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ABSTRACT We studied the characteristics of a two-dimensional
grating optical low-pass filter (GOLF) theoretically and experi-
mentally. The modulation transfer function (MTF) of an optical
system that consists of a lens and a GOLF is theoretically de-
rived by taking all orders of diffracted beams into consideration.
The MTFs of a two-phase chess-board-type GOLF and a three-
phase GOLF were calculated for various phase differences and
compared with that of a birefringent low-pass filter (BLF). The
three-phase GOLF with nine center beams of equal strength
removes most moiré fringes, but the resolution degradation is
severe compared to the BLF. The two-phase GOLF with a phase
difference of 180◦, which is similar to the BLF in term of beam
distribution, has a medium characteristic somewhere between
those of the three-phase GOLF and the BLF. Samples of two
GOLFs are made and experimented on by attaching them to
a digital camera. The experimental result coincides with the
theoretical development.
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1 Introduction

A digital imaging device, such as a charge-coupled
device (CCD) or a CMOS image sensor, samples an image
by its finite-size image cells. According to the sampling the-
ory, perfect image restoration is possible when the incoming
image has spatial frequency components below the Nyquist
frequency, which is a half of the inverse value of the sam-
pling period or the pixel size [1, 2]. When the incoming image
has a frequency component larger than the Nyquist frequency,
image distortion originating from aliasing is inevitable. The
moiré fringes that can usually be seen when the image has
a fine striped pattern is the best example.

Optical low-pass filters are used in digital imaging sys-
tems, such as digital cameras, to filter out high spatial fre-
quency components. The most widely used optical low-pass
filter is the birefringent low-pass filter (BLF) that uses polariz-
ing crystal plates to separate incoming light into ordinary and
extraordinary beams [3–9]. Since two crystal plates are used
to separate incoming light into four beams, a BLF is expensive
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as well as thick, which makes it very hard to miniaturize the
optical system.

A grating optical low-pass filter (GOLF) is a new alter-
native to a BLF [10]. Since a thin phase grating on a glass
plate is used in a GOLF, it is easy to design optical filters
of diverse characteristics by controlling the period and phase
differences. And, it can be mass-produced with reasonable
tolerance using semiconductor technology. Also, since it is
very thin, it can be used in size-sensitive applications. How-
ever, the distance between the GOLF and the image sensor
must be exact for best performance, and the distance and in-
tensity of the divided light vary according to the wavelength of
the incoming light.

By analyzing the one-dimensional modulation transfer
function (MTF) of a GOLF, we have reported that a GOLF
is optimum when it is used as a nine-beam splitter and the
light intensities of the nine beams are the same [11]. We made
a GOLF that satisfies this condition by making a three-phase
two-dimensional grating on glass. An experimental result by
attaching it to a PC camera is also reported. Since high-order
diffraction beams (higher than two) are ignored in the one-
dimensional model, the diffraction efficiency is less than 80%;
hence there is some discrepancy between the one-dimensional
model and the measured data.

We calculated a real MTF of a GOLF by considering all
higher-order diffraction beams and compared it with that of
a BLF. Also, we calculated the MTF of a two-phase chess-
board-shaped GOLF to compare with others. We made new
samples to verify the analysis. The images through new GOLF
samples on digital cameras are compared with those of a BLF.

2 Theory: MTF calculation

The intensity distribution on the image plane can be
written as a convolution of the square of the coherent trans-
fer function and the intensity distribution of an object in an
incoherent imaging system [12]:

Ii(x, y) = |h(x, y)|2 ×Io(x, y). (1)

For a point source (Io(x, y) = δ(x, y)),

Ii(x, y) = |h(x, y)|2 . (2)
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By Fourier transforming (2), we can get the optical trans-
fer function (OTF), H , of the imaging system:

H(ξ, η) = F
[|h(x, y)|2] = F [Ii(x, y)] . (3)

Hence, we can calculate the OTF (or MTF) of an imag-
ing system, if we know the image intensity of a point-source
object.

Let us consider an incoherent imaging system that consists
of a lens system and a GOLF. The wave function on the image
plane Ui is proportional to the Fourier transform of the GOLF
transmittance subtended by the lens pupil [13]:

Ui(x, y) = e
iπ
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where P(x, y) is the lens-pupil function, tg(x, y) is the GOLF
transmittance, λ is the wavelength, and d is the distance from
the lens to the image plane. Since the GOLF transmittance is
a periodic function, the Fourier transform of it is the sum of
delta functions and can be written as follows:

F
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where xo = λd/px, yo = λd/py, and px and py are the periods
of the GOLF in the x and y directions, respectively. The coeffi-
cient am,n depends on the structure of the GOLF. From (4) and
(5),
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and the image-intensity distribution is
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When the pupil is a circle of diameter D, the radial extent
of F[P](x/λd, y/λd) is about λd/D and is much smaller than
xo and yo. Therefore, we can neglect the overlapping of the
terms with different orders (m, n) in (7):
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Using (3), we can get the OTF of the system:

H(ξ, η) = F [Ii(x, y)]

=
∑
m,n

∣∣am,n

∣∣2
e−2πi(mxoξ+nyoη) P(λdξ, λdη)

• P∗(λdξ, λdη), (9)

where • means the correlation operation.

For a circular lens of diameter D, the autocorrelation of the
pupil function becomes [14]:

P(λdξ, λdη) • P∗(λdξ, λdη) =
2
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where fmax = D/λd = 2NA/λ.

2.1 MTF of two-phase GOLF

The phase structure of a two-phase GOLF is shown
in Fig. 1a. By Fourier transforming the GOLF transmittance,
we can get the coefficient am,n as follows:

am,n = 2 sin(mπ/2) sin(nπ/2)

mnπ2

×
[

cos
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2
π + eiφ cos
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2
π

]
, (11)

where φ is the phase difference of the GOLF. Except for
a0,0, am,n is zero if m or n is even. Using the symmetry
|am,n|2 = |am,−n|2 = |a−m,n|2 = |a−m,−n|2, the OTF becomes:

H(ξ, η) = P(λdξ, λdη)• P∗(λdξ, λdη)
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(12)

FIGURE 1 The phase structure of a GOLF. a Two-phase GOLF, b three-
phase GOLF

2.2 MTF of three-phase GOLF

The phase structure of a three-phase GOLF is
shown in Fig. 1b. The coefficient am,n becomes:

am,n = 2 sin(mπ/2) sin(nπ/2)
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×
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2
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The symmetry |am,n|2 = |am,−n|2 = |a−m,n|2 = |a−m,−n|2 is
also preserved, but |am,0|2 = |a0,m|2 �= 0 in this case. Hence

H(ξ, η) = P(λdξ, λdη)• P∗(λdξ, λdη)
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2.3 MTF of BLF

A BLF is a four-beam splitter and has no higher
orders. The only nonzero terms are |a1,1|2 = |a1,−1|2 =
|a−1,1|2 = |a−1,−1|2 = 0.25. Hence

H(ξ, η) = P(λdξ, λdη)

• P∗(λdξ, λdη) cos[2πxoξ] cos[2πyoη] . (15)

3 MTF analysis

An ideal filter is one that cuts out all spatial fre-
quency components above the Nyquist frequency, fN, and
passes all components below fN. If the MTF value below fN is
small, the resolution of an imaging system deteriorates. If the
MTF value above fN is large, severe moiré fringes may occur.
Therefore, we can estimate the performance of three filters by
comparing their MTFs.

In a two-phase GOLF, if the phase difference is π, the
0th-order beam disappears and four beams of ±1st order are
the strongest; thus it shows a characteristic similar to that of
a BLF. As the phase difference becomes smaller, the inten-
sity of the 0th-order beam at the center increases. In this case,
a GOLF works as a five-beam splitter. We can conclude that
the less the phase difference, the better the resolution of the
imaging system and the less the filtering effect. The MFT of
a GOLF with several phase differences is shown in Fig. 2a.
The MTF of a BLF is also shown. The graph is the cross-
sectional view at the ξ-axis (η = 0) from the (ξ, η) plane. For
the graph, diffraction beams up to the ±100th orders in the x
and y directions are taken into consideration. The xo value in
(12) is half of the pixel size and the spatial frequency is nor-
malized by fN. For most spatial frequencies, the MTF value
of a GOLF is less than that of a BLF if the phase difference is
π. Therefore, we may conclude that an imaging system with
a GOLF shows more resolution degradation than that with
a BLF, while it has better moiré filtering.

If the phase difference is less than π, we can see that the
MTF values at frequencies lower than fN are obviously im-
proved, but there is no specific tendency at frequencies higher
than fN. In the case φ = 100◦, the resolution is better than

FIGURE 2 The MTF of a two-phase GOLF (a) and a three-phase
GOLF (b). The numbers in the boxes are the phase differences (φ) of the
GOLF. The MTF of a BLF is also shown in (a)

that of a BLF and the filtering characteristic at frequencies be-
tween 1.2 fN and 2.8 fN is much better than that of a BLF. But,
higher-frequency components may degrade the moiré fringe.

In the case of a three-phase GOLF in Fig. 1b, if the phase
φ = 115◦, the intensities of nine beams at the center are all
same. But, if the phase is less than this value, the resolution is
improved while the filtering effect is degraded, since the 0th-
order beam at the center becomes stronger. The MTF of the
three-phase GOLF is shown in Fig. 2b. In this case, most of
the conditions are the same as those of the two-phase GOLF,
but the xo value is the pixel size. When φ = 115◦, the reso-
lution is less than that of a two-phase GOLF with phase π,
but the filtering effect is better. As the phase difference de-
creases, the resolution improves, while the filtering deterio-
rates. One should note that the MTF of the three-phase GOLF
with φ = 1/2π(90◦) is almost same as that of a two-phase
GOLF with φ = π(180◦).

In the two types of GOLF, the resolution improves while
the filtering effect degrades, as the phase difference decreases.
But, the filtering effect degradation of the three-phase GOLF
in Fig. 2b is too severe. Therefore, the two-phase GOLF is rec-
ommended for better resolution with tolerable moiré fringes.
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4 Experiments and results

We manufactured two types of GOLF samples
shown in Fig. 1. The two-dimensional phase gratings are
made by etching soda lime silica glass plates with a thick-
ness of 1 mm through a semiconductor lithography process.
Since the refractive index of the glass is 1.523 and the refer-
ence wavelength of visible light is 550 nm (green), the etch
depth of a phase difference π is 530 nm. We fabricated a two-
phase GOLF with φ = 180◦ and a three-phase GOLF with
φ = 115◦. The process margin of the etch depth was ±10 nm
and the corresponding error bound in the phase difference
is ±3.4◦. This value has little effect on the filtering charac-
teristics of a GOLF, as we can see in Fig. 2. The period of
a three-phase GOLF was 330 µm and that of a two-phase
GOLF was 660 µm. The error in the width of each phase
step is of the order of the etch depth and hence can be
ignored.

FIGURE 3 The experimental setup

FIGURE 4 The images of
a zone plate. To make them
more distinctive, we filtered
all the figures with the same
graphic operation (using Adobe
Photoshop). a Without any fil-
ter, b with BLF, c with three-
phase GOLF (φ = 115◦), and
d with two-phase GOLF (φ =
180◦)

The experimental setting is shown in Fig. 3. The imaging
device is a digital camera from Samsung Electronics (model
SDC007). For reference, the CCD in the camera is a Mat-
sushita MN3778, which has 1152 ×872 effective pixels, the
size of each pixel being 4.6 µm×4.6 µm. The original camera
lens was replaced with a Pentax lens with a larger focal length.
A GOLF or a BLF was placed between the lens and the CCD
to take a picture of test targets. All optical devices includ-
ing the lens and the GOLF were placed on micro-translators
to adjust their positions. The F# of the lens is fixed to 2.8.
A zone-plate image was used to observe the moiré fringes and
a USAF1951 resolution chart was used to measure the reso-
lution. The effective distance from the CCD surface to the
GOLF is 2.8 mm and the distance from the glass lid to the
GOLF is 1.3 mm.

Zone-plate images of four cases are shown in Fig. 4. We
compared images without any optical filter, with a BLF, and
two kinds of GOLF, a two-phase GOLF with φ = 180◦ and
a three-phase GOLF with φ = 115◦. To make the difference
in the filtering effect more distinctive, we used a graphic pro-
gram to filter each picture. In all images, concentric circles are
all moiré fringes if the center of the circle is not at the center of
the image. We can conclude that the moiré fringes are remark-
ably reduced if any kind of filter is used. The moiré fringes
with a BLF were the most severe. The two types of GOLF
show similar moiré reduction, but the three-phase GOLF with
φ = 115◦ in Fig. 4c shows the fewest moiré fringes. The ex-
perimental results match the conclusions we obtained from
the MTF comparison in Fig. 2.

Images of the resolution chart are shown in Fig. 5. The
image is the clearest of all without any filter in Fig. 5a.
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FIGURE 5 The images of a USAF resolution chart.
a Without any filter, b with BLF, c with three-phase
GOLF (φ = 115◦), and d with two-phase GOLF
(φ = 180◦)

The image with a BLF is the next (Fig. 5b), and the image
with a three-phase GOLF (φ = 115◦) shows the least clarity
(Fig. 5c). For example, if we calculate the maximum modula-
tion of the horizontal lines in element 2 of group 0, it is 0.86
without an optical filter, 0.43 with a BLF, 0.16 with a three-
phase GOLF (φ = 115◦), and 0.30 with a two-phase GOLF
(φ = 180◦), which coincides with the sequence we predicted
from the theory.

5 Summary and future work

The theoretical MTF of a GOLF was derived by
taking all diffraction beams of high orders into consideration.
The MTF of a two-phase chess-board-type GOLF and that of
a three-phase GOLF were analyzed and compared with that
of a BLF. The GOLF was manufactured with a semiconductor
process and attached to a digital camera. Images of a test tar-
get were taken with and without optical filters and compared
in terms of resolution and filtering effect.

As the phase difference of the GOLF increases, the filter-
ing effect improves, and thus fewer moiré fringes are shown,
but the resolution degrades. The resolution of the BLF was
the best in all tested optical filters, but the filtering effect was
the worst and the most moiré fringes were visible. The three-
phase GOLF with φ = 115◦, which has nine beams with equal
strength, shows the best filtering effect and the worst reso-
lution. The two-phase GOLF with φ = 180◦ shows character-
istics somewhere between the two. This experimental result
agrees with the theoretical prediction from the MTF.

In this experiment, we found that the grating image is su-
perimposed on object images in special conditions. Vague
lines visible in the outer part of the image in Fig. 4c and d are
grating lines of the x or y direction. This is the Fresnel image
and it is more distinctive when the F# of the lens increases. We
are working to solve the problem.
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