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ABSTRACT The photorefractive effect in semiconducting mate-
rials with multiple defects is studied in the case of modulation
depth m = 1. The basic equations are Poisson’s equation and
the continuity equations for electrons, holes and occupied defect
levels. They include all recombination and optical generation
mechanisms between the defect levels and valence and conduc-
tion bands. Their explicit numerical solution yields microscopic
quantities such as space- and time-dependent electrical field
profiles, carrier concentrations, as well as generation and re-
combination rates. The fundamental Fourier component of the
electric field yields the two-wave-mixing gain. Application is
made for InP with two levels in the forbidden gap, for which
steady-state and transient resulting quantities are shown. The re-
sulting features at large modulation depth are of non-sinusoidal
shape. Due to the complexity of the system, the final results
strongly depend on all parameters intervening in the models
used, as is illustrated for several typical cases.

PACS 42.65.Hw; 42.70.Nq; 61.72.Ji

1 Introduction

During the last two decades, the study of the pho-
torefractive effect in semiconducting materials has received
much interest [1–3]. The fundamental mechanism at the ori-
gin of the photorefractive effect is directly related to the basic
properties of the host material and of the introduced impurity
atoms. The effect results from the build-up of a space-charge
field, initiated by the optical absorption of an interference
pattern, followed by transport and capture by defects. The
steady-state and transient behavior of the space-charge field
determines the device performance in numerous applications,
among which holographic storage, optical signal processing
and optical circuits are the most important ones.

Most of the observed phenomena are explained by a single-
defect model, starting from the set of basic equations es-
tablished by Kukhtarev [4, 5] in the 1970s. Real crystals,
however, may contain more than one impurity level in the
forbidden gap. These may be due to intrinsic defects due
to some compensation process, to excited levels related to
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a given impurity species or defects related to the introduc-
tion of several impurity atoms. Experimental results obtained
for crystals such as BaTiO3, LiNbO3 or InP were interpreted
with the existence of multiple defects [6–9]. The presence
of at least one additional defect state in the forbidden gap
may give rise to several new processes, in addition to those
which occur in the single-defect case. The new thermal equi-
librium Fermi energy will change the thermal equilibrium
occupation of the levels, thus modifying the absorption and re-
combination rates and yielding space-charge distributions and
space-charge fields different from those of the single-defect
case. Due to the new absorption processes, additional trans-
port by electrons and holes may be possible. Only in some
cases will the effect of the two types of impurities be simply
additive. As a final result, the steady-state and transient pho-
torefractive gain and diffraction efficiency may be affected.
The transient response under illumination or extinction may
not be described by a simple exponential function; the ex-
plicit form depends on the time dependence of the various trap
filling or emptying processes.

The inclusion of multiple defects in the basic equations
has been treated by several authors [6–14]. But, in these treat-
ments, several assumptions were made in order to transform
the complex system of equations into expressions which fi-
nally could be handled in analytical form. The main assump-
tions were on low modulation depth and on the quasi-steady-
state approximations where electron and hole concentrations
are supposed to be constant with time, yielding results in
terms of the zeroth- and first-order Fourier terms of the space-
charge field only.

The numerical analysis which is proposed here and illus-
trated by the case of two defect states starts from the basic
semiconductor equations, i.e. Poisson’s equation and the con-
tinuity equations for electrons, holes and occupied levels of
both types. All recombination and optical generation terms
between the defect levels and the valence and conduction
bands are included. These equations are solved numerically,
without any approximation, applying techniques which are
currently used in the simulation of electronic devices [15]. As
a result, one obtains the steady-state and transient response of
the photorefractive crystal. The input parameters correspond
to the microscopic properties of the host crystal (gap, car-
rier mobilities, effective masses), the impurities (energy level,
concentration, optical and thermal capture cross section) and
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the experimental conditions (temperature, illumination pat-
tern and applied electric field). The outputs are the electric
potential and space-charge field, the free carrier and occupied
defect concentrations and the charge density obtained for all
modulation depths. From these, the experimentally observed
quantities, such as the two-wave-mixing gain coefficient Γ
or the diffraction efficiency η under steady-state and transient
conditions, are obtained. In such a complex system, where
the active defect levels yield intermediate steps in the writing,
extinction or erasure processes, a complete numerical model-
ing allows us to determine the effect of each input parameter
on the resulting macroscopic quantities, which are measured
in an experiment. Each step can be analyzed in detail, from
the photocarrier generation, to transport, carrier redistribution
between the various defect levels and final build-up of the
space-charge field. Numerical solution of the basic equations
in the single-defect, large-modulation case has been reported
e.g. by Wolffer et al. [16] and by Singh et al. [17].

The paper is organized as follows: in Sect. 2, we recall
the complete set of basic equations underlying the numerical
modeling and give the procedure used to integrate these equa-
tions. In Sect. 3, we show typical results corresponding to the
steady-state application in InP with two defect levels in the
forbidden gap. Section 4 discusses cases of transient analysis
in the same system and Sect. 5 summarizes and concludes the
paper.

2 Basic formalism

The system under study is a homogeneous crystal
at a given temperature T . The spatial interference of two co-
herent beams forms an illumination grating given by

I = I0(1 +m cos (Kx)) , (1)

where I0 is the intensity amplitude, m is the modulation in-
dex and K = 2π/Λ is the spatial frequency. The fringe spac-
ing Λ is related to the vacuum wavelength λ and incidence
angle θ by Λ= λ/2 sin θ . The system is supposed to be one-
dimensional; absorption effects in the perpendicular z direc-
tion are therefore neglected.

The crystal is supposed to have two defect states in the for-
bidden gap. Their energy positions will be labeled EtA and
EtB respectively, their total concentrations NtA and NtB and
the concentrations of electrons occupying these levels ntA and
ntB. These defect levels are either of acceptor or of donor type.
A state is called acceptor-like when neutral if empty, and neg-
atively charged when occupied; a state is called donor-like
when neutral if it is occupied and positively charged when
empty. The corresponding contribution to the charge concen-
tration is therefore qC∗

t = −qnt for an acceptor defect and
qC∗

t = q(Nt −nt) for a donor defect, q being the electronic
charge.

The electric potential ψ satisfies Poisson’s equation

ε
∂2ψ

∂x2
= q (n − p −C∗

t + NsA − NsD) , (2)

where n is the electron concentration, p is the hole concentra-
tion and NsA and NsD are eventually present shallow acceptor
or donor concentrations which are assumed totally ionized;

C∗
t is the contribution of all defect states. The energy diagram,

as given schematically in Fig. 1, contains two defect states.
These thermally exchange electrons with the conduction or
the valence band, according to electron-transition rates which
in the case of level A are given by

rntA = cnA n (NtA −ntA)− enA ntA , (3)

rptA = cpA p ntA − epA (NtA −ntA) . (4)

Similar expressions hold for defect state B.

FIGURE 1 Schematic energy-band diagram with conduction-band edge
Ec, valence-band edge Ev, defect-level positions EtA and EtB, electron-
recombination rates rntA, rptA, rntB, rptB and rAB and optical generation rates
gnA, gpA, gnB, gpB and gAB

In the Shockley–Read–Hall scheme [18], the capture con-
stant is cnA = σnA v

th
n , where σnA is the thermal capture cross

section and vth
n the electron thermal velocity at temperature T .

The electron thermal emission rate is

enA = gA cnA Nc exp[(Ec − EtA)/kT ] , (5)

where Nc is the effective conduction-band density of states,
Ec is the conduction-band edge and gA is the defect degen-
eracy factor. The hole capture constant cpA and emission rate
epA are defined accordingly. The optical transition rates be-
tween level A and the conduction band and between the va-
lence band and level A are given by

gnA = snA Φ ntA , (6)

gpA = spA Φ (NtA −ntA) , (7)

whereΦ is the photon flux at position x, whose spatial depen-
dence is given by (1); snA and spA are the optical cross sections
relative to level A. The corresponding transition rates involv-
ing level B are defined accordingly.

Eventual transitions between the two levels A and B
can be included according to the equations, written for the
case where the relative positions are such that (Ec − EtA)<

(Ec − EtB):

rAB = cAB ntA (NtB −ntB)− kAB ntB (NtA −ntA) , (8)

gAB = λAB Φ ntB (NtA −ntA) . (9)
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Here cAB = σAB v
th
n , where σAB is an interlevel thermal

capture cross section and λAB is the coefficient which deter-
mines the strength of the interlevel optical absorption. The
following relation is assumed between the capture coefficient
cAB and the coefficient kAB:

kAB = gB

gA
cAB exp[(EtB − EtA)/kT ] . (10)

This relation expresses that, in thermal equilibrium, the
transition rates A to B, and B to A, are equal, i.e. rAB = 0, inde-
pendently of (5), which expresses equilibrium between each
level and the bands. In the numerical treatment, the electron
concentration n, the hole concentration p, as well as the occu-
pied level concentrations ntA and ntB, are expressed in terms
of quasi-Fermi levels Fn , Fp, FtA and FtB, allowing the de-
scription for non-equilibrium situations. For non-degenerate
semiconductors, one has [15]:

n = Nc exp[(Fn − Ec)/kT ] , (11)

p = Nv exp[(Ev − Fp)/kT ] , (12)

ntA = NtA
1

1 + gA exp[(EtA − FtA)/kT ] . (13)

The expression for ntB is defined similarly.
The continuity equations for electrons, holes and occupied

defects then read

∂n

∂t
= 1

q

∂Jn

∂x
− rntA − rntB + gnA + gnB + gbb − rbb , (14)

∂p

∂t
= −∂Jp

∂x
− rptA − rptB + gpA + gpB + gbb − rbb , (15)

∂ntA

∂t
= rntA − gnA − rptA + gpA − rAB + gAB , (16)

∂ntB

∂t
= rntB − gnB − rptB + gpB + rAB − gAB , (17)

where, for reason of completeness, we have added band-to-
band recombination terms rbb and optical generation terms
gbb. The current densities Jn and Jp are the sums of drift and
diffusion terms

Jn = q µn n E +µn kT
∂n

∂x
, (18)

Jp = q µp p E −µp kT
∂p

∂x
, (19)

where E is the electric field andµn andµp are the electron and
hole mobilities.

This set of equations describes the steady-state (∂/∂t = 0)
and transient behavior of the microscopic system, once the
illumination pattern is given. This latter can be treated by tak-
ing a finite number of illumination periods Λ, bordered by
non-illuminated regions at the left- and right-hand sides of the
structure. Another possibility is to use a super-Gaussian de-
pendence of I0(x), simulating a beam of finite size [17]. In any
case, only the shape of the central periods will be used in the
analysis of the photorefractive characteristics.

The as-obtained electric field E(x) is Fourier-analyzed.
The zero component yields the applied field. From the first-

order Fourier component E1, the two-wave-mixing gain Γ
can be obtained, according to [1–3]

Γ = 2π

λ cos θ
n3

r r41
|E1|
m

, (20)

where nr is the index of refraction of the medium and r41 is the
electro-optic coefficient. The gain is defined as negative when
electrons are the dominant photocarriers; it is positive when
the holes are dominant.

The diffraction efficiency η is defined as

η= sin2

(
π ∆nr L

λ cos θ

)
, (21)

where L is the interaction length and∆nr is given by

∆nr = 1

2
n3

r r41 |E1| . (22)

The numerical solution of the above set of equations is ob-
tained following methods which are standard from the study
of electronic devices [15, 19]. After scaling and discretization
according to a variable-size mesh, the discretized equations
are expressed in terms of the variablesψ, Fn , Fp, FtA and FtB.
The use of these variables presents the advantage of dealing
with quantities which vary over the same order of magnitudes.
This yields for each discretization point a set of five second-
order non-linear differential equations. These are linearized
in terms of small corrections of the variables to an appro-
priate initial guess and iterated until desired convergence is
achieved. The left and right boundaries xL and xR are taken
sufficiently far from the illuminated region, such that ther-
mal equilibrium at the contacts can be assumed. When Vext
represents the applied voltage, the corresponding boundary
conditions are then

ψ(xL)= 0, Fn(xL)= Fp(xL)= FtA(xL)= FtB(xL)= F0 ,

(23)

ψ(xR)= −Vext, Fn(xR)= Fp(xR)= FtA(xR)

= FtB(xR)= F0 −qVext ,

(24)

where F0 is the bulk equilibrium Fermi level, which can be
obtained from the charge-neutrality condition at the given
temperature.

3 Steady-state analysis of InP with two defect levels

The formal developments are applied to InP, a crys-
tal for which numerous experimental results have been pub-
lished. InP is a direct gap semiconductor with Eg = 1.35 eV
at room temperature and its electro-optic coefficient at λ =
1.06 µm, r41 = 1.34 pm/V, is one of the largest for clas-
sical semiconductors. Experimental studies including Deep
Level Transient Spectroscopy (DLTS), photoluminescence
and electron spin resonance on Fe-doped InP have led to the
evidence that Fe introduces a defect state at 0.65 eV below
the conduction-band edge, corresponding to the Fe2+/Fe3+
state [9]. Multiple defects have been suggested to explain
the experimentally observed consequences of electron–hole
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competition, such as a change in energy-coupling direction
in two-wave mixing. One possible microscopic origin was
the excited Fe2+∗ level at 0.30 eV below the conduction-band
edge [20]. In the two-defect-level system, the first level, la-
beled A, corresponds to the Fe2+/Fe3+ acceptor level, for
which the microscopic parameters are given in Table 1. They
correspond to values as cited in experimental studies [9, 21].
The second level, labeled B, will be considered with free
parameters, among which the energy position EtB, the con-
centration NtB, the thermal capture cross section σB and the
optical cross section sB are the most important ones. Values
for most numerical applications are given in Table 1, and are
explicitly specified, when modified. Varying their value in
a given range allows a systematic study on the effect of the
second level on the resulting photorefractive characteristics.

In Fig. 2 we show, together with the illumination pattern,
the electric field as a function of position x for the two-defect
system (AB) in comparison with the field when the level
A alone is present. The illumination period Λ of the sinu-
soidal illumination pattern is of 4.5 µm, the temperature is
T = 300 K, the intensity I0 is 100 mW/cm2 and the modula-
tion depth is m = 1. Calculations have been done on a system
consisting of nine illumination periodsΛ, separated from the
respective limits xL and xR by a distance of 3Λ, which is
not illuminated. The number of discretization points was 80
per period. This yields stable numerical solutions and, for
the central periods, negligible effects from the borders be-
tween the illuminated and the non-illuminated regions. For
both systems, the maximum electric field strength occurs in
the less-illuminated part of the illumination pattern, the phase
shift between the position of the maximum electric field pos-
ition and of the maximum illumination being different from
π/2, as would be the case in the small-modulation limit. The

Host material InP
Energy gap Eg = 1.35 eV

Electron mobility µn = 1470 cm2Vs
Hole mobility µp = 150 cm2Vs

Electron effective mass m∗
e/m0 = 0.08

Hole effective mass m∗
h/m0 = 0.40

Electro-optic coefficient r41 = 1.34 pm/V
Refractive index nr = 3.29

Level A (acceptor)
Energy position Ec − EtA = 0.65 eV
Concentration NtA = 6×1016 cm−3

Electron thermal capture cross section σnA = 1.3×10−14 cm2

Hole thermal capture cross section σpA = 3×10−16 cm2

Electron photo-ionization cross section snA = 4×10−18 cm2

Hole photo-ionization cross section spA = 3.1×10−16 cm2

Level B (donor)
Energy position Ec − EtB = 0.75 eV
Concentration NtA = 2×1016 cm−3

Electron thermal capture cross section σnA = 6.5×10−15 cm2

Hole thermal capture cross section σpA = 1.5×10−16 cm2

Electron photo-ionization cross section snA = 3.1×10−16 cm2

Hole photo-ionization cross section spA = 4×10−18 cm2

Shallow dopants
Concentration NsD − NsA = 1016 cm−3

TABLE 1 Parameters used in the numerical applications, describing the
InP semiconductor, as well as the defect levels A and B. Electron and hole
photo-ionization cross sections have been inverted for the case of level B,
relative to level A. Band-to-band transition rates rbb and gbb are set equal to
zero
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FIGURE 2 Electric field as function of position x, E(x), and illumina-
tion pattern Φ(x) for double-defect configuration AB, with parameter set of
Table 1, and the case when only defect level A is present (NtB = 0). The sys-
tem used for the calculations extends over a total of 15 periods of width Λ,
the nine central periods being illuminated, with three non-illuminated periods
on each side. The figure shows the three periods in the center of the system

electric field is stronger by a factor of two in the case of
the defect A alone, as compared to the AB case. In both
cases, the shape of the electric field is non-sinusoidal. Fig-
ure 3 gives the spectral analysis with the normalized Fourier
amplitudes. The Fourier analysis implies that the results for
the central period are reproduced periodically in both +x and
−x directions. The figure shows that the weight of the fun-
damental component is 0.48 for case A and 0.78 for case
AB. Figure 4a shows the concentration profile for the occu-
pied level concentration A, when the level A is alone, and
in Fig. 4b, ntA(x) together with ntB(x). For the single-defect
case, the function ntA(x) is modulated around its bulk thermal
equilibrium value ntA0 = 1×1016 cm−3, giving a total charge-
concentration profile, having, except for the opposite sign,
essentially the same shape as the occupied level concentra-
tion ntA(x). In the two-defect case, we have taken the B level
of donor type and with an energy EtB slightly below that of

Spectral mode number
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r 
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FIGURE 3 Normalized Fourier components for system AB and system A
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the first level EtA. The addition of the second level modifies
the thermal equilibrium value of ntA0, which is now equal to
1.025 ×1016 cm−3, and the lower-lying level B is occupied at
98%. The illumination, followed by generation, carrier drift
and diffusion and subsequent recombination, creates a defect
level occupation for the level A which is completely differ-
ent from that of the single-defect case. The functions ntA(x)
and ntB(x) produce a charge-density profile which is illus-
trated in Fig. 4c. The maximum values of �/q are by a factor
of 100 weaker than the values of the corresponding occupied
level functions. It should be noted that the resulting func-
tion �(x) strongly depends on the various parameters used
in the description of the model. Figure 5 shows the various
transition rates for generation and recombination. In the fi-
nal steady-state configuration, the dominant effect on the level
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FIGURE 4 a Illumination pattern and occupied level concentration ntA for
level A, when concentration of level B is zero; ntA0 is the bulk thermal equi-
librium concentration. b Occupied level concentrations for levels A and B
in system AB. The bulk thermal equilibrium concentrations are respectively
ntA0 and ntB0. c Charge density � divided by electronic charge q for system
AB
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FIGURE 5 a Illumination pattern and optical generation rates for sys-
tem AB as function of position x for transitions gnA, gpA, gnB and gpB.
b Recombination rates as function of position x for rntA, rptA, rntB and rptB,
as defined in Fig. 1

A is the generation from the valence band to level A, followed,
for a great part of the carriers, by immediate recombination
along the same path. For level B, the major transitions occur
between the state EtB and the conduction band, either by gen-
eration or thermal recombination. Part of the photogenerated
electrons diffuse to the borders of the illumination period,
where they recombine through the A levels. The final carrier
and charge-density profiles result from the detailed balance of
the generation, recombination and diffusion processes, which
explains that a slight modification of one of the parameters can
produce profound changes in the charge-density profile.

In the framework of the steady-state analysis, it is possible
to determine the effect of one particular parameter, corres-
ponding either to the host crystal, the impurity levels or to
the experimental conditions on the resulting quantities, such
as the maximum electric field strength Em, the first Fourier
component E1 and the gain coefficient Γ , as defined by (20).

In Fig. 6a we show for the same system Em, E1 and Γ
as functions of the energy position of the second level B, all
other parameters being kept constant. The zero value of EtB

corresponds to the valence-band edge. As the figure shows,
the evolution of the three quantities goes in parallel. Roughly
four distinct regions can be separated. For values of EtB lower
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than 0.4 eV, the three functions under study remain essen-
tially constant with the parameter value EtB. Beyond that
region, there is a minimum for (EtB − Ev) = 0.50 eV, fol-
lowed by an increase leading to a constant value from 0.6 to
0.85 eV, and a slightly larger value for EtB beyond this value
of 0.85 eV.

This behavior can be compared with the corresponding
evolution as a function of EtB of the various carrier concen-
trations n, p, ntA and ntB, as given in Fig. 6b. These are taken
under sinusoidal illumination conditions, at a particular pos-
ition, namely x = 0, i.e. at the maximum illumination. The
hole concentration p remains the dominant free carrier. Com-
parison of Fig. 6a and b shows the four regions in common to
all quantities. For EtB lower than 0.4 eV, ntB has its maximum
value, being even larger than ntA. For EtB between 0.4 eV and
0.6 eV, there is a transition region where ntB decreases by two
decades, ntA increasing by about a factor of five. This is fol-
lowed by a constant value of all quantities for EtB between 0.6
and 0.85 eV. Beyond this latter value ntB decreases continu-
ously. This evolution is the combined result of several effects.
The modification of the level position EtB produces a modi-
fication of the thermal equilibrium value of the Fermi energy,
resulting from the charge-neutrality condition. This in turn de-
termines the thermal equilibrium values of the concentrations
n, p, ntA and ntB and their corresponding values under illu-
mination. This leads to the final charge-density profile and
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FIGURE 6 a Maximum value of the electric field Em, absolute value
of first Fourier component amplitude E1 and two-wave-mixing gain Γ
as functions of EtB. Other parameters of the system AB are those of
Table 1. b Electron concentration n, hole concentration p, level-A occupation
ntA and level-B occupation ntB at x = 0, the maximum of the illumination
pattern, as a function of the defect-level position EtB

electric field pattern. The here shown strong dependence on
the value of the parameter EtB also occurs for other parame-
ters used in the description of the system.

In Fig. 7 we show, as functions of the illumination max-
imum I0, the values of Em, E1 and Γ . All three quantities are
increasing functions of I0. It should be noticed that the ratio
E1/Em decreases with I0; a stronger light intensity produces
an increase of the anharmonic character of the space-charge
field.
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FIGURE 7 Maximum electric field Em, first Fourier component E1 and
gain Γ for system AB, as functions of illumination intensity I0

4 Transient response

From the solution of the full set of basic equations
((2), (14)–(17)), we can obtain the time-dependent variation
of all basic quantities such as the electric field and the car-
rier concentrations. In Fig. 8a, we show, for the configuration
studied up to now, the evolution in the extinction case of
the space-charge field. The curves show E(x) for different
values of t, as indicated in the figure caption. At the instant
t = t0 = 0 the illumination is switched from I0 to zero. In
Fig. 8b, we show the corresponding variation of the charge
density for x values on one illumination period. The curves
show a continuous evolution of E(x) and �(x) up to t = t3,
a small modulation at t = t4 = 8 ×10−4 s, followed by a shape
with an inverse sign of the functions, when compared to the
steady-state case. In Fig. 9 we show, as functions of t, the
evolution of the maximum space-charge field Em, the funda-
mental component E1 and the two-wave-mixing gain Γ . In
Fig. 9a, corresponding to the extinction case, the evolution
of the maximum E field Em shows two regimes which cor-
respond to the two types of field function which appeared in
the time-dependent evolution of the charge density. Due to
the complexity resulting from the number of recombination
processes involving the two defects as well as the conduction
and the valence band, it is not in all cases possible to assign
the time constant to a well-defined particular process. In the
double-defect configuration we have studied here, as can be
inferred from Fig. 9b, the first decrease with a time constant
around 2 ×10−4 s results from a process where the system
tends in a first step to reach electrical neutrality throughout the
structure and then evolves towards thermal equilibrium carrier
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FIGURE 8 a Illumination pattern and extinction electric field E(x) for
system AB, for x values between x = 0 and x = Λ, for times t0 = 0,
t1 = 10−5 s, t2 = 10−4 s, t3 = 3×10−4 s, t4 = 8×10−4 s, t5 = 10−2 s and
t6 = 6×10−2 s. b Charge density � divided by electronic charge q for same
values of t

concentrations with, in our case, characteristic time constants
of comparable magnitudes for both levels A and B, as can
be seen when plotting the time-dependent functions ntA and
ntB. It should be mentioned that the ratio E1/Em, which is
about 0.7 at steady state, reduces to values of 0.1–0.2 beyond
t = 10−3 s, a consequence of the highly non-sinusoidal shape
of the time-dependent charge density and electric field. Many
other shapes of the time evolution of the diffraction grating
during extinction may occur, depending on the various param-
eters involved. A function similar to that shown in Fig. 9a has
been observed experimentally in a molecular material where
complementary grating competition and bipolar transport was
occurring [22]. In Fig. 9b, we show the time evolution of Em,
E1 and Γ during the writing process. The illumination pat-
tern is switched on at t = 0. The shape of all three functions
shown is not of the classical exponential type, as is known for
the single-defect case. The second defect level is responsible
for the undulation around 10−3 s.

In Fig. 10 we show, as a function of time, the maximum
electric field for two other systems, in addition to the case
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FIGURE 9 a Extinction values of maximum electric field Em, first Fourier
component E1 and two-wave-mixing gain Γ for system AB, with parameters
as in Table 1. b Time-dependent evolution of same quantities during grating
formation
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FIGURE 10 Extinction values of maximum electric field Em for system AB
with parameters of Table 1. System ABR has the same parameters as AB ex-
cept that there is a non-zero recombination rate rAB between levels A and B,
with σAB = 10−21 cm2, and curve ABRG corresponds to system ABR, plus
optical generation between levels A and B, with λAB = 10−31 cm5. The inset
shows steady-state occupation of levels A (three upper curves) and B (three
lower curves), for systems AB (full lines), ABR (dotted lines) and ABRG
(dash-dotted lines)
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AB studied up to now. Label ABR indicates a system similar
to the system AB, but where an interlevel recombination rate
rAB has been added; ABRG is system ABR, but with an ad-
ditional generation rate gAB between levels A and B. Experi-
mental values of the coefficients σAB and λAB are not avail-
able. We have chosen σAB = 10−21 cm2 and λAB = 10−31 cm5,
which produces the steady-state occupied defect concentra-
tions ntA and ntB, as shown in the inset of Fig. 10. For sys-
tem ABR the maximum electrical field Em decreases uni-
formly with time, with a time constant of the order of 10−3 s.
For system ABRG, the additional generation process leads
to an increase of the level occupation intermediate between
those of the systems AB and ABR, with a resulting slope
of Em(t) having similarities with the two aforementioned
characteristics.

5 Conclusion

In summary, we have included multiple defects in
the formal description of the photorefractive effect in semi-
conducting materials. The resulting set of basic equations can
be solved numerically, for any value of the modulation depth
m, within the inclusion of all recombination and generation
mechanisms to which both levels can give rise. Finding an
analytical solution in the general case is impossible, thus re-
quiring use of numerical integration of the basic equations.
The numerical procedure allows us to solve exactly the set
of equations, once the parameters describing the system and
the experimental conditions are given. In particular, one is not
restricted to the low-modulation case. When the modulation
index m is close to one, the full charge field function E(x) is
obtained, from which the fundamental Fourier component can
be deduced.

In the application to the photorefractive effect in InP,
with two defects, we have shown that it is possible to de-
termine the effect of any parameter describing either the
host material, the defects or the experimental conditions
on the microscopic quantities of the photorefractive system
and on the resulting experimentally accessible macroscopic
quantities.

The studied example allows one to stress the existence
of a complexity which is far beyond that of the extensively
studied single-defect case. The second level leads in a first
step to modified thermal equilibrium carrier and occupied
level concentrations of the host crystal. This in turn deter-
mines the carrier generation and recombination processes,

which are basic steps in the formation of the space-charge
field. A point to which particular attention should be drawn is
that the effect of the second level does not simply add to that of
the first one, as if they would act independently. In most cases,
there is an interaction between the two levels, either directly or
indirectly, at all stages of the grating formation or extinction.
The final space-charge field may be the result of the balance
between quantities of nearly equal magnitude, whose explicit
functions can only be determined from a detailed numerical
analysis.

The developments could be extended to systems with
more than two defect levels, or to defects leading to a con-
tinuous density of states in the semiconducting gap [23]. Ap-
plication to organic photorefractive materials is also possible,
with an appropriate inclusion of all effects occurring in this
particular type of materials.
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