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ABSTRACT An analytical form for holographic contrast growth in photorefractive
polymer composites under constant illumination is presented. The transient is a convo-
lution of the exponential growth of the space-charge field and the rotational response
of the chromophores in the amorphous host. Under this formalism, the contrast growth
is fully characterised by just two parameters: the rise time of the space-charge field
and the rotational diffusion constant of the material. There is excellent agreement be-
tween theory and experiment. Using this description of holographic index growth, the
reciprocal relationship between rise time and intensity is confirmed.

PACS 42.70.Nq; 42.70.Ln

Since their discovery ten years ago,
there has been a great deal of interest in
photorefractive polymers because they
are candidate materials for, amongst
other applications, high-density holo-
graphic data storage. An important ad-
vance was made in 1994 [1], when it was
discovered that the holographic diffrac-
tion efficiency achievable from a pho-
torefractive polymer could be increased
from less than one percent to almost
unity by including re-orientable chro-
mophores within the composite. These
chromophores are dipolar and attempt to
align themselves with the space-charge
field formed by the photorefractive ef-
fect in response to patterned illumina-
tion. This chromophore re-orientation
causes a local change in refractive in-
dex and is responsible for most of
the index modulation in the material,
thus greatly amplifying the photore-
fractive effect [2]. Holographic growth
rate is an important performance pa-
rameter for many of the proposed appli-
cations, determining the writing speed
possible in a holographic data storage
system, for instance. Although the re-
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orientational enhancement effect has
greatly improved photorefractive poly-
mer performance, it also has limited the
interpretation of the holographic growth
dynamics because the form of the chro-
mophore re-orientation transient has not
been known. Consequently, it has been
difficult to reliably assess and compare
different photorefractive materials. Fur-
ther, without a good understanding of
chromophore re-orientation, the investi-
gation of the underlying processes, such
as charge generation and transport, has
been restricted.

Holographic growth transients in
photorefractive polymers have been,
up to now, normally characterised by
a fit to either a bi-exponential [3–5]
or the Kohlrausch–Williams–Watts (i.e.
stretched) exponential [6]. Overall, it
has become most common to use a bi-
exponential fit and then quote the shorter
of the two resultant time constants
as the characteristic time. However,
this procedure is empirical and the
time constant depends not only on
the material under study but also on
the specific experimental conditions,

such as poling field strength, write-
beam intensity and pre-illumination.
Very recently, however, an analytical
description of the rotational response
to the application stepwise of a con-
stant applied field has been reported [7]
for chromophores in an amorphous
medium. The analysis derives a power-
law time dependence for the field-
induced birefringence, rather than an
exponential, in contrast to previous de-
scriptions [8–10]. It was shown in [7]
that the dynamic response of a poly-
mer composite can be characterised by
a single material parameter: the dif-
fusion constant. Excellent agreement
was found between this theory and ex-
periment. The experimental verification
was performed using a chromophore in
poly(N-vinylcarbazole) (PVK), which
is an amorphous medium commonly
used as a host material for photorefrac-
tive composites. Therefore, the theory
presented in [7] can be used to ana-
lyse the response of the chromophores
in a photorefractive composite to a con-
stant field, when applied as a step func-
tion. This theory has not yet been ap-
plied directly to the case of the holo-
graphic contrast formation. Holographic
contrast in a photorefractive polymer
composite depends linearly on the space-
charge field amplitude, under conditions
of a steady poling field. According to
the standard theory [11, 12], the space-
charge field inside a photorefractive
material grows exponentially with the
onset of patterned illumination.

In this paper, an analytical descrip-
tion of the rotational response to an
exponentially growing electric field
of a collection of pre-poled dipoles
in an amorphous medium will be re-
ported. This dynamic corresponds to the
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growth in holographic index contrast
in a photorefractive polymer composite
in which the electro-optic effect is due
to the re-orientation of chromophores.
The general transfer function for ro-
tating chromophores in an amorphous
medium will also be given and the ex-
perimental verification of the theory will
be detailed.

The index contrast of a photorefrac-
tive grating is proportional to the square
of Eres, the resultant of the photorefrac-
tive space-charge field, Esc(z, t), and the
poling field, Epol, applied to the sample,
i.e.

∆n∝E2
res= E2

pol+2Epol·Esc(t)cos(K·z)
+ E2

sc(t) cos2(K · z) (1)

where K is the grating vector, set in this
case to be parallel to the z-axis. The first-
order diffraction efficiency from this
grating is determined by the first Fourier
(i.e. 1K ) component of the index con-
trast, ∆n1. Hence, ∆n1 is proportional
to the product of Epol and Esc(t) [2]:

∆n1 ∝ Epol Esc(t) (2)

Charge diffusion is negligible compared
to drift in photorefractive polymers and
so to a good approximation a space-
charge field does not build up in the
absence of a poling field. For this rea-
son, a constant poling field is commonly
applied to the polymer sample before
photorefraction is initiated. Hence, it is
quite general to describe the evolution
of ∆n1(t) as the response of a system of
dipoles driven by Esc(t) only. That there
is a linear relation between the response
and the driving function is crucial to
the following analysis because it allows
linear convolution theory to be used.
(In contrast, the second-order diffrac-
tion efficiency, which depends on the
second (2K ) Fourier component of the
index contrast, ∆n2, is proportional to
the square of the space-charge field and
therefore in that case linear convolution
theory is not valid.) The strategy for this
analysis then is: to determine the trans-
fer function for the re-orientable dipolar
chromophores and then to convolve this
with the space-charge field transient as
described by the standard theory of pho-
torefractivity.

The transfer function may be found
by identifying and deconvolving the re-
sponse of the chromophores to a known

driving function. An analytical form
for the response of re-orientable chro-
mophores to a field applied as a step
function has already been identified [7]
and the simple nature of the driving
function makes this response an ob-
vious candidate for deconvolution. It
was shown in [7] that in dispersive
media, such as polymers and glasses,
chromophore re-orientation produces
an index change in response to a step-
function field, ∆nstep, given by

∆nstep(t) = k
u2

15 +u2

{
1 + τ1

τ2 − τ1
ts1

− τ2

τ2 − τ1
ts2

}

(3)

where t represents time, k is a material
constant and

s1,2 = − 1

τ1,2
= −2D0

(
2 ∓

√
1 −u2/5

)
;

u = µEpol/kBT (4)

where µ is the dipole moment, Epol is
the applied poling field, kB is Boltzman-
n’s constant and T is the absolute tem-
perature. The diffusion constant, D0, is
related to the diffusion coefficient, D, by
D = D0/t for t ≥ 1. The restriction t ≥ 1
(i.e. the field is applied at time t = 1)
ensures that the temporal evolution of
A2(t) is well behaved (see (3)); in prin-
ciple, however, arbitrarily small units of
time could be used and thus the onset of
poling can be arbitrarily close to t = 0.
D0 is the initial value of the diffusion
coefficient, the value of which is deter-
mined by the units of time used.

The transient described by (3) strictly
corresponds to an experiment in which
an initially unpoled sample has a sin-
gle field applied to it as a step function.
A precise correspondence with holo-
graphic recording would require the
application of a spatially varying step-
function field to a pre-poled sample,
with the two fields being, in general,
not parallel. However, the form of the
transient is the same in both cases. The
parallelism of the two fields and the con-
dition K → 0 form a specific example
of the general case and do not alter the
transient. We can regard (3) to be the re-
sponse of chromophores to a constant
poling field and a step-function field.
Mathematically, this is possible because
the Laplace transform of a step func-
tion at t = 0 (which we are arbitrarily

close to) and a constant are identical.
Physically, typical poling fields only
slightly perturb the angular distribution
of chromophores (for instance, using the
analysis and parameter values presented
in [10], an applied field of 50 V/µm al-
ters the average angle between field di-
rection and chromophore axis by ∼ 1◦).
Hence, pre-poling is not expected to ap-
preciably alter the dynamic behaviour
of the chromophores. The validity of
this approach will be ultimately sup-
ported by the excellent agreement be-
tween theory and experiment described
below.

To emphasise the correspondence
between (2) and (3), for the purposes
of this analysis ∆nstep(t) is regarded
to be the response to a constant pol-
ing field and an equal-magnitude step-
function field, Estep(t) = Epol × U(t),
where U(t) is the unit step function, i.e.
∆nstep(t) ∝ Epol Estep(t) = Epol EpolU(t).
The corresponding transfer function can
be found by calculating the Laplace
transform of (3) and dividing through
by the transform of a step-function pol-
ing field, i.e. Epol/p, where p is the
transform variable. This approach as-
sumes that the system is linear, which
is not strictly true in the present case
because the time constants, τ1 and τ2,
are functions of the field. However, both
time constants are only very weak func-
tions of u under experimental condi-
tions (

√
(1 −u2/5) ∼ 0.995 for typical

parameters [10]) and can therefore be
well approximated as independent of the
driving field. Similarly, since u  15
then u2/(u2 +15) ∼ u2/15. Under these
approximations, (3) can be linearly de-
convolved into a transfer and a signal
(step) function. Hence, in transform
space the transfer function, T(p), is

T(p) = p

Epol
×

∞∫
0

∆nstep(t)e−ptdt

= k
µ

kBT

u

15

{
1+

(
τ1

τ2 − τ1

)
Γ(s1+1)

ps1

−
(

τ2

τ2 − τ1

)
Γ(s2 +1)

ps2

}
(5)

where Γ(x) is the gamma function. The
transfer function is composed of a nor-
malised response function (the terms
in the curly brackets) and a pre-factor,
which depends on the constant magni-
tude of the poling field, Epol.
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According to the standard model
of photorefractivity, the space-charge
field grows exponentially from the on-
set of patterned illumination and has
the form

Esc(t) = E0

(
1 − exp

(
− t

τsc

))
(6)

where E0 is the constant amplitude
factor for the field dynamic and τsc

is the rise time of the space-charge
field, which is, in general, a complex
quantity. In the terms of this analy-
sis, τsc is assumed to be a constant at
all times and for all values of space-
charge field. In most cases the space-
charge field is not collinear with the
poling field and the effect of the change
of resultant field strength on charge-
generation efficiency may be neglected
in the first instance. The driving func-
tion in this case, i.e. (6), is not af-
fected by the nature of the response
function. Thus, the response of ∆n1(t)
to Esc(t) can be found by finding the
Laplace transform of (6), multiplying
the result by (5) and finally perform-
ing an inverse Laplace transformation
on the product, in other words convolv-
ing the signal and transfer function, to
get

s-polarized 
writing beams

p-polarized
probe beam

diffracted
probe beam

beam-splitting
polarization cube

photorefractive 
device

high voltage 
supply

FIGURE 1 Schematic of the degenerate four-
wave-mixing experiment. The two equal-intensity,
s-polarised write beams intersect at an angle, ex-
ternal to the photorefractive device, of 20◦ and
their bisector forms an angle of 65◦ with the
device normal. The p-polarised probe beam is
partially diffracted by the grating formed in the
device in response to the interfering write beams
and this fraction is measured by a photodiode
(not shown). The photorefractive device consists
of a 67-µm-thick sample of polymer composite
sandwiched between two glass plates that have
a conductive coating on the inside surface. A high-
voltage supply maintains a field of 65 V/µm
across the sample

∆n1(t) ∝ uscu

15




(
1 +

(
τ1

τ2−τ1

)
ts1 −

(
τ2

τ2−τ1

)
ts2

)
− exp

(
− t

τsc

)(
1 + γ(s1+1,−t/τsc)

τ1−τ2
(−τsc)

s1 − γ(s2+1,−t/τsc)
τ1−τ2

(−τsc)
s2

)



(7)

where usc = µE0/kBT and γ (sn + 1,
−t/τsc) is the incomplete gamma func-
tion (limits 0 to −t/τsc).

The above theory has been verified
using a degenerate four-wave-mixing
(DFWM) experiment. Two coherent,
equal-intensity, writing beams inter-
fere within a sample of photorefrac-
tive material to produce a sinusoidal
illumination pattern. The material re-
sponds by forming a refractive-index
grating, which diffracts some fraction of
a probe beam. The efficiency of diffrac-
tion is determined by the magnitude
of the index contrast of the grating or
hologram. In our experiment, a field
and one of the writing beams are ini-
tially applied to the sample whilst the
second writing beam is blocked. The
growth of the holographic index con-
trast was measured by monitoring the
first-order diffraction efficiency after
the second writing beam is unblocked,
thus causing the space-charge field to
begin to form. (If both writing beams
were initially blocked then theoretic-
ally the build-up dynamics of the charge
carriers would have an effect on the
contrast-growth curve. However, meas-

FIGURE 2 Growth in holographic contrast. The experimentally measured holographic contrast tran-
sient is shown for a total write-beam intensity of 0.09 W/cm2. The fit of (7) to the data and the
corresponding residuals are also shown. The fit utilised a value D0 = 0.059 (ms time scale) measured
by transmission ellipsometry [7], an effective field of 26 V/µm (see [14]) and u/E = 8.7×10−3 µm/V
from [10]

urements suggest that the hole lifetime
in similar materials is less than a mil-
lisecond [13] at high poling fields and
hence the carrier build-up transient is
expected to have a negligible effect on
the observed growth in holographic con-
trast. The initially dark experimental
situation should therefore also be well
described by (7)). A schematic of the
experimental set-up is shown in Fig. 1.
The photorefractive polymer compos-
ite used consisted of 47.5 wt. % of the
chromophore 1-(2′-ethylhexyloxy)-2,5-
dimethyl-4-(4′′nitrophenylazo)benzene
(EHDNPB), 0.5 wt. % of C60 which
acts as the photosensitiser, and the
photoconductor was the host material
PVK.

A typical index-contrast transient is
shown in Fig. 2; a least-squares fit of
(7) to the data is also shown, as well
as the corresponding residuals. There
is very good agreement between the-
ory and experiment. The index-contrast
growth was measured and analysed in
this way for a range of writing-beam in-
tensities. The rate of formation of the
space-charge field, Rsc = 1/τsc, is plot-
ted against total writing-beam intensity
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FIGURE 3 Rate of space-charge-field growth as a function of total write-beam intensity. The intensity
is calculated from the total write-beam power and the beam-spot size projected onto the photorefractive
device

in Fig. 3. As predicted by the standard
theory of photorefractivity [11, 12], the
space-charge field forms at a rate pro-
portional to the intensity of illumina-
tion. This result further verifies that
index-contrast transients are well de-
scribed by (7).

We have presented an analytical de-
scription of the index-contrast transient
in a photorefractive polymer composite
containing re-orientable chromophores

in an amorphous host. The analytical re-
sult fits the data well and is in agree-
ment with the standard theory of pho-
torefractivity. Therefore, reliable values
of the space-charge field rise time can
be extracted from index contrast tran-
sient data, for the first time. This will
allow the performance of different ma-
terials to be assessed and compared in
a consistent way and also provide a use-
ful tool with which to investigate the un-

derlying processes of photorefractivity
in polymers.

REFERENCES

1 K. Meerholz, B.L. Volodin, Sandalphon,
N. Peyghambarian: Nature (London) 371,
497 (1994)

2 W.E. Moerner, S.M. Silence, F. Hache,
G.C. Bjorkland: J. Opt. Soc. Am. B 11, 320
(1994)

3 R. Bittner, C. Bräuchle, K. Meerholz: Appl.
Opt. 37, 2843 (1998)

4 J.A. Herlocker, K.B. Ferrio, E. Hendrickx,
B.D. Guenther, S. Mery, B. Kippelen, N. Pey-
ghambarian: Appl. Phys. Lett. 74, 2253
(1999)

5 M.A. Diaz-Garcia, D. Wright, J.D. Casper-
son, B. Smith, E. Glazer, W.E. Moerner:
Chem. Mater. 11, 1784 (1999)

6 D. Wright, M.A. Diaz-Garcia, J.D. Casper-
son, M. DeClue, W.E. Moerner, R.J. Tweig:
Appl. Phys. Lett. 73, 1490 (1998)

7 D.J. Binks, D.P. West: Appl. Phys. Lett. 77,
1108 (2000)

8 C. Heldmann, D. Neher, H.J. Winkelhahn,
G. Wegner: Macromolecules 29, 4697 (1996)

9 F. Ghebremichael, M.G. Kuzyk, H.S. Lack-
ritz: Prog. Polym. Sci. 22, 1147 (1997)

10 Z. Sekkat, W. Knoll: Ber. Bunsenges. Phys.
Chem. 98, 1231 (1994)

11 N.V. Kukhaterev, V.B. Markov, M. Soskin,
V.L. Vinetskii: Ferroelectrics 22, 949 (1979)

12 N.V. Kukhatarev, V.B. Markov, M. Soskin,
V.L. Vinetskii: Ferroelectrics 22, 961 (1979)

13 S. Schloter, A. Schreiber, M. Grasruck,
A. Leopold, M. Kol’chenko, J. Pan, C. Hohle,
P. Stroriegl, S.J. Zilker, D. Haarer: Appl.
Phys. B 68, 899 (1999)

14 K. Khand, D.J. Binks, D.P. West: J. Appl.
Phys. 89, 2516 (2001)


