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ABSTRACT The complete set of self-consistent parameters of
nominally undoped LiNbO3 crystals of congruent composition
that describe the electro-optic, piezoelectric, elasto-optic, elas-
tic, and dielectric response has been determined by numerically
evaluating available measurements. The parameters were deter-
mined at room temperature and consist of the low-frequency
clamped dielectric constants εS

ij , elastic stiffness constants at
constant electric field CE

ijkl , piezoelectric stress coefficients
eijk, elasto-optic constants at constant electric field pE

ijkl , and
clamped electro-optic coefficients rS

ijk. It is shown that the com-
plete set is required for calculating the effective electro-optic
coefficients and dielectric constants in photorefractive applica-
tions of LiNbO3.

PACS 42.70.Nq; 77.84.Dy; 78.20.-e

1 Introduction

In the last few decades, lithium niobate has become
one of the most important ferroelectric materials because
of the richness of its physical properties. It is widely used
for elastic and elasto-optic devices due to the large electro-
mechanical coupling coefficients. In optoelectronics and non-
linear optics its large electro-optic and nonlinear optical coef-
ficients are appreciated. As a photorefractive material, lithium
niobate is a most promising candidate for long-term photore-
fractive applications such as holographic data storage. In most
of the applications, a complete knowledge of the involved ma-
terial parameters is of essential importance.

In a photorefractive experiment, where the elastic defor-
mations are associated with a periodic space-charge field,
the effective electro-optic coefficients are modified due to in-
homogeneity of the electric field [1–3]. In addition to the
refractive indices and the clamped (strain-free) electro-optic
coefficients rS

ijk, the tensor of the elastic constants at constant
electric field CE

ijkl , the piezoelectric stress tensor eijk, and the
elasto-optic (Pockels) tensor at constant electric field pE

ijkl are
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needed in order to calculate the effective electro-optic coef-
ficients that describe the optical indicatrix change under the
influence of the electric-field grating.

The importance of the elasto-optic contributions to the
photorefractive effect was practically demonstrated in KNbO3
and BaTiO3 [4–7]. Lithium niobate has been extensively
studied for electro- and elasto-optic applications; therefore all
the mentioned material parameters are already available in
the literature [8, 9]. There are, however, inconsistencies when
comparing data from different sources and considering ther-
modynamic relations between various material parameters.
Recent results [10, 11] also showed that extrinsic impurities
and deviations of the crystal composition from stoichiometry
may slightly influence the material parameters.

We have re-evaluated various measurements from the lit-
erature to obtain a set of consistent material parameters that
describe the electro-elasto-optic response of a LiNbO3 crystal
of congruent composition. Using the new set of parameters we
calculate the effective electro-optic coefficients and effective
dielectric constant in the interaction planes that coincide with
crystallographic planes.

2 Determination of the complete set of material
parameters

2.1 Elastic, piezoelectric, and dielectric properties

At room temperature, lithium niobate is a trigonal
3m ferroelectric material. We use the coordinate system with
the z axis aligned in the direction of the spontaneous polar-
ization and the y axis that lies in the mirror-symmetry plane.
The sense of the +y direction is determined so that upon com-
pression in the y direction the +y face becomes negatively
charged.

The response of a piezoelectric crystal to external electri-
cal and mechanical fields is as usual described with linearised
equations. The stress T is related to the elastic strain S through
the elastic effect and to the electric field E through the piezo-
electric effect as [12]

Tij = CE
ijkl Skl − ekij Ek , (1)

where CE is the tensor of the elastic constants at constant elec-
tric field or elastic stiffness, and e is the piezoelectric stress
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tensor. The dielectric response is given by

Di = eijk Sjk + ε0 εS
ij Ej , (2)

where ε0 is the electric constant and εS is the dielectric tensor
at constant strain, also called clamped. A different set of inde-
pendent variables can be used to describe the piezoelectricity
as

Sij = sE
ijkl Tkl +dkij Ek (3)

and

Di = dijk Tjk + ε0 εT
ij Ej , (4)

with the exchanged roles of stress and strain. Here sE is the
elastic compliance tensor and d the piezoelectric strain tensor.
In the second relation we use εT , the dielectric tensor at zero
stress (or unclamped). Depending on the experimental situ-
ation we choose the appropriate set to use. Material constants
in different sets are related through thermodynamics, which
gives [12]

ε0
(
εT

ij − εS
ij

)= eilm djlm (5)

and

eijk = CE
lmjk dilm . (6)

With the use of these two relations and (1)–(4), one can ex-
press the parameters from the second set (sE

ijkl , dijk, and εT
ij )

with parameters from the first set (CE
ijkl , eijk, and εS

ij).
Until recently the basic set of elastic, dielectric, and piezo-

electric parameters was to our knowledge most accurately
determined in [13] from ultrasonic phase-velocity measure-
ments and low-frequency capacitance measurements. The
calculations of the basic parameters are usually based on tak-
ing differences of ultrasonic-wave velocities, which can be of
comparable magnitudes; thus they are subject to rather large
errors. This is the reason why some of the basic parameters
listed in the literature [8, 9] differ significantly (up to 100%).
Smith and Welsh [13] realised this, so they measured some un-
certain parameters independently and determined the whole
set of parameters iteratively. Their results are listed in the third
column of Table 5. But, as was pointed out in [9], the linear
hydrostatic coefficient

dh = 2 d311 +d333 (7)

was measured independently to within 1.5% to be
6.31 ×10−12 C/N [15]. The parameters obtained in [13],
however, give dh = 4.3 ×10−12 C/N. Recently, in [14] the ba-
sic set of elastic, dielectric, and piezoelectric parameters was
determined again from a very precise measurement of elastic-
wave velocities, which gave dh = 6.6 ×10−12 C/N. However,
from the 22 measured sound velocities only 10 were used for
the calculation of the basic parameters.

We have taken all the measured values from [13] and [14]
and calculated the basic parameters with a procedure, which
will be explained later, which gave more accurate values from
the same experimental results.

2.2 Electro-optic and elasto-optic properties and
material parameters

The presence of an electric field and elastic de-
formations can modify the optical properties of a material.
In noncentrosymmetric piezoelectric materials the induced
change in the refractive index is linear in the electric field and
displacement gradient and is commonly expressed by

∆

(
1

n2

)
ij

≡ ∆ε−1
ij = rS

ijk Ek + pE
ijkl Skl , (8)

where rS is the electro-optic tensor at zero strain (clamped)
and pE the elasto-optic (Pockels) tensor at constant elec-
tric field. In (8) the antisymmetric contribution to the elasto-
optic effect due to rotations of volume elements within elastic
deformations is neglected. It can be calculated by consid-
ering [16] that in LiNbO3 crystals the rotational contribu-
tion is p23[23] = p31[31] and has a value of about 0.05pE

2323.
As most measurements are more inaccurate, we neglect this
antisymmetric term in further analysis. The Pockels ten-
sor in LiNbO3 crystals has eight independent elements; we
denote them pE

1111, pE
3333, pE

2323, pE
1122, pE

1133, pE
1123, pE

3311,
and pE

2311.
In an unclamped case Tij = 0 and (3) gives Sij = dkij Ek.

Inserting this into (8) we get the connection between the un-
clamped and the clamped electro-optic coefficients as

rT
ijk = rS

ijk + pE
ijlm dklm . (9)

The coefficients dklm can be expressed with parameters from
the basic set (CE

ijkl and eijk) using the thermodynamic relations.
To completely describe the electro-optic and elasto-optic re-
sponse in a piezoelectric crystal, we need rS, εS, pE , CE , and
e tensor elements, which means 24 material parameters in
a crystal possessing 3m point-group symmetry. For the calcu-
lation of sound velocities the crystal density � is also needed;
we consider it as an additional material parameter.

2.3 Overview of the published data and determination
of the constraints

For the evaluation of the material parameters by
a numerical procedure we have tried to use the most reli-
able measurements from the literature as explained later with
particular data points. We calculated the basic parameters by
a least-square fit approach. Each experimental result repre-
sents a constraint on the values of the material parameters. It
is expressed as an algebraic function fi of the whole set of
independent material parameters, that is

fi (a1, . . . , a25) = yi ; i = 1, . . . , k , (10)

where a1, . . . , a25 is the chosen set of independent material
parameters, yi is the value of fi that was determined from an
experiment, and k is the number of the experimental results
used in the fitting procedure. In Tables 1–4 the set of k = 82
measured quantities that are used is shown.
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The first ten constraints in Table 1 (i = 1, . . . , 10) are ob-
tained using the thermodynamic relations (5) and (6) that give

sE
1111 = CE

3333

2
(

CE
3333

(
CE

1111 +CE
1122

)−2
(
CE

1133

)2
)

− CE
2323

2
(

CE
2323

(
CE

1122 −CE
1111

)+2
(
CE

1123

)2
) , (11)

d311 = CE
1133e333 −CE

3333e311

2
(
CE

1133

)2 −CE
3333

(
CE

1111 +CE
1122

) , (12)

εT
11 = εS

11 +2(e222d222 + e113d113)/ε0 , (13)

and

εT
33 = εS

33 + (2e311d311 + e333d333)/ε0 , (14)

where also the expressions for the dijk elements have to be
inserted into the last two equations. The eleventh constraint
is given by (7), inserting the expressions for d311 and d333
as functions of the basic set. The last four measurements in
Table 1 are the crystal densities measured by different authors.

The next 35 measurements (i = 16, . . . , 50) are the sound
velocities, measured for different propagation and polariza-
tion directions. These directions and wave types are specified

i Measured quantity Reference Measured value Fitted value Units

16 v (x, Ty) [13] 4059.3 ± 40 4029.0 m/s
17 v (x, Tz) [13] 4801.2 ± 40 4750.0 m/s
18 v (y, L) [13] 6882.2 ± 40 6806.3 m/s
19 v (y, Tx) [13] 3961.5 ± 40 3940.5 m/s
20 v (y, Tz) [13] 4494.3 ± 40 4445.9 m/s
21 v (z, L) [13] 7332.8 ± 40 7329.7 m/s
22 v (z, Tx) [13] 3574.0 ± 40 3590.6 m/s
23 v (y+40◦ z, L) [13] 7387.0 ± 40 7357.5 m/s
24 v (y+40◦ z, Tx) [13] 4048.3 ± 40 4012.5 m/s
25 v (y+40◦ z, Tz′) [13] 4027.3 ± 40 4015.0 m/s
26 v (y−40◦ z, L) [13] 7008.4 ± 40 6984.3 m/s
27 v (y−40◦ z, Tx) [13] 3573.5 ± 40 3574.5 m/s
28 v (y−40◦ z, Tz′) [13] 4206.7 ± 40 4184.9 m/s
29 v (y, L) [14] 6806.55 ± 0.78 6806.30 m/s
30 v (y+32.76◦ z, L) [14] 7338.65 ± 0.93 7339.81 m/s
31 v (y+58.13◦ z, L) [14] 7314.62 ± 0.93 7313.22 m/s
32 v (z, L) [14] 7328.20 ± 0.96 7329.66 m/s
33 v (y+147.24◦ z, L) [14] 6855.49 ± 0.87 6856.70 m/s
34 v (x, L) [14] 6544.53 ± 0.90 6543.98 m/s
35 v (y, Tx) [14] 3940.49 ± 0.63 3940.51 m/s
36 v (y+127.85◦ z, Tx) [14] 3499.94 ± 0.63 3499.96 m/s
37 v (z, Tx) [14] 3590.41 ± 0.69 3590.57 m/s
38 v (x, Tz) [14] 4750.67 ± 1.77 4749.99 m/s
39 v (y+9.14◦ z, L) [14] 6998.21 ± 1.50 6998.97 m/s
40 v (y+68.77◦ z, L) [14] 7305.47 ± 1.50 7304.51 m/s
41 v (y+77.48◦ z, L) [14] 7315.95 ± 1.50 7316.34 m/s
42 v (y+107.27◦ z, L) [14] 7298.94 ± 1.50 7298.95 m/s
43 v (y+127.85◦ z, L) [14] 7158.99 ± 1.50 7158.89 m/s
44 v (y+162.17◦ z, L) [14] 6656.29 ± 1.50 6656.59 m/s
45 v (x+15.57◦ z, L) [14] 6714.03 ± 1.50 6713.78 m/s
46 v (x+29.13◦ z, L) [14] 6970.74 ± 1.50 6969.72 m/s
47 v (x+39.89◦ z, L) [14] 7128.89 ± 1.50 7128.21 m/s
48 v (x+48.10◦ z, L) [14] 7206.55 ± 1.50 7205.72 m/s
49 v (x+65.84◦ z, L) [14] 7286.28 ± 1.50 7285.09 m/s
50 v (x+100.89◦ y, L) [14] 6738.03 ± 1.50 6738.18 m/s

TABLE 2 Data on sound velocities used
in the evaluation of material constants of
a LiNbO3 crystal. The sound directions and
wave types are specified in parentheses; for
example v (y+40◦ z, L) indicates a longitudinal
wave that propagates in the direction form-
ing an angle +40◦ from the y axis in the
crystal yz plane. For the transverse waves
two possible polarization directions exist; here
v (y+40◦ z, Tz′) indicates a (quasi)transverse
wave polarized (nearly) in the direction form-
ing an angle +40◦ from the crystal z axis

i Measured Reference Measured value Fitted value Units
quantity

1 sE
1111 [13] 0.5831 ± 0.006 0.5854 10−12 m2/V

2 dE
311 [13] −0.0862 ± 0.0006 −0.0864 10−11 C/N

3 εT
11 [13] 85.13 ± 1 84.48

4 εT
11 [14] 83.3 ± 0.8 84.48

5 εT
11 [17] 84.6 ± 1 84.48

6 εT
33 [13] 28.72 ± 1 27.78

7 εT
33 [14] 28.5 ± 0.3 27.78

8 εT
33 [17] 29.1 ± 1 27.78

9 εS
11 [17] 44.3 ± 1 45.52

10 εS
33 [17] 27.6 ± 1 26.22

11 dh [15] 0.6310 ± 0.003 0.6346 10−11 C/N
12 � [13] 4640 ± 5 4643.0 kg/m3

13 � [14] 4642.8 ± 1 4643.0 kg/m3

14 � [18] 4646 ± 5 4643.0 kg/m3

15 � [19] 4643 ± 3 4643.0 kg/m3

TABLE 1 Data on dielectric constants, density, and additional elastic pa-
rameters sE

1111, dE
311, and dh used in the evaluation of material constants of

a LiNbO3 crystal

in parentheses in Table 2. The corresponding constraints are
given with the solutions of the equation of motion for a dis-
placement uk of a volume element under the action of the
internal elastic forces [12]. For plane elastic waves this equa-
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i Measured Reference Measured value Fitted value Units
quantity

51 pE
1111 [20] −0.026 ± 0.002 −0.0261

52 pE
3333 [20] 0.071 ± 0.003 0.0702

53 pE
2323 [20] 0.146 ± 0.01 0.1453

54 pE
1122 [20] 0.090 ± 0.005 0.0876

55 pE
1133 [20] 0.133 ± 0.004 0.1335

56 pE
1123 [20] −0.075 ± 0.01 −0.0832

57 pE
3311 [20] 0.179 ± 0.01 0.1767

58 pE
2311 [20] −0.151 ± 0.005 −0.1507

59 pE
1111 [9] −0.032 ± 0.01 −0.0261

60 pE
3333 [9] 0.068 ± 0.005 0.702

61 pE
2323 [9] 0.148 ± 0.12 0.1453

62 pE
1122 [9] 0.081 ± 0.01 0.0876

63 pE
1133 [9] 0.135 ± 0.008 0.1335

64 pE
1123 [9] −0.076 ± 0.02 −0.0832

65 pE
3311 [9] 0.168 ± 0.02 0.1767

66 pE
2311 [9] −0.150 ± 0.009 −0.1507

TABLE 3 Data on elasto-optic coefficients used in the evaluation of mate-
rial constants of a LiNbO3 crystal

i Measured Reference Measured value Fitted value Units
quantity

67 rT
113 [21] 10.49 ± 0.4 10.12 10−12 m/V

68 rT
113 [11] 10.0 ± 0.8 10.12 10−12 m/V

69 rT
333 [21] 31.4 ± 1 31.45 10−12 m/V

70 rT
333 [11] 31.5 ± 1.4 31.45 10−12 m/V

71 rT
131 [9] 33 ± 3 33.96 10−12 m/V

72 rT
222 [9] 6.7 ± 0.2 6.64 10−12 m/V

73 rS
113 [22] 7.7 ± 1 9.10 10−12 m/V

74 rS
333 [22] 28.8 ± 2 31.19 10−12 m/V

75 rS
131 [22] 18.2 ± 1 18.09 10−12 m/V

76 rS
222 [22] 3.4 ± 0.05 3.40 10−12 m/V

77 rT
c [23] 19.3 ± 1.0 20.1 10−12 m/V

78 rT
c [23] 21.4 ± 0.8 20.1 10−12 m/V

79 rT
c [23] 20.0 ± 0.65 20.1 10−12 m/V

80 rT
c [23] 19.7 ± 1.0 20.1 10−12 m/V

81 rT
c [23] 21.6 ± 1.2 20.1 10−12 m/V

82 rT
c [23] 19.9 ± 0.5 20.1 10−12 m/V

TABLE 4 Data on electro-optic coefficients used in the evaluation of ma-
terial constants of a LiNbO3 crystal

tion together with (1) and (2) leads to a secular equation for
v2

(
Γik − δik�v2) uk = 0 , (15)

with

Γik =
(

CE
ijkl +

epijeqkl(
εS

rsnrns
)npnq

)
njnl , (16)

where v is the wave velocity and n̂ = (n1, n2, n3) the wave-
propagation direction. The secular equation (15) yields three
positive real eigenvalues �v2. In a crystal possessing 3m sym-
metry and the sound propagating along the crystal y axis, for

example, the solutions are one pure transverse wave with the
eigenvalue

�v2 = 1

2

(
CE

1111 −CE
1122

)
, (17)

one quasilongitudinal, and one quasitransverse wave. The
eigenvalues for the latter two are the solutions of the quadratic
equation[(

CE
1111 + e2

222/ε
S
11

)−�v2] [(CE
2323 + e2

113/ε
S
11

)−�v2]
= (

CE
1123 − e222e113/ε

S
11

)2
. (18)

Similar expressions are obtained for any other direction. The
solutions for �v2 in the cases of sound directed to oblique an-
gles from crystallographic axes contain a larger number of
basic parameters. The corresponding solutions give the con-
straints to the measured results i = 16, . . . , 50 in Table 2.
Equation (17), for example, gives the constraint f19 for
v (y, T) = y19, while f18 and f20 are the solutions of (18).

Measurements of the elasto-optic coefficients are based on
comparative Brillouin scattering of light from sound waves.
We have used the results from [20], where these coefficients
were determined most accurately in both magnitude and sign,
also taking into account the contribution of the indirect elasto-
optic effect (the combination of piezoelectric and electro-
optic effects). Their results are listed in Table 3 from lines
i = 51 to 58. We have also used the mean values for elasto-
optic coefficients collected in [9] that were determined by six
other authors. The mean values and the corresponding devia-
tions are listed in Table 3 from lines i = 59 to 66.

The remaining part of the measurements belongs to the
electro-optic coefficients and is listed in Table 4. In princi-
ple, a measurement made with an applied electric field of low
frequency corresponds to the unclamped case and a meas-
urement made with a high-frequency (rf) electric field to the
clamped condition. A lot of different experimental techniques
for measuring these coefficients are in use, giving results
that differ by 10% in the same sample in the same opto-
geometrical configuration [23]. There are, however, many re-
cent reports on doping and stoichiometric-ratio dependences
of these coefficients, also giving conflicting results, like in
[24] and [25]. The stoichiometry of the crystal is determined
by the crystal composition xc = [Li]/([Li]+ [Nb]), where
[ ] denotes the concentration in mol %. The congruent com-
position is defined with xc = 48.5% and the stoichiomet-
ric one with xc = 50%. In [21] the measured rT

333 and rT
113

values were about 10% higher in an undoped congruent than
in an undoped stoichiometric crystal. In [11] rT

113 values
were almost the same for both compositions, but rT

333 was
for about 20% higher in a stoichiometric crystal. A frequently
measured quantity is the effective electro-optic coefficient
rT

c = rT
333 −rT

113 (no/ne)
3. In [28] the influence of composition

and iron doping on rT
c was measured. The effective coeffi-

cient rT
c was found to be only composition-dependent with

an approximately 10% smaller value for xc = 49.5% than for
xc = 48.5% and xc = 50%. The iron doping did not change rT

c ,
but it was found to have some influence on the crystal com-
position. In [24], on the contrary, the coefficient rT

333 almost
linearly increased by about 15% from xc = 48% to xc = 50%,
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while rT
113 remained independent of xc. Doping with Ce or Fe

also increased rT
333 by more than 30% [24].

For the values of rT
113 and rT

333 we have chosen results
from [21], where an interferometric-type measurement of the
highest accuracy was used, and the results from [11]. From
both [21] and [11] data were taken for crystals of congru-
ent composition. We have selected results for rT

311 and rT
222 by

comparing different measurements in the literature [8, 9] and
determining the error according to them. The clamped values
of electro-optic coefficients listed in lines i = 73, . . . , 76 of
Table 4 are taken from [22], as they have used the refined ex-
perimental method compared to older sources of data, which
are numerous. We have also taken all the results for the ef-
fective coefficient rT

c from [23] that were obtained by different
experimental techniques.

2.4 Fitting and results

The number of constraints k = 82 is larger than 25,
the number of parameters; therefore it is possible to find opti-
mum values of the parameters that fulfil the set of constraints
given in Tables 1–4 by a least-square procedure. The analy-
sis was performed using the Levenberg–Marquardt algorithm
taken from [26]. This algorithm finds the set of parameters
that minimises the sum χ2 of the squared deviations of the
function values fi (a1, . . . , a25) from the measured values yi :

χ2 =
∑

i

[ fi(a1, . . . , a25)− yi]
2

(∆yi)2
, (19)

j Parameter Value from [13] Fitted value aj Accuracy ∆aj (∆aj /aj ) Units

1 CE
1111 2.030 1.9883 ±0.0008 (0.04%) 1011 N/m2

2 CE
1122 0.573 0.5464 ±0.0006 (0.1%) 1011 N/m2

3 CE
1133 0.752 0.6823 ±0.0024 (0.4%) 1011 N/m2

4 CE
1123 0.085 0.0783 ±0.0006 (0.7%) 1011 N/m2

5 CE
3333 2.424 2.3571 ±0.002 (0.09%) 1011 N/m2

6 CE
2323 0.595 0.5986 ±0.0003 (0.05%) 1011 N/m2

7 e113 3.76 3.680 ±0.01 (0.3%) C/m2

8 e222 2.43 2.424 ±0.007 (0.3%) C/m2

9 e311 0.23 0.332 ±0.002 (0.7%) C/m2

10 e333 1.33 1.785 ±0.01 (0.5%) C/m2

11 εS
11 44.3 45.5 ±0.3 (0.6%)

12 εS
33 27.9 26.2 ±0.2 (0.7%)

13 pE
1111 −0.026 ±0.002 (7%)

14 pE
3333 0.070 ±0.003 (4%)

15 pE
2323 0.145 ±0.010 (7%)

16 pE
1122 0.088 ±0.004 (5%)

17 pE
1133 0.134 ±0.004 (3%)

18 pE
1123 −0.083 ±0.003 (4%)

19 pE
3311 0.177 ±0.009 (5%)

20 pE
2311 −0.151 ±0.004 (3%)

21 rS
113 9.10 ±0.3 (3%) 10−12 m/V

22 rS
333 31.2 ±0.4 (1.5%) 10−12 m/V

23 rS
131 18.1 ±1.0 (5%) 10−12 m/V

24 rS
222 3.40 ±0.05 (1.5%) 10−12 m/V

25 � 4643.0 ±0.9 (0.02%) kg/m3

TABLE 5 Basic set of the material parameters:
elastic stiffness (cE

ijkl ), piezoelectric stress (eijk), di-
electric (εS

ij ), elasto-optic (pE
ijkl ), clamped electro-

optic (rS
ijk ) tensor elements, and crystal density � of

congruent, nominally undoped LiNbO3 crystal. The
values given in the fourth column were determined
by fitting the experimental data from Tables 1–4.
All material constants are given at room temperature
(25 ◦C) at the wavelength λ0 = 633 nm where the re-
fractive indices are no = 2.2864, ne = 2.2022 [27].
The accuracy ∆aj of each parameter and its relative
accuracy ∆aj/aj are listed in the fifth column. For a
comparison, an older subset of the basic parameters
is given in the third column

where ∆yi is the standard deviation of the data value yi and
determines the weight of the particular measurement in the fit.
The accuracies ∆aj of the parameters aj are given by diagonal
elements of the covariance matrix [26].

Measurement errors that were used in the fitting procedure
and are listed in Tables 1–4 are not always given in the litera-
ture. In those cases they were determined by comparison with
the results given by other authors or ‘observed’ behaviour dur-
ing the fitting procedure.

The first twelve rows in Table 5 give our results for the
elastic and dielectric constants and also repeat the correspond-
ing values given in [13]. It is interesting to note that using
the input measurements from [13] as the only data and fit-
ting according to the first twelve parameters, χ2 is lower when
calculated from our parameters (about ten times for the ac-
curacies listed in Table 2). The advantage of the χ-square
procedure over iteration-based calculations is obvious. Some
of the basic parameters are considerably changed; compare
for example cE

1133, e311, and e333 values from [13] and the new
fitted values. It is encouraging that our values also give a cor-
rect value for the linear hydrostatic coefficient from (7) when
it is not included in the fitting procedure as a measured value.

If a value of a particular basic parameter is very stable
upon changing some uncertain input data, this basic param-
eter is less important in the constraints and its result is more
uncertain. This was typical for the eight values of the elasto-
optic coefficients pE

ijkl when fitting the constraints derived
from the measurements of the electro-optic coefficients. The
pE

ijkl parameters occur only in these constraints and constraints
for directly measured values. Therefore the fitted values and
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errors remain almost unchanged from the input values i =
51, . . . , 58, except in the case of pE

1122 and pE
1123 (compare

Tables 3 and 5). The input values i = 59, . . . , 66 are less im-
portant for the final values of the elasto-optic coefficients due
to larger errors.

The results for the rS tensor components are listed from
lines j = 21 to 24 in Table 5. The values for rS

113 and rS
333 are

considerably changed compared to previous values (Table 4),
in order to be consistent with other measurements of electro-
optic coefficients.

For the fitted basic parameter values presented in Table
Table 5, obtained from the measurements from Tables 1–4,
the sum χ2  40 is less than 57, which is the difference be-
tween the number of constraints and the number of parame-
ters. As all the obtained errors are under 10%, we can have
confidence in the fitted values [26] for the nominally undoped
LiNbO3 single crystal of congruent composition. We use these
values in Sect. 3 for calculating effective coefficients for pho-
torefractive applications of LiNbO3.

FIGURE 1 Effective electro-optic coefficients reff
ij defined with (20) of LiNbO3 for a periodic electric field in a the yz plane, b the xz plane, and c the xy

plane when varying the grating direction as indicated in the insets. The angles are given in radians throughout this work unless otherwise specified. Left-hand
graphs show all nonzero tensor components in these planes, where for example 23 denotes reff

23 = reff
32 . Right-hand graphs show the largest two coefficients

(full lines) and the corresponding effective coefficients in a clamped (dotted lines) and an unclamped (dashed lines) crystal subjected to a uniform electric
field. Due to the small difference between rT

333 and rS
333 (see Table 4), the dotted and the dashed lines for reff

33 are unresolvable in the plots

3 Static dielectric constant and electro-optic effect
in photorefractive experiments in LiNbO3

The electric-field-induced change in the refractive
index and the static dielectric response depend on the me-
chanical boundary conditions, either clamped or unclamped.
In a photorefractive experiment, however, neither of these two
cases are valid, as the deformations are in a shape of a pe-
riodic grating. The total refractive-index change is obtained
by adding together the strain-free electro-optic contribution
and the elasto-optic contribution, properly taking into ac-
count the rotation of the optical indicatrix axes due to shear
deformations:

∆ε−1
ij = (rS

ijkn̂k + pE
ijkln̂l A−1

km Bm
)

Esc cos Kr

≡ reff
ij Esc cos Kr , (20)

as described in [3] with an effective symmetric second-rank
electro-optic tensor reff

ij . Tensor A and vector B are calculated
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as

Aik = CE
ijkl n̂ j n̂l and Bi = ekij n̂kn̂ j . (21)

The values of reff
ij for a general direction of the electric-

field grating n̂ can be evaluated from the whole set of relevant
material parameters. With the use of parameters obtained in
Sect. 2 we present the solutions for three configurations that
are usually important for practical use. The result is shown in
Fig. 1, where the geometry is specified – the grating wave vec-
tor in these configurations lies in either the yz plane, the xz
plane, or the xy plane, respectively, and is rotated in that plane
as indicated in the figure. In each plane the largest effective
electro-optic coefficients are of comparable magnitude. For
comparison the clamped and the unclamped dependences are
also shown for some coefficients, which represent results for

FIGURE 2 Effective dielectric constant εeff of LiNbO3 in a periodic elec-
tric field in a the yz plane, b the xz plane, and c the xy plane (solid lines).
For comparison, clamped (dotted lines) and unclamped (dashed lines) depen-
dences in a uniform electric field are also shown

applying a homogeneous electric field in the same direction in
strain- and stress-free mechanical conditions.

As already mentioned, the static dielectric constant is also
modified due to periodic deformations. The effective dielec-
tric constant active in photorefractive experiments is defined
as in [3] to be

εeff = �sc

ε0 EscK
= εS

ij n̂i n̂ j + Bk A−1
kl Bl/ε0 . (22)

Similar to the effective electro-optic tensor components,
the effective dielectric constant is calculated from (22) in the
same three characteristic planes. The result of the calcula-
tions is shown in Fig. 2. In photorefractive experiments, the
effective dielectric constant lies between the clamped and the
unclamped values εeff

S and εeff
T .

Dependences of the effective coefficients in a periodic
electric field (Figs. 1 and 2) show that the deviations from sine
dependences, when considering only unclamped values, are
not as large in LiNbO3 as in the case of KNbO3 and BaTiO3

crystals [4, 6]. In LiNbO3 these deviations, however, can also
have a pronounced influence, as found in our preliminary ex-
periment.

4 Conclusions

The complete set of material tensors of LiNbO3

crystals at room temperature has been re-evaluated by a nu-
merical fitting procedure, thus achieving considerable im-
provements in the accuracy of the previously published
values. The parameters were determined with great confi-
dence for nominally undoped crystals of congruent composi-
tion. Photorefractive experiments are very useful for checking
the validity of the material parameters, since many of the pa-
rameters change their influence on the response by varying
the orientation of the photorefractive gratings. Our prelimi-
nary experiments have confirmed that the newly determined
set correctly describes the photorefractive response. Recent
results on some material parameters in stoichiometric and
doped LiNbO3 crystals have also been reviewed. However,
these results are still too incomplete to allow us to obtain a rel-
evant model of how the doping and stoichiometry influence
the material tensors.
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