a π/4 ro-
tation at 1310 nm. It was placed inside a toroïdal permanent
magnet saturating the Faraday effect in the crystal (for bet-
ter homogeneity). The temperature of this Faraday assembly
was controlled and used for fine tuning the rotation to ex-
actly π/4, and thus to optimize the isolation from the direct
cavity input-mirror reflection. This was the main source of
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FIGURE 2 Cavity transmission showing transient optical locking to
TEM00 resonances (flat sections in the upper reference Fabry–Perot trace)
as the diode laser is frequency-tuned. The feedback phase Φ oscillates with a
period depending on the laser–cavity distance. As this is not a multiple of
the cavity length, the feedback for a sequence of modes goes in- and out
of phase (roughly two beating periods occur in this laser scan). Since cav-
ity resonances correspond to different values of Φ, locking gives different
transmission patterns (lower trace). When Φ is close to zero, the mode trans-
mission profile reaches a maximum value where the (feedback-narrowed)
laser line goes exactly through the center of the cavity resonance, giving the
maximum of the cavity transmission function

parasitic feedback, which was monitored by the small ho-
rizontal steps it produced on the sinusoidal reference étalon
response. These steps, corresponding to constant-frequency
regions, were indeed spaced by a FSR corresponding to the
laser–cavity distance. No other sources of laser frequency per-
turbation were noticed. The Faraday isolator was optimized
by reducing the size of these steps. These could never be com-
pletely eliminated, and a direct measure of the corresponding
feedback rate gave about 10−5 at minimum.

Each cavity mirror was mounted on a tilt stage, itself at-
tached to a rotation stage, itself fixed onto another tilt stage.
Together with the incoming beam alignment, this gave enough
degrees of freedom for aligning the system so that each mir-
ror could be rotated without losing cavity injection. When
the output mirror was rotated, only minor cavity adjustments
were needed in order to return to TEM00 excitation. How-
ever, rotation of the input mirror produced a small walk-off
of the transmitted incoming beam, due to a small mirror
wedge. This required more important realignment of both
mirrors.

Mode matching could be optimized by imaging di-
rectly the cavity output onto the sensitive surface of an
infrared camera (Hamamatsu VIDICON). Excitation of
different transverse modes in succession could be visual-
ized while slowly tuning the laser frequency. When align-
ment was optimum, almost only TEM00 modes could be
seen. It is to be noted that optical locking enhances mode-
selective cavity excitation: when the transverse coupling
of the laser beam with a given transverse mode drops be-
low a certain value, optical feedback becomes insufficient
for locking and injection of that mode becomes practically
negligible.

The cavity dielectric mirrors, of 1-m radius, were coated
for 1300 nm by Research Electro Optics. A third fast (1 MHz)

InGaAs photodiode PD3 was placed when needed at the
cavity output. This allowed ring-down time measurements
(27 µs) by just abruptly turning off the diode laser current in
correspondence with an excited mode [21]. Considering the
cavity length, which was set close to half the confocal length
(∼ 50 cm), the mirror reflection coefficient at 1312 nm was
then estimated to be about 0.99994. This figure is smaller
than the actual mirror reflectivity since it includes intracavity
broad-band losses by air (see Sect. 5), since the cavity was not
evacuated.

3 Polarization transfer matrix of a birefringent
linear cavity

We will use the Jones-matrix formalism [22, 23]
in order to determine the reflection transfer function of our
system (cavity plus half-optical isolator), whose square ab-
solute value gives the optical feedback rate κ. In the limit of
small birefringence effects, the cavity modes are not split and
this reflection transfer function resembles the isolated cav-
ity transmission function, except that its amplitude depends
on intracavity birefringence. Indeed, cavity transmission may
become close to 1 if intracavity losses are small, while the
polarization-selected reflection is a much smaller signal and is
proportional to the intracavity ‘polarization change’ per pass.
This is the reason why, in our birefringence measurements,
we will monitor the feedback level rather than the cavity
transmission. Cavity transmission will be best used to moni-
tor cavity injection and laser self-locking behavior, as shown
in Fig. 2.

We will now briefly discuss why the monochromatic re-
sponse function is appropriate here, even if the free-running
laser line width is much broader than the cavity resonances.
From these arguments will follow that our scheme does al-
low precise and quantitative birefringence measurements.
Resuming the theory of diode laser optical self-locking
would be too long; therefore we refer to the relevant pub-
lications [12–17], and just give a very simplified physical
picture.

The main point to retain is that, due to the effect of laser
frequency self-locking, and the concomitant line-width nar-
rowing, the maximum reflection rate attainable is given by the
peak of the reflection transfer function. This peak value will be
our observable. It is reached when the phase of the feedback
field at the laser, Φ = ωLLC/c (modulo 2π, with LLC being
the laser–cavity distance), is close to zero. This is here a sim-
plification without consequences: in reality, due to diode laser
dynamics, the maximum feedback phase has a value different
from zero.

Let us therefore consider a cavity resonance whose fre-
quency is such that Φ ∼ 0, and assume that the laser injec-
tion current is slowly and continuously tuned so that its fre-
quency approaches such resonance value. As soon as some
(∼ 10−7) fraction of the laser intensity returns as a resonant
feedback, the laser reacts by rapidly collapsing its line width.
From this point on, the laser emission may be considered as
a monochromatic wave with respect to the cavity mode line
width. At the same time, the laser frequency is pulled close
to the cavity resonance and its tuning speed is reduced (even
as the injection current continues to sweep). The reduction
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factor is close to the cavity finesse times the square root of
the feedback rate. This combination of effects allows us to
consider the locked laser as a slowly tuning monochromatic
wave. The intracavity field has time to build up and the cav-
ity can achieve the steady state during the passage through
the resonance. Obviously, for this to be true, the free-running
laser frequency tuning should already be relatively slow. The
cavity monochromatic response functions (in reflection and
transmission) are then well adapted to describe this adiabatic
regime. Finally, as Φ is close to zero, theory shows that the
locked-frequency tuning range includes the cavity resonance
maximum [15], so the peak value of the cavity transfer func-
tion can be directly observed. It should be noted that the range
of diode injection current for which locking to a resonance
is effective (‘locking range’), increases with the feedback
rate.

The cavity transmission for a passage through reson-
ance represent the self-locking process [12–17]. The cavity
transmission profiles obtained as a function of laser injec-
tion current should not be expected to resemble the narrow
Lorentzian-like peaks which come to mind when thinking of
high-finesse cavities. In addition, when the laser tunes across
several cavity resonances as in Fig. 2, the lack of congruence
between the cavity length Lcav and laser–cavity distance LLC

produces a beating in the feedback phase condition. When the
phase is close to zero a thick and rounded frequency-locked
transmission profile is observed. When Φ ∼ π no locking
occurs and cavity modes seem to be missing altogether. For in-
termediate phase values the transmission profile is asymmet-
ric and does not reach the maximum of the cavity transmission
function. Finally, as we explained above, close to zero-phase
conditions the maximum of these transmission profiles gives
directly the peak value of the cavity transmission function.
It is as if a magnifying lens was used to look at the very
narrow tip of the cavity resonance. The same holds for the
feedback level (observed in reflection) which is, as we al-
ready pointed out, very sensitive to intracavity birefringence
effects.

We will assume that the laser beam is perfectly mode-
matched and only TEM00 resonances are excited. Naming for
the Jones matrices associated with relevant optical elements is
defined in Fig. 1. We reproduce here the derivation by Vallet
et al. [2], adapted to our specific problem. The reflected cav-
ity field can be written as a sum over all multiple-reflection
paths, accounting for the number of transmissions and reflec-
tions for each path. Neglecting at once, for the reasons given
above, the direct reflection input mirror contribution, we can
write the matrix for the reflection cavity response as

MR = T1

( ∞∑
n=0

[
e2iφ R2 R1

]n

)
R2T1e2iφ , (1)

where φ = ωLcav/c is the phase accumulated over one cavity
length. The matrix T1 corresponds to the input mirror trans-
mission, including its substrate birefringence. Thus this is
a Jones matrix which multiplies the field transmission coef-
ficient t1 of the mirror. Matrices R1,2 are given by R1,2 =
r1,2M1,2, where r1,2 are the field reflection coefficients of the
input and output mirrors, and M1,2 are the Jones matrices [22]

for the linear birefringence ε1,2 of each mirror:

M1,2 =

A1,2 B1,2

B1,2 A1,2


 , with:

A1,2 = cos
(ε1,2

2

)
+ i cos(2θ1,2) sin

(ε1,2

2

)
,

B1,2 = i sin(2θ1,2) sin
(ε1,2

2

)
, (2)

where ε1,2 is the modulus of ε1,2 (defined as the phase differ-
ence for linearly polarized light coming along the slow and
fast axes of the birefringent element), and θ1,2 its angle with
the x axis (the birefringence vector points along the slow axis).
In order to calculate the geometric sum it is standard proced-
ure to use diagonalization. Indeed, if V is the matrix having
the eigenvectors of (M2 M1) as columns, and Λ the diagonal
matrix of the corresponding eigenvalues (here complex conju-
gates), one can also write

V−1(M2 M1)
nV = Λn =

(
λn 0
0 λ

n

)
, (3)

which allows the calculation of the geometric sum directly
over the eigenvalues. In terms of the mij elements of the
(M2 M1) matrix, the eigenvalues are obtained directly as

{λ, λ} = 1

2

(
m00 +m11 ±

√
(m00 −m11)2 +4m01m10

)
. (4)

If we now add the polarizer and Faraday rotator, which elim-
inate most of the direct input mirror reflection (already ex-
cluded in (1)), the matrix for the intracavity field component
giving feedback to the laser is

MFB = PRπ/4 MR Rπ/4 P , (5)

where the polarizer is oriented along the (vertical) x axis:

P =
(

1 0
0 0

)
, (6)

and the Faraday π/4 rotator is given simply by a rotation
matrix

Rπ/4 = 1√
2

(
1 −1
1 1

)
. (7)

Substrate birefringence, induced mostly by mechanical stress,
may be larger than that of the dielectric coating, but the latter
is amplified by the intracavity effect. Even if substrate effects
should be taken into account for a correct evaluation of the
sensitivity, they can be neglected (by replacing T1 with t1) if
we want to evaluate the feedback rate. By the same argument,
we will also replace with r2 the lonely R2 matrix appearing
outside the geometric sum in (1).

With these simplifying assumptions, one obtains

MFB = 1

2

t2
1r2e2iφ

(1 −λr1r2e2iφ)(1 −λr1r2ei2φ)

(m11 −m00 +m10 −m01)

(
1 0
0 0

)
. (8)
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The fraction of the laser intensity coming as feedback, which
we define as the coupling rateκ = IFB(ω)/Ilaser(ω), is given by
the square absolute value of MFB. Let us consider mirrors of
the same reflectivity, and introduce their reflection, transmis-
sion, and loss coefficients for the intensity (then, R = |r1,2|2
and T = |t1,2|2), which are constrained by energy conserva-
tion as R+T +L = 1. The coupling rate is then

κ = F 2R2

2π2
Hmax

× |m11 −m00 +m10 −m01|2[
1+4

(
F 2

π2

)
sin2(φ+arg(λ)/2)

] [
1+4

(
F 2

π2

)
sin2(φ−arg(λ)/2)

] ,

(9)

where F = π
√

R/(1 −R) is the cavity finesse, and Hmax =
T 2/(1 −R)2 takes into account mirror losses, which limit
maximum intracavity buildup when the stationary state at res-
onance is reached. We note that information relative to mir-
ror birefringence is contained in the eigenvalues λ, λ and in
the matrix elements mij . The two resonance terms in the de-
nominator correspond to the polarization modes which are
split by the intracavity birefringence. However, as long as
their separation is smaller than the width of cavity resonances
(arg(λ) < 2π/F ), these polarization modes will not be distin-
guishable and the laser will lock-to and inject both at the same
time.

As birefringence is always much smaller than 1, we can
use a first-order expansion in ε1 and ε2 for the matrix elements
of M1,2 in (2) and for the eigenvalues in (4). This expansion
lends an explicit analytic expression for (9), which is already
rather simple. However, the denominator turns out to have
only zero-order terms and ε2 terms, and no first-order terms.
This implies that the polarization modes rapidly converge to
the same frequency for small ε’s. Indeed, even with the high
finesse of our cavity, we find that for typical birefringence
values (< 10−5) the mode splitting is much smaller than the
mode width. We can therefore neglect the second-order terms
in the denominator and obtain an even simpler approximate
expression:

κ = F 2R2

4π2
Hmax


ε1 cos 2θ1 + ε2 cos 2θ2

1 +4
(

F 2

π2

)
sin2 φ




2

. (10)

This expression gives some physical insight, and will also
be used for fitting the observed feedback rate profiles obtained
as a function of mirror rotation. Maximum feedback is ob-
served when the slow axes of the mirrors are both aligned with
the polarizer (x axis). The polarization eigenstates of the cav-
ity are in this case linear, and their phase difference turns out
to be maximum and equal to ε1 + ε2. The laser beam polar-
ization, tilted at π/4 after the Faraday rotator, decomposes in
equal proportions on the cavity eigenstates. The phase differ-
ence which increases with the multiple round trips inside the
cavity gives then a non-zero projection of these two compo-
nents when they are recombined by the polarizer on their way
back to the laser. On the other hand, when the birefringence
axes of the two mirrors are at π/4 or 3π/4 the polarization
eigenvectors are still linear, but aligned with the Faraday out-
put. Only one eigenvector is excited, no intracavity polariza-
tion change is produced, and no locking is observed (minima

FIGURE 3 Evaluation of birefringence ε1, ε2 for cavity input and output
mirrors by a fit (continuous line) of data (black dots) using the model derived
here (10). The slow axis of the input mirror was first oriented parallel to the
polarizer axis (note that the output mirror was also arbitrarily oriented close
to a maximum for θ2 = 0)

in Fig. 3).
Finally, we note the important enhancement of the intra-

cavity birefringence by a factor proportional to the square
of the finesse. For our cavity this factor amounts to about
(50 900/2π)2  6.6 ×107. This property is crucial for high-
sensitivity measurements, as was perhaps first discussed by
Vallet et al. [2], who also introduced the name ‘Malus Fabry–
Pérot interferometer’ for a system where a high-finesse cavity
is placed between crossed polarizers. It can be understood by
considering that the number of effective cavity passes (before
1/e intensity attenuation) is ∼ F /π. The dephasing accumu-
lated by the circulating intracavity field is then proportional to
F /π times ε (net dephasing per pass due to intracavity bire-
fringence). The cavity output projected by a crossed polarizer
is then simply proportional to εF /π (if this is still a small
dephasing). The square comes when detecting the intensity
rather than the field.

It is interesting to consider what happens for large intra-
cavity birefringence. At some point the polarization mode
splitting becomes important with respect to the mode width,
and second-order terms in the denominator of (9) must be
considered. Numerical evaluation of the feedback rate as
a function of frequency shows two distinct peaks of equal
intensity. Further augmentation of ε does not increase the
intensity of these peaks but only their separation. In this
limit, optical feedback to the laser becomes more com-
plicated to describe and our scheme would probably stop
working.

4 Mirror birefringence measurements

Measurements were based on the determination of
the feedback level, a fraction of which was detected directly
using a beam splitter and a photodiode (PD1 in Fig. 1). Rather
than trying to keep the laser frequency on a cavity resonance,
which could also be done by controlling LLC (laser–cavity
separation), we modulated the laser injection current by a lin-
ear ramp to have its frequency sweeping through several cav-
ity resonances. The laser would then lock to those resonances
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with wavelengths corresponding to feedback phase close to
zero. This condition occurs periodically every N resonances,
with N depending upon the ratio of Lcav and LLC. In our case,
as can be seen in Fig. 2, this period was rather small, so that
a small laser sweep was needed to determine the maximum of
the feedback signal for each mirror configuration. We stress
again that the maximum of the observed signal, for a mode
with phase close to zero, depends only on the cavity, and not
on the laser locking details, as long as we are in the adiabatic
locking regime [12–17] that is accessible for a sufficiently
slow laser tuning speed. In this limit, the laser narrowing time
and the cavity buildup time are shorter than time during which
locking to the resonance occurs (flat regions on the reference
étalon trace in Fig. 2). Since the laser line width becomes
much narrower than the cavity resonance, efficient and stable
injection is obtained at the passage through resonance. The
maximum of the transmission or feedback response functions
can thus be easily determined to be about 1% without the need
for averaging.

As expected from (10), by rotating any of the cavity mir-
rors around the cavity axis, an oscillatory behavior of the feed-
back intensity was observed. Due to the input mirror wedge,
rotating this mirror induced important walk-off in the cavity
injection axis. In particular the reflection spot on the output
mirror would move appreciably, with associated changes of
local surface birefringence. The feedback profiles obtained
were substantially distorted by this effect. On the other hand,
after setting the input mirror to a feedback maximum (θ1 = 0
or π/2), we recorded the feedback as a function of output mir-
ror rotation. In this case only minor adjustments were needed
every few mirror rotation steps, mostly attributed to mechani-
cal imperfection in the alignment system.

In Fig. 3 we plot the feedback rate κ (measured at photo-
diode PD1) for different values of the output mirror angle θ2.
A non-linear fit by (10) is very satisfactory, as can be seen in
the same figure. For this fit a value of Hmax = 0.24 (accurate
to a few % was used, as obtained from the cavity peak trans-
mission normalized by intensity at the cavity input. A finesse
value of F = 50 900±1% was obtained from the measure-
ment of the cavity ring-down time (τrd = 27 µs ± 1%). The
value of θ1 was set to 0, since the input mirror was rotated
to a local feedback maximum. Also, in (10), θ2 was replaced
by θ2 −∆θ2, to allow introducing an additional fit parame-
ter (besides ε1,2) accounting for the zero of the output mirror
birefringence angle. Indeed, the orientation of the anisotropy
of this mirror was not known beforehand. We obtain ε1 =
1.5 ×10−6 ±5% for the input mirror and ε2 = 3.7 ×10−6 ±
10% for the output mirror, where error bars are obtained from
the fitting procedure (and ∆θ2 = 4.3◦). These are values close
to those previously observed by other authors for similar high-
quality dielectric mirrors [10].

Small deviations of data points from the fit curve appear
to be systematic rather than due to random noise. We think
that the observed profile distortion is due to a residual small
displacement of the mirror surface with respect to the cav-
ity axis during rotation. This induces small variations in the
local birefringence value, but also a change of the degree of
transverse mode matching. Indeed, if the projection of the
laser beam onto the cavity TEM00 mode decreases after mir-
ror rotation, the cavity injection and thus the feedback rate

also decrease. Such artifacts, which affected the accuracy of
our results, were thus due to imperfection in our mechan-
ics, which could be substantially improved. On the other
hand, for intracavity measurement of gas-phase birefringence
effects, discussed in Sect. 5, mirror rotation would not be
needed.

5 Conclusions: Birefringence measurement
perspectives and sensitivity considerations

In this paper we have proposed a new method for
small birefringence measurement, and demonstrated its fea-
sibility. Improvements are possible and measurements should
be performed which could be compared with known litera-
ture values from other techniques. For this, we plan gas-phase
measurements of Verdet or Kerr effects, whose coefficients
are well known.

In fact, our scheme can be applied directly to determine
any intracavity source of linear birefringence, such as in the
case of the Kerr effect in a gas [3]. The gas birefringence in-
duced by an electric field would appear as a εK cos(2θK) term
added to the other two similar terms in the numerator of (10).
In order to differentiate it from the effect of the mirrors, the
simplest solution would be to modulate the external field am-
plitude or direction at a slower rate than used for the laser
frequency scans needed to obtain the cavity feedback rate.
This would allow us to measure the corresponding feedback
variations.

Alternatively, the laser–cavity distance could be con-
trolled (e.g. using a piezoelectrically mounted mirror), and
static optical locking could be achieved (without laser tuning)
by a (slow) electronic servo-loop maintaining an optical feed-
back phase close to 0. A faster external field modulation could
then be used together with sensitive lock-in detection.

Measurement of circular birefringences could also be ad-
dressed, for example as for the Verdet constant of gases [2].
The appropriate model for the feedback dependence for this
case is easy to obtain by the same mathematical procedure
outlined above.

Other schemes should be explored which also rely on in-
tracavity polarization changes as a means of selecting the
intracavity field for optical feedback. For example, a known
scheme is using a polarizer followed by a quarter-wave plate,
which has similar performance to our Faraday half-isolator.
This would produce a circular rather than a linear polarization
at the cavity input, making the feedback rate a function of just
θ1 − θ2.

With respect to the sensitivity, we begin by noticing that
the F 2 enhancement of the intracavity birefringence implies
that detecting smaller polarization effects is possible by using
higher-finesse cavities. Contrary to previous schemes based
on active brute-force electronic locking, our scheme should
keep working well even with cavities of even higher finesse
than used here.

The minimum feedback rate needed for diode laser opti-
cal locking is on the order of 10−6. Lower levels do not give
stable locking, as frequency and thus amplitude fluctuations in
the cavity injection become important. In addition, a practical
limit is parasitic feedback, for example from the residual input
mirror reflection. It seems difficult to reduce this to much less
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than 10−5, due to limitation of optical components in the half-
isolator arrangement, but especially due to induced or residual
mirror substrate birefringence [24, 25].

From (10) we see that κ ∝ ε2, where we use ε = ε1 cos 2θ1
+ ε2 cos 2θ2. We see therefore that

δκ

κ
= 2

δε

ε
. (11)

Thus, if we detect 1% feedback rate variations (rather easy),
we are sensitive to intracavity birefringence amplitude varia-
tions of 0.5% with respect to the total mirror birefringence ε.
By rotating the mirrors we then tune this reference level down
to the minimum needed for stable optical feedback. With our
setup, ε = 10−6 gives about 5 ×10−5 feedback, which is more
than adequate. We could therefore detect birefringence varia-
tions at least as small as 10−8 (radians per pass).

Systematic errors may occur in the measurement of the
amplitude of the feedback rate, and in the estimation of the
factor Hmax. Thus, for instance, when using (10) to fit the
data, an overestimation of 10% in Hmax will induce an un-
derestimation of about 5% in the magnitude of both ε’s. Here
we obtained Hmax by measuring the cavity intensity transmis-
sion at resonance, normalized to the incident laser intensity.
It is possible to do this to 1% accuracy, but transverse mode-
matching effects should be considered. Indeed, if transverse
mode matching of the laser beam to the TEM00 cavity modes
is not good enough (projection coefficient close to 1), optical
feedback locking will still be efficient but not all incident en-
ergy will be coupled into TEM00 cavity resonances, and Hmax
will be underestimated. Another possibility is to calculate
Hmax from R and T . We have seen that ring-down time meas-
urements on the same setup give the cavity loss per round trip,
which together with the cavity length allows the calculation
of R (and F ) to better than 1% accuracy. The mirror trans-
mission T can also be accurately measured by using the same
laser source and exploiting the large linear dynamic range of
photodiodes to directly measure the beam intensity before and
after the mirror.

Finally, it is interesting to note that broadband losses in
air (Rayleigh and Mie scattering), even if not negligible with
respect to mirror losses, should have no consequence on our
measurements. We may include these losses as part of the mir-
ror reflectivity coefficient R (whose value is then effectively

reduced), and all model equations remain unchanged. Indeed,
the ring-down time measurement and the cavity transmission
determination of Hmax both give values which also include
these scattering loss contributions.
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