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ABSTRACT A generalised formalism of characteristic matrices
is presented to analyse second-harmonic magneto-optical Kerr
effects in an optically anisotropic centrosymmetric ferromag-
netically ordered multilayer if its response can be described in
terms of electric polarisation. Features of the model associated
with ideal (infinitely thin) interfaces are highlighted. These are
due to both the existence of two versions of unconventional
boundary conditions and an inevitable conventional approach
to defining the surface polarisations through the fundamental
electric field and surface-susceptibility tensors. New analytical
results for linear and second-harmonic Kerr effects are shown
to be advantageous for developing an effective algorithm for
their numerical simulation. The linear approximation with re-
spect to magnetisation is pursued, thereby also making our
results suitable for investigating a great variety of magneto-
optical effects and (in the second-harmonic case) effects related
to anisotropy.

PACS 78.20.Ls; 78.20.Bh; 78.20.Ci; 42.65.-k; 03.50.De

1 Introduction

The interaction of intense laser radiation of fre-
quency ω with a magnetic multilayer may result in magneto-
optical (MO) effects at the frequencies ω and ωS = 2ω [1–
3]. When observed in reflected light these effects are re-
spectively referred to as linear and second-harmonic MO
Kerr effects (MOKE and SHMOKE). The phenomenologi-
cal model [1–5] commonly used to describe them is based
on a number of assumptions that do not necessarily lead to
an inadequate interpretation but greatly simplify the analy-
sis. We shall show its features and provide new analytical
results for the case of an optically isotropic centrosymmetric
magnetic multilayer – a set of layers composed of differ-
ent materials on a nonmagnetic substrate (Fig. 1). Interfaces,
including that between the first layer and the nondispersive
transparent medium of frequency-independent refractive in-
dex n0, are assumed so narrow (their width is much smaller
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than the wavelength) that they may be thought of as ideal
surfaces infinitely extended in the film plane. The laser ra-
diation incident on the multilayer at the angle ϕ is regarded
as a plane wave whose state of polarisation is known. The
response of the multilayer is governed entirely by electric (ef-
fective) polarisations distributed in the volume regions and at
the surfaces. Four kinds of polarisations result. Linear volume
polarisation PLV accounts for conventional MOKE, and lin-
ear surface PLS for its surface counterpart, i.e. surface MOKE
(SMOKE) [5, 6], induced exclusively at the interfaces. Non-
linear volume polarisation PNV and surface PNS give rise
to volume- and surface-sensitive SHMOKE. Compared with
PLV, the other three kinds of polarisations are small enough to
be treated as perturbations. They all are related to the funda-
mental electric field in the layers through susceptibility ten-
sors. To determine the reflected and second-harmonic waves
in the transparent medium and then the MO effects them-
selves, the formalism of characteristic matrices, based on the
Maxwell equations and certain boundary conditions, can be
used advantageously [5].

Such a simple model features two subtleties that are likely
to cause ambiguity. First, there exist two versions of the
boundary conditions involving surface polarisation, and this
is due to two possible options of defining the electric induc-
tion at an interface [7]. Second, the way one defines PLS and
PNS in terms of the fundamental field at the interface is a mat-
ter of convention as a result of discontinuity of the normal
component of this field. Several distinct conventions may be
encountered and they are all valid. However, they may lead
to different values of the surface-susceptibility tensors. Since
these aspects of the model need careful handling, we devote
this paper to a detailed analysis of MOKE and SHMOKE.
Consideration of SMOKE is very similar [5]. A particular set
of boundary conditions and a clearly defined convention will
be pursued. SI units will be used throughout. In Sect. 2, we
will briefly outline the formalism of dealing with the reflected
wave at the fundamental frequency and consequently MOKE.
Important expressions for the longitudinal, polar, and trans-
verse configurations will be given. Extension of this formal-
ism to the problem of treating the second-harmonic wave and
SHMOKE will be described in Sect. 3. This will be based on
our preferred conventional definition for the nonlinear surface
polarisation in terms of corresponding susceptibility tensor
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and fundamental field. Decomposition of the tensor in the lin-
ear approximation with respect to magnetisation [7] will allow
us to obtain analytical results especially suitable for looking
at rotational anisotropy of SHMOKE. We shall show how the
characteristic matrix formalism is modified by the unconven-
tional boundary conditions, leading to analytical results for
the second-harmonic wave in the transparent medium. Sec-
tion 4, apart from a summary of our analysis, addresses the
relationship between possible conventions (rescaling proced-
ure for tensor components) and alternative boundary condi-
tions to make our result consistent with those that come from
both different conventions and a different set of the boundary
conditions.

2 Reflected wave and MOKE

Here initial results of our analysis of MOKE in the
multilayer (Fig. 1) by means of the characteristic matrix for-
malism are outlined so that a similar analysis of SHMOKE (in
Sect. 3) might be followed more easily.

The electric field E(i) and the magnetic field H(i) of the
incident wave can be expressed in terms of the s- and p-
components of E(i) defined at the surface of the multilayer:

E(i)= exp
(
i
(
k(i), x

)) (
E(i)s , n−1

0 ζE(i)p ,−n−1
0 αE(i)p

)
,

H(i)=−Z−1 exp
(
i
(
k(i), x

)) (
n0 E(i)p , −ζE(i)s , αE(i)s

)
,

where k(i) = k0(0, α, ζ) is the wave vector, k0 = ω/c the wave
number, c the velocity of light in vacuum, α = n0 sinϕ, ζ =
n0 cosϕ, n0 the refractive index of the transparent medium,
ϕ the angle of incidence, and Z = (µ0ε

−1
0 )1/2 the wave

impedance of vacuum. Owing to the conventional boundary
conditions, any wave propagating in the layer inherits the
structure and properties of the incident wave. All the wave
vectors have the same first and second components, which
coincide with those of k(i).

Within the linear approximation in magnetisation [7], an
optically isotropic layer homogeneously magnetised along
the unit vector m is introduced into the wave equation by the
permittivity tensor

εij(ω)= n2 (
δij − iQeijkmk

)
, (1)

where n is the complex refractive index (Im n > 0 because of
the implicated time-dependent factor exp(−iωt)), Q the com-
plex magneto-optical parameter, and δij and eijk are the Kro-
necker delta and the permutation symbol (Levi–Civita tensor),
respectively. More commonly the tensor (1) is given in matrix
form:

ε̂(ω)= n2


 1 −iQm3 iQm2

iQm3 1 −iQm1
−iQm2 iQm1 1


 .

Let N = (0, 0, 1) be a unit normal to each interface
(Fig. 1). We shall use the superscript ‘+’ to refer to that side
of an interface, which is defined as positive by a positive di-
rection of N. Quantities defined at the other side are labelled
with ‘−’. By definition, the characteristic matrix M̂ of a layer

FIGURE 1 Multilayer configuration for the model of MO effects.

relates the vector
(
E−

1 , ZH−
2 ,E

−
2 , ZH−

1

)T
at the interface,

which is set further from the transparent medium, to the simi-
lar vector

(
E+

1 , ZH+
2 ,E

+
2 , ZH+

1

)T
at the other interface, i.e.(

E+
1 , ZH+

2 ,E
+
2 , ZH+

1

)T = M̂
(
E−

1 , ZH−
2 ,E

−
2 , ZH−

1

)T
Here

the tangential components of electric and magnetic fields are
defined internally with respect to the layer. By virtue of the
conventional boundary conditions, it is also appropriate to de-
fine these components externally. The characteristic matrix
has the following distinctive symmetry:

M̂ = M̂(0)+ QM̂(1) =



m11 m12 0 0
m21 m11 0 0
0 0 m11 m34

0 0 m43 m11




+ Q




0 0 m̃13 m̃14

0 0 m̃23 m̃24
m̃24 m̃14 m̃33 0
m̃23 m̃13 0 −m̃33


 (2)

and 10 independent components [5]

m11 = coshµ,m12 = −γ−1 sinhµ,m21 = −γ sinhµ,

m34 = n−2γ sinhµ,m43 = n2γ−1 sinhµ,

m̃33 = im1αγ
−1 sinhµ,

m̃13 = 1/2 im2αn2γ−3(µ coshµ− sinhµ)

− 1/2 im3n2γ−2µ sinhµ,

m̃14 = 1/2 im2αγ
−2µ sinhµ+ 1/2 im3γ

−1(sinhµ−µ coshµ),

m̃23 = −1/2 im2αn2γ−2µ sinhµ

+ 1/2 im3n2γ−1(sinhµ+µ coshµ),

m̃24 = −1/2 im2αγ
−1(µ coshµ+ sinhµ)+ 1/2 im3µ sinhµ,

whereµ= ik0γh, γ = (n2 −α2)1/2, h is thickness of the layer,
and the other parameters are defined in (1). If the layer is non-
magnetic, M̂(1) disappears. In the characteristic matrix Ŝν =
Ŝ(0)ν + Ŝ(1)

ν of the first ν layers (sets of their parameters may be
different) we distinguish its nonmagnetic part Ŝ(0)ν = M̂(0)

1 · · ·
M̂(0)
ν and its magnetic part Ŝ(1)

ν = Q1M̂
(1)
1 M̂(0)

2 · · · M̂(0)
ν + ...+

QjM̂
(0)
1 · · · M̂(0)

j−1 M̂(1)
j M̂(0)

j+1 · · · M̂(0)
ν + ... + QνM̂(0)

1 · · ·
M̂(0)
ν−1 M̂(1)

ν . For the whole multilayer ŜJ = P̂, whilst Ŝ(0)0 and
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Ŝ(1)
0 are a unit and a zero matrix respectively. We assume that

the substrate is semi-infinite and optically isotropic to be char-
acterised by a single parameter – the complex refractive index
ns. Applying the conventional boundary conditions, the nor-
mal modes in the transparent medium and the substrate lead
to the following equation:

F̂




E(i)s

E(i)p

E(r)s

E(r)p


 = P̂




1 0
γs 0
0 1
0 −n2

sγ
−1
s


[

E+
01

E+
02

]
, (3)

where F̂ =



1 0 1 0
ζ 0 −ζ 0
0 n−1

0 ζ 0 −n−1
0 ζ

0 −n0 0 −n0


, γs = (n2

s −α2)1/2, and

the complex amplitudes on the right-hand side are defined at
the last interface. The s- and p-components of the reflected
wave become available from (3) and are related to E(i)s and E(i)p
through the reflection matrix:

[
E(r)s

E(r)p

]
=

[
rss rsp

rps rpp

][
E(i)s

E(i)p

]
, (4)

which comprises the generalised Fresnel coefficients ex-
pressed in terms of P̂:

rss = (p11+p12γs)ζ−p21−p22γs
(p11+p12γs)ζ+p21+p22γs

,

rsp = 2n0ζ
[(

p̃13γs− p̃14n2
s

)(
p21+p22γs

)
−
(

p̃23γs− p̃24n2
s

)(
p11+p12γs

)]((
p11+p12γs

)
ζ+p21+p22γs

)((
p33γs−p34n2

s

)
n2

0−
(

p43γs−p44n2
s

)
ζ

) ,
rps = 2n0ζ

[(
p̃31+ p̃32γs

)(
p43γs−p44n2

s

)
−
(

p̃41+ p̃42γs

)(
p33γs−p34n2

s

)]((
p11+p12γs

)
ζ+p21+p22γs

)((
p33γs−p34n2

s

)
n2

0−
(

p43γs−p44n2
s

)
ζ

) ,
rpp= r(0)pp + r(1)

pp = −
(

p33γs−p34n2
s

)
n2

0−
(

p43γs−p44n2
s

)
ζ(

p33γs−p34n2
s

)
n2

0−
(

p43γs−p44n2
s

)
ζ

+

2n2
0ζ

(
p̃33γs− p̃34n2

s

)(
p43γs−p44n2

s

)
−
(

p̃43γs− p̃44n2
s

)(
p33γs−p34n2

s

)((
p33γs−p34n2

s

)
n2

0−
(

p43γs−p44n2
s

)
ζ

)2 .

To make sure that these expressions are correct, the symme-
try principle for reflection matrices, due to Shelankov and
Pikus [8], can be used. In our case, and with regard to the sign
convention we use for E(r), this guiding principle states the
following:

rss (ϕ; m1, ...,mJ)= rss (−ϕ; −m1, ...,−mJ) ,

rsp (ϕ; m1, ...,mJ)= −rps (−ϕ; −m1, ...,−mJ) ,

rpp (ϕ; m1, ...,mJ)= rpp (−ϕ; −m1, ...,−mJ) .

For J = 1, it can immediately be inferred from (2) that these
properties are satisfied.

In the zero approximation with respect to magnetisation
(all the Q-parameters are zero), the electric field inside the νth

layer can be expressed through the matrix Ŵ = M̂ν · · · M̂J :

E1 = 2ζE(i)s exp (ik0αx2)

× (w11 +w12γs) cosh ξ+ (w21 +w22γs) γ
−1
ν sinh ξ

(p11 + p12γs) ζ + p21 + p22γs
,

E2 = 2n0ζE(i)p exp (ik0αx2)

×
(
w33γs −w34n2

s

)
cosh ξ− (

w43γs −w44n2
s

)
n−2
ν γν sinh ξ(

p33γs − p34n2
s

)
n2

0 − (
p43γs − p44n2

s

)
ζ

,

E3 = −2n0αζE(i)p exp (ik0αx2)

×
(
w33γs −w34n2

s

)
γν sinh ξ− (

w43γs −w44n2
s

)
n−2
ν cosh ξ(

p33γs − p34n2
s

)
n2

0 − (
p43γs − p44n2

s

)
ζ

,

(5)

where γν = (
n2
ν−α2

)1/2
, nν is the refractive index of the layer,

ξ = ik0γνx3, and x3 is supposed to be zero at that interface,
which is closer to the origin of the coordinate system (Fig. 1).
It is not difficult to check that these components obey the con-
ventional boundary conditions. The field E given by (5) will
appear (in Sect. 3) in definitions of volume and surface non-
linear polarisations. Since components of the relevant suscep-
tibility tensors are very small, we intentionally have excluded
relatively small contributions to E that are associated with
MO parameters.

Analytical expressions (4) cover a great variety of opti-
cally isotropic multilayers and allow us to provide a compre-
hensive formulation of MOKE. The state of polarisation of the
reflected wave, i.e. the Kerr angle θ and the ellipticity η, is de-
fined through the parameter χ = E(r)p /E(r)s , provided that the
direction of s-polarisation is chosen as a reference in measur-
ing θ . The required relations are [5, 9]:

η=1/2 arcsin
(

2 Imχ
(
1 +|χ|2)−1

)
,

θ=
{
θ∗ = 1/2 arctan

(
2 Reχ

(
1 −|χ|2)−1

)
, if |χ| ≤ 1,

π/2 sgn Reχ+ θ∗, if |χ|> 1.

(6)

When the direction of p-polarisation is chosen, then χ =
−E(r)s /E(r)p . If the incident wave is either s- or p-polarised,
the simple expression θ+ iη ≈ χ for the complex Kerr angle
is valid. The positive sign of η ∈ (0, π/4) indicates left el-
liptical polarisation. This means that the electric field rotates
around the ellipse in an anticlockwise sense, viewed oppo-
site the wave vector k(r) (Fig. 1). The contrary rotation in the
case of η ∈ (−π/4, 0) suggests right elliptical polarisation. If
η= ±π/4, the wave is left (right) circularly polarised. The lin-
early polarised wave corresponds to η= 0.

The state of polarisation of the reflected and incident
waves is the same, if each magnetic layer is set in the trans-
verse configuration (mν = (1, 0, 0), ν = 1, ..., J) and the inci-
dent wave is either s- or p-polarised. According to (4), only
the p-polarised reflected wave is sensitive to magnetisation,
and its intensity changes as the magnetisation is reversed. This
is known as transverse MOKE. It can conveniently be charac-
terised by the parameter δ= (

I+ − I−)/(
I+ + I−)

defined by
the intensities for the two opposite magnetisation directions.

To exemplify the theory of MOKE outlined above, the
simple configuration with J = 1 is worth considering in the
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linear approximation with respect to thickness (ultrathin-film
limit). Equation (4) yields

rss = ζ−γs

ζ+γs
+ 2ik0ζh

(ζ+γs)
2

(
n2 −n2

s

)
,

rsp = 2k0n0ζQh(
ζ +γs

)(
n2

sζ +n2
0γs

) [
m2αn2

s +m3γsn
2] ,

rps = 2k0n0ζQh(
ζ +γs

)(
n2

sζ +n2
0γs

) [−m2αn2
s +m3γsn

2] ,
rpp = n2

s ζ−n2
0γs

n2
s ζ+n2

0γs
+ 2ik0n2

0ζh(
n2

s ζ +n2
0γs

)2

× [
αn2

s

(
1 −n2

s n−2)−γ 2
s

(
n2 −n2

s

)−2im1αγsn
2
s Q

]
.

The symmetry criterion (2) is obviously fulfilled. If the inci-
dent wave is s-polarised, the complex Kerr angle is

θ+ iη= rps

rss
= 2k0n0ζQh

(−m2αn2
s +m3γsn2

)
(
ζ −γs

)(
n2

s ζ +n2
0γs

) . (7)

In the case of p-polarisation it becomes

θ+ iη= − rsp

rpp
= −2k0n0ζQh

(
m2αn2

s +m3γsn2
)

(
ζ+γs

)(
n2

s ζ −n2
0γs

) . (8)

When m = (0, 1, 0) and m = (0, 0, 1) these simple expres-
sions describe longitudinal and polar MOKE respectively. In
the case of transverse MOKE (when m = (1, 0, 0) and the
incident wave has p-polarisation), the component rpp of the
reflection matrix (4) leads to

δ= 4k0n2
0αζhRe

γsn2
s Q

n4
sζ

2 −n4
0γ

2
s

. (9)

Simple formulas (7)–(9) for MOKE in an ultrathin layer on
a semi-infinite nonmagnetic substrate are just an illustration.
In the case when more complex configurations of the multi-
layer as well as an arbitrary state of polarisation of the incident
wave have to be considered, analytical expressions for MOKE
can also be deduced from (4), (5). In general, such expressions
are inevitably cumbersome, which makes it more preferable to
use a simple algorithm, based on (2), (4), and (6), for numeri-
cal analysis of MOKE.

3 Second-harmonic wave and SHMOKE

When considering SHMOKE, the s- and p-com-
ponents of the second-harmonic wave in the transparent
medium have first to be found. The procedure of carrying out
this most extensive part of the analysis closely follows that for
MOKE as outlined in Sect. 2. Now the problem requires us to
solve the wave equation for the electric field E in a particular
magnetic layer:

∇divE −∇2E = k2
0S

(
ε̂E + ε−1

0 PNV)
, (10)

where k0S = ωS/c is the wave number and, in accordance
with (1), εij (ωS) = ñ2

(
δij − iQ̃eijkmk

)
. All the parameters

and fields are defined at ωS. On finding E, the magnetic field
becomes available from the equation H = (iωSµ0)

−1curlE.

Another important equation is divε̂E = −ε−1
0 divPNV. At the

ideal interface the fields E and H must also obey the uncon-
ventional boundary conditions [7, 10–12]:

E+
1 − E−

1 = −ε−1
0 ∂PNS

3 /∂x1,

H+
2 − H−

2 = iωs PNS
1 ,

E+
2 − E−

2 = −ε−1
0 ∂PNS

3 /∂x2,

H+
1 − H−

1 = −iωs PNS
2 , (11)

where the rule to define fields at surfaces is given in Sect. 2.
Thus it is necessary to find the response of the layer to the
fields radiated by the volume and surface sources. These
sources take over the role of the incident wave and are related
to the fundamental field E, given by (5).

Since the layer is assumed centrosymmetric (inversion be-
longs to the point group that describes symmetry of its crystal
structure), PNV vanishes identically in the electric-dipole ap-
proximation, i.e. volume-sensitive SHMOKE is forbidden by
symmetry, but it survives and can be taken into account as
PNV

i = ε0χ
NV
ijkl (m)Ej

∂
∂xk

El in the electric-quadrupole approx-
imation [1, 2, 13, 14]. In the decomposition of the nonlinear
volume susceptibility tensor χNV

ijkl (m)= χ̃ijkl + χ̃ijklnmn we re-
tain only terms linear in magnetisation and assume no intrin-
sic symmetry for the polar and axial i-tensors. If the layer
is isotropic, the Curie group ∞∞m describes its symme-
try. There are three independent nonlinear optical parame-
ters. Only 60 of the 243 components of the axial tensor are
nonzero, six of them being independent [15]. Then PNV can be
written in vector form:

ε−1
0 PNV = χ2112(E,∇)E +χ1122EdivE + 1/2χ1212∇(E,E)

+χ12131 [[q,∇],E]+χ31121(E ,∇)q
+ (χ12131 +χ32111) qdivE

+χ11321Edivq +χ12311(q,∇)E
+ 1/2χ31211[m,∇](E,E), (12)

where q = [m,E] stands for a vector product. The nonmag-
netic part of PNV is well known [16], although for a differ-
ent combination of the involved parameters [2, 14, 17, 18],
whilst the magnetic part has just recently been derived [7].
The surface polarisation PNS appearing in the boundary con-
ditions (11) is induced by the fundamental electric field E
at the surface and is related to the latter through a nonlin-
ear surface-susceptibility tensor [1–7, 17, 19]. However, an
ambiguity occurs in setting up such a relationship, since the
normal component of E is discontinuous across the surface.
This inevitably leads to uncertainty in choosing the most suit-
able field to drive surface polarisations. It turns out that the
driving field may be chosen arbitrarily, and we prefer the con-
vention [7, 17]

PNS
i = ε0χ

NS
ijk

(
mS

)
Fj Fk, F1 = E1, F2 = E2, F3 = ε−1

0 D3 ,

(13)

involving the normal component of the displacement (at the
fundamental frequency) to keep the driving field continuous
across the surface. The tensor in (13) implies that the surface
magnetisation, directed along the unit vector mS, may be dif-
ferent from that in the volume.
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Taking into account PNV makes further analysis fairly
cumbersome [2]. Moreover, the idea that this polarisation,
being actually a plane wave, has just one wave vector, as as-
sumed in [20], does not seem appropriate because there are
at least two plane waves (with different wave vectors) driv-
ing the polarisation. Normally, the contribution of PNV to
optical effects in centrosymmetric multilayers is much less
pronounced than that associated with the surface polarisations
and therefore will be neglected henceforth in this paper. The
fact that the MO parameter is small (

∣∣Q̃
∣∣ � 1) allows us to

use a perturbation method for analysing the normal modes in
the layer (i.e. the plane waves that are governed by the homo-
geneous wave equation). Moreover, since nonlinear surface
polarisations are treated as perturbations within the model,
the quantities Q̃ PNS

i may be disregarded. Therefore, (10) be-
comes ∇2 E + (k0Sñ)2 E = 0, and it is accompanied by the
boundary conditions (11). It follows from (13), (5), and (11)
that in the νth layer the normal modes governed by this wave
equation are

E(1,3) = E(1,3)01 exp
(
i
(
k(1,3), x

))
(1, 0, 0),

H(1,3) = Z−1 E(1,3)01 exp
(
i
(
k(1,3), x

))
(0,±γ̃ ,−α),

E(2,4) = E(2,4)02 exp
(
i
(
k(2,4), x

)) (
0, 1,∓αγ̃−1) ,

H(2,4) = Z−1 E(2,4)02 exp
(
i
(
k(2,4), x

)) (∓ñ2γ̃−1, 0, 0
)
,

where k(1,3) = k(2,4) = k0S(0, α,±γ̃ ), γ̃ = (
ñ2 −α2

)1/2
, and

x3 = 0 at the interface Sν−1 (Fig. 1). On incorporating these
modes into the boundary conditions (11), we arrive at the fol-
lowing expression for the tangential components at the nega-
tive sides of the interfaces Sν−1 and Sν:


E−
1 (0)

Z H−
2 (0)

E−
2 (0)

Z H−
1 (0)


 = ˆ̃M(0)

ν




E−
1 (h)

Z H−
2 (h)

E−
2 (h)

Z H−
1 (h)


+ ik0Sε

−1
0




0

−PNS
1,ν−1

αPNS
3,ν−1

PNS
2,ν−1


 ,

where the nonmagnetic part of the characteristic matrix (2) is
defined for the parameters at the frequency ωS. Generalisa-
tion of this relation over the whole multilayer results in the
equation

F̂




0
0
Ẽs

Ẽp


 = ˆ̃P(0)




1 0
γ̃s 0
0 1
0 −ñ2

s γ̃
−1
s


[

E+
01

E+
02

]

+ ik0Sε
−1
0

J∑
ν=0

ˆ̃S(0)ν




0
−PNS

1,ν

αPNS
3,ν

PNS
2,ν


 .

Since this is similar to (3), the solution can be written down at
once:

Ẽs = r̃ssu1 −u3, Ẽp = r̃(0)pp u2 −u4, (14)

where the diagonal components of the reflection matrix (2) are

defined at the frequencyωS, and the u-parameters are compo-
nents of the vector

U = −ik0Sε
−1
0 F̂−1

J∑
ν=0

Ŝ(0)ν
(
0,−PNS

1,ν , αPNS
3,ν , PNS

2,ν

)T
.

At this stage the s- and p-components of the second-harmonic
field become available in terms of all the nonlinear surface po-
larisations. The polarisations themselves are found from (5)
and (13).

Our analysis would be deficient without a suitable ex-
ample. In the case of a single layer (J = 1), useful analytical
expressions involving two surface polarisations result from
(14):

Ẽs = ik0Sε
−1
0

(
ξ1 PNS

1,0 + PNS
1,1

)
γ̃s cosh µ̃− γ̃ sinh µ̃+ ζξ1

,

Ẽp = − ik0Sε
−1
0 n0

n2
0ξ2 + ζξ3

(
ξ2 PNS

2,0 +αξ3 PNS
3,0 + γ̃s PNS

2,1 +αn2
s PNS

3,1

)
,

where
ξ1 = cosh µ̃− γ̃sγ̃

−1 sinh µ̃, ξ2 = γ̃s cosh µ̃− ñ2
s ñ−2γ̃ sinh µ̃,

ξ3 = ñ2
s cosh µ̃− γ̃sγ̃

−1ñ2 sinh µ̃, and µ̃ = ik0Sγ̃h. As h →
∞, the layer turns into a semi-infinite medium, and the
second-harmonic wave is described by

Ẽs = ik0Sε
−1
0

ζ + γ̃ PNS
1 , Ẽp = − ik0Sε

−1
0 n0

n2ζ+n2
0γ̃

(
γ̃ PNS

2 +αn2 PNS
3

)
.

(15)

This basic result is convenient for looking at features of
SHMOKE. According to (5), components of the driving field
F involved in the convention (13) become

F1 = E1 = 2ζ

ζ +γ E(i)s ,

F2 = E2 = 2n0ζγ

n2ζ +n2
0γ

E(i)p ,

F3 = n2E3 = − 2n0αζn2

n2ζ+n2
0γ

E(i)p .

Now we can turn to examples of SHMOKE, which
originate from the dependence of the nonlinear surface-
susceptibility tensor on magnetisation. To find the Kerr angle
and ellipticity of the second-harmonic wave, the parame-
ter χ = −Ẽs/Ẽp will be used in (6) with reference to p-
polarisation. If the incident wave is s-polarised,

χ = ñ2ζ+n2
0γ̃

n0(ζ + γ̃ )
χNS

111

γ̃χNS
211 +αñ2χNS

311

. (16)

The Kerr angle and ellipticity can be observed unless χNS
111 is

zero. Otherwise, the reflected wave is entirely p-polarised.
If the incident wave is p-polarised,

χ = ñ2ζ+n2
0γ̃

n0(ζ + γ̃ )
Y1

γ̃Y2 +αñ2Y3
, (17)

where Yi = χNS
i22 +α2n4γ−2χNS

i33 −2αn2γ−1χNS
i23. The second-

harmonic wave has p-polarisation if Y1 = 0.
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In the linear approximation with respect to magnetisa-
tion, the surface-susceptibility tensor can be decomposed as
χNS

ijk (m
S)= χ̃ijk + χ̃ijklmS

l . The polar and axial i-tensors in this
expression possess the apparent intrinsic symmetry: χ̃ijk =
χ̃ikj , χ̃ijkl = χ̃ikjl . Hence the number of the independent com-
ponents is reduced respectively to 18 and 54. The tilde (∼)
here marks the tensors defined in the physical coordinate sys-
tem, which is transformed into the crystallographic system
by clockwise rotation about X3 (in viewing against this axis)
through an angle ψ, the axis X1 being chosen as a reference
for the angle. In accordance with the Neumann principle, fur-
ther simplification occurs through the invariance of χijk and
χijkl (they are now defined in the crystallographic system)
under an ordinary point group that describes crystallographic
symmetry of the interface [21–24]. The invariance implies
a matrix representation of the group, i.e. an isomorphic group
of 3 ×3 matrices corresponding to the coordinate transform-
ations in accordance with the symmetry operations. Conse-
quently for any matrix Ĉ belonging to the group the equations

χijk = CilCjmCknχlmn , χijkl =
(

det Ĉ
)

CimCjnCkpClqχmn pq

hold and signify transformations of the tensors into them-
selves. Such equations constitute the direct inspection method
for simplifying tensors. To ensure maximum simplification, it
is sufficient to engage consecutively all the generating matri-
ces of the group [22].

As an example, the (001)-interface of fcc layers described
by the group 4mm is worth considering. On carrying out the
direct inspection method that should engage the generating

matrices


−1 0 0

0 1 0
0 0 1


 and


 0 1 0

−1 0 0
0 0 1


, the surviving tensor

components are [7]

χNS
111 = mS

1 χ̃1111 −mS
2χ̃2221, χ

NS
122 = −mS

1χ̃1111 −mS
2χ̃2111,

χNS
133 = −mS

2χ2331, χ
NS
123 = mS

3χ1233, χ
NS
113 = χ133,

χNS
112 = mS

1 χ̃1121 −mS
2χ̃1111, χ

NS
211 = mS

1 χ̃2111 −mS
2χ̃1111,

χNS
222 = mS

1 χ̃2221 +mS
2χ̃1111, χ

NS
233 = mS

1χ2331,

χNS
223 = χ113, χ

NS
213 = −mS

3χ1233,

χNS
212 = −mS

1 χ̃1111 −mS
2χ̃1121, χ

NS
311 = χ311, χ

NS
322 = χ311,

χNS
333 = χ333, χ

NS
323 = mS

1χ3231, χ
NS
313 = −mS

2χ3231,

where χ̃1111 = 1/4∆ sin 4ψ, χ̃1121 = χ1121 − 1/2∆ sin2 2ψ,
χ̃2111 = χ2111 − 1/2∆ sin2 2ψ, χ̃2221 = χ2221 + 1/2∆ sin2 2ψ,
∆ = χ2111 −χ2221 +2χ1121, and ψ is the angle between [100]
and the axis X1 (Fig. 1). There are nine independent parame-
ters: three optical and six magneto-optical [15]. The interface
is optically isotropic [14], since the optical parameters do not
depend on ψ, but magneto-optically anisotropic. The state of
polarisation and intensity of second-harmonic light would ex-
hibit a four-fold rotational anisotropy. This effect has been
observed in Bi-substituted iron-garnet films [25]. If the lin-
ear approximation with respect to magnetisation is not used
then, particularly for the in-plane magnetisation mS||[110],

invariance of the tensor χNS
ijk

(
mS

)
under the magnetic point

group mm2 has to be considered. This invokes 10 independent
parameters [19].

For the (001)-interface, (16) yields the following explicit
dependence of χ on both MO parameters andψ:

χ = ñ2ζ +n2
0γ̃

αn0ñ2(ζ + γ̃ )χ311

× [
1/4mS

1∆ sin 4ψ−mS
2

(
χ2221 + 1/2∆ sin2 2ψ

)]
. (18)

On comparing this with (7), it is not difficult to see that
for s-polarisation of the incident wave, SHMOKE is quite
different from MOKE. Indeed, for the polar configuration
(mS = (0, 0, 1)), (18) predicts the Kerr angle and ellipticity
to be both zero, whilst they may be not zero for the trans-
verse configuration (mS = (1, 0, 0)). If the incident wave is
p-polarised, in accordance with (17) the χ-parameter may be
explicitly expressed as

χ = ñ2ζ +n2
0γ̃

αn0(ζ + γ̃ )
×mS

1 χ̃1111 +mS
2

(
χ̃2111 +α2n4γ−2χ2331

)+2mS
3αn2γ−1χ1233

2n2γ−1γ̃ χ113 − (
χ311 +α2n4γ−2χ333

)
ñ2

.

(19)

This suggests that variations in the state of polarisation of
the second-harmonic wave are possible for all the three con-
ventional configurations. For instance, the Kerr angle and
the ellipticity appear for the transverse configuration, unless
ψ = 0. Equations (18) and (19) also show that SHMOKE (as-
sociated with variations in the state of polarisations) exhibits
a four-fold rotational anisotropy. Such anisotropy is specific
to SHMOKE. It does not exist for structurally isotropic sur-
faces. Their symmetry is described by the Curie group ∞m
which makes the parameter ∆ in the above formulas van-
ish [7]. Many other known nonlinear surface-susceptibility
tensors relevant to different symmetry properties of interfaces
can be used in the general analysis of SMOKE as outlined
above.

4 Conclusion

New analytical solutions to the problem of phe-
nomenological consideration of linear and second-harmonic
magneto-optical Kerr effects in ferromagnetically ordered
centrosymmetric multilayers have been obtained. The model
used implies that the response of the medium is adequately
described in terms of surface and volume electric polarisa-
tions and that all the interfaces are ideal surfaces (infinitely
thin). Since nonlinear polarisations are small, MOKE and
SHMOKE can be considered separately. For SHMOKE in
centrosymmetric multilayers, the polarisations are related
within electric-dipole and -quadrupole approximations to
the fundamental field through the surface- and volume-
susceptibility tensors, respectively. Examples of such rela-
tions have been given in the linear approximation with respect
to magnetisation, which allows simplification of the corres-
ponding polar and axial i-tensors to be revealed through their
invariance under ordinary point groups describing crystallo-
graphic symmetry of the layers and interfaces. An essential
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and noteworthy feature of the model is that there exist two
versions of boundary conditions, which involve a surface
polarisation. The conditions we prefer (for they clearly distin-
guish volume and surface polarisations [7]) are described by
(11). An alternative set of boundary conditions [7, 26, 27]:

E+
1 − E−

1 = − (
ε0ε

+
33

)−1
∂PNS

3 /∂x1,

H+
2 − H−

2 = iωS
(
PNS

1 − ε+13/ε
+
33 PNS

3

)
,

E+
2 − E−

2 = − (
ε0ε

+
33

)−1
∂PNS

3 /∂x2,

H+
1 − H−

1 = −iωS
(
PNS

2 − ε+23/ε
+
33 PNS

3

)
,

(20)

which combines the surface polarisation with the dielectric
tensor of the layer, may lead to different results.

Another feature of the model is an uncertainty in the defin-
ition of the surface polarisation in terms of susceptibility ten-
sor and fundamental electric field, because the normal com-
ponent of this field is discontinuous across an ideal interface.
This problem is resolved by adopting a particular convention.
The convention we used is described by (13). Alternatively,
for the same surface polarisation two other conventions are
possible:

PNS
i = ε0χ

NS+
ijk

(
mS) E+

j E+
k ,

PNS
i = ε0χ

NS−
ijk

(
mS) E−

j E−
k . (21)

Here E+
i and E−

i are components of the field E at the posi-
tive and negative sides of the interface, respectively, as defined
by the positive direction of unit normal N. If the off-diagonal
components of the dielectric tensor are so small that their con-
tributions to the driving field can be neglected, the tensors
χNS

ijk , χNS+
ijk , and χNS−

ijk are simply related to one another:

χNS
ijk = χNS+

ijk = χNS−
ijk , j, k �= 3,

χNS
ij3 = χNS+

ij3 /ε+33 = χNS−
ij3 /ε−33, j �= 3,

χNS
i33 = χNS+

i33 /
(
ε+33

)2 = χNS−
i33 /

(
ε−33

)2
. (22)

Definitions of the surface polarisation involved in the bound-
ary conditions (20) are obviously similar to those given
by (13) and (21). In particular, for the convention PNS

i =
ε0η

NS+
ijk

(
mS

)
E+

j E+
k the relationship between χNS+

ijk and ηNS+
ijk

is rather simple: χNS+
ijk = ηNS+

ijk , i �= 3;χNS+
3 jk = ηNS+

3 jk /ε
+
33. The

rescaling procedure for the tensors ηNS+
ijk , ηNS+

ijk , and ηNS+
ijk is

exactly the same as that described by (22). Therefore, within
the approximation we use, both sets of boundary conditions,
(11) and (20), deliver the same results. It is absolutely essen-
tial however to state clearly which boundary condition and
which convention on the surface polarisation are used.

Finally, the analytical results we have given for the re-
flected and second-harmonic waves comprise an effective al-
gorithm for numerical analysis of MOKE and SHMOKE in
a multilayer. The pursued linear approximation with respect
to magnetisation has been shown to be advantageous, par-
ticularly in view of the simplicity it presents for looking at

rotational anisotropy of SHMOKE. In addition, it also deliv-
ers a significantly lower number of nonzero tensor compo-
nents than would otherwise come from the often-used invari-
ance under magnetic point groups. This has been exemplified
for a single interface whose symmetry is described by the
group 4mm, although the susceptibility tensors being invari-
ant under many other point groups can be invoked. The simple
expressions we have given for a particular configuration of the
multilayer allow a variety of MO effects to be easily analysed.
On the whole, a methodologically clear approach, set up in
this paper, allows both MOKE and SHMOKE in multilayers
to be dealt with unambiguously.
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