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ABSTRACT Bose–Einstein condensates of rubidium atoms are
transferred into one- and two-dimensional optical lattice po-
tentials. The phase coherence of the condensate wavefunction
in the lattice potential is studied by suddenly releasing the
atoms from the trapping potential and observing the multiple
matter-wave interference pattern of several thousand expand-
ing quantum gases. We show how arbitrary phase gradients can
be mapped onto the periodic wavefunction through the appli-
cation of a potential gradient. Furthermore, the experimentally
measured strength of the momentum components is compared
to a theoretical model of the condensate wavefunction in the
lattice.
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Bose–Einstein condensates in an optical lattice potential open
up intriguing possibilities for the study of coherent matter
in periodic potentials [1–7]. One remarkable feature of such
a system is that almost all experimental parameters can be
controlled with a high degree of precision. The lattice spac-
ing, for example, can be controlled through the wavelength
and the angle of the interfering laser beams, the lattice depth
is adjustable over a wide range through the intensity of the
interfering laser beams and in future experiments even the in-
teraction strength between the atoms should be controllable
via Feshbach resonances.

So far, the studies of Bose–Einstein condensates in
periodic potentials have mainly been carried out in one-
dimensional geometries. First experiments were directed
towards the study of short optical standing wave pulses in-
teracting with the condensate wavefunction [3, 4]. In further
experiments condensates were adiabatically transferred into
the new ground state of the periodic dipole force potential,
to study tunneling processes, Josephson dynamics, superflu-
idity and Bloch oscillations [1, 5–7]. In deep standing wave
potentials, number-squeezed states were investigated [2].

Here we show that magnetically trapped Bose–Einstein
condensates can be efficiently transferred into two-dimen-
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sional lattice potentials by adiabatically increasing the lattice-
potential depth. In the two-dimensional lattice potential the
atoms are confined to an array of narrow potential tubes,
where each tube is filled with a 1D quantum gas. The phase co-
herence of the condensate wavefunction throughout the lattice
is studied by observing the multiple matter-wave interference
pattern after a sudden release of the quantum gases from the
trapping potential. Furthermore, we show that by pulsing-on
linear potentials arbitrary phase gradients can be mapped onto
the condensate wavefunction.

As in our previous work [8], Bose–Einstein condensates
with up to 5 ×105 87Rb atoms are created in the |F = 2, mF =
2〉 state with no discernible thermal component. The cigar-
shaped condensates are confined in the harmonic trapping
potential of a Quic-trap [9] with an axial trapping frequency
of 24 Hz and radial trapping frequencies of 220 Hz. Such atom
clouds have Thomas–Fermi radii of 45 µm along the axial and
4 µm along the radial directions (aspect ratio 11.3).

The lattice potential is formed by overlapping two per-
pendicular optical standing waves with the Bose–Einstein
condensate as shown in Fig. 1. For this, the output of a near-
infrared laser diode operating at a wavelength of λ = 852 nm
is sent through a single-mode optical fiber and split into two
perpendicularly propagating beams. These beams are focused
onto the condensate with spot sizes w0 (1/e2 radius for the in-
tensity) of approximately 75 µm. Both laser beams are then

FIGURE 1 Schematic setup of the experiment. A 2D lattice potential is
formed by overlapping two optical standing waves along the horizontal axis
(y-axis) and the vertical axis (z-axis) with a Bose–Einstein condensate in
a magnetic trap. The condensate is then confined to an array of several thou-
sand narrow potential tubes (see inset)
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recollimated with a lens pair and retroreflected to form a two-
dimensional standing wave interference pattern at the position
of the Bose–Einstein condensate. The far-off-resonant laser
beam exerts an attractive force onto the atoms that is directed
towards the intensity maxima of the light field [10]. The re-
sulting potential for the atoms is directly proportional to the
intensity distribution of the interfering laser beams and for
the case of linearly polarized light fields it can be described
by

U(y, z) =U0
{
cos2(ky)+ cos2(kz)

+2e1 · e2 cos φ cos(ky) cos(kz)} . (1)

U0 denotes the potential maximum of a single standing
wave, k = 2π/λ is the magnitude of the wave vector of the
lattice beams and e1,2 are the polarization vectors of the ho-
rizontal and vertical standing wave laser fields, respectively.
The potential depth U0 can be conveniently expressed in units
of the recoil energy Er = h2k2/2m, where m is the mass
of a single atom. The variable φ describes the time-phase
difference between the two standing wave laser fields [11].
This time-phase difference is measured interferometrically
and a piezo-mounted mirror in one of the standing wave op-
tical pathways is used to actively stabilize the time-phase dif-
ference. In order to ensure a constant potential depth of the
lattice potential throughout our measurement period, we have
also stabilized the intensity of the lattice laser beams behind
the optical fiber. The resulting two-dimensional interference
pattern of the laser beams creates an array of narrow poten-
tial tubes, each filled with a quantum gas (see Fig. 1). These
narrow potential tubes exhibit a highly anisotropic trapping
geometry with large radial trapping frequencies ωr of up to
2π × 18 kHz, for a potential depth of U0 = 12Er and weak
axial trapping frequencies of ωax = 2π ×10–300 Hz. The lat-
ter depend on the remaining confinement due the the magnetic
trapping potential and due to the Gaussian beam profile of the
lattice lasers.

The atoms are loaded into the combined trapping poten-
tial of the optical lattice and the magnetic trap by slowly in-
creasing the intensity of the lattice beams to the final strength
within 50 ms. Then the lattice light field and the magnetic
trapping potential are suddenly turned off and the several
thousand quantum gases expand and interfere with each other.
A snapshot of the resulting interference pattern is obtained
via absorption imaging after a variable time of ballistic ex-
pansion. An example of such an interference pattern can be
seen in Fig. 2 for different time of flight values after the trap-
ping potential has been switched off. Here the atoms were held
in a two-dimensional optical lattice with a potential depth of
U0 = 8Er and parallel polarization vectors (e1 · e2 = 1). For
orthogonal polarizations between the two standing wave laser
fields or a time phase of φ = π/2, the interference term in
(1) vanishes and the potential is simply proportional to the
sum of the intensities of the two standing wave light fields. In
the corresponding momentum distribution (see Fig. 3, bottom
row) the diagonal momentum components with |p| = √

2hk
are suppressed due to their vanishing geometrical structure
factor. For parallel polarization vectors and a time phase of
φ = 0, interference between orthogonal laser beams leads to
a significantly different lattice potential. In this configura-

FIGURE 2 Absorption images of a Bose–Einstein condensate released
from a two-dimensional periodic lattice potential with parallel polarization
vectors e1 · e2 = 1 and a potential depth of U0 = 8Er for different time of
flight periods

FIGURE 3 Absorption images of Bose–Einstein condensates released from
one-dimensional vertical (top row), one-dimensional horizontal (middle row)
and two-dimensional horizontal and vertical (bottom row) lattice configura-
tions with orthogonal polarization vectors e1 ·e2 = 0. The images were taken
for peak optical lattice depths of a 4Er and b 12Er after a time of flight of
15 ms

tion diagonal momentum components with |p| = √
2hk (see

Fig. 2) are present since now the associated geometrical struc-
ture factor does not vanish any more.

The influence of the lattice-potential depth on the interfer-
ence pattern is shown in Fig. 3 for a one-dimensional vertical,
a one-dimensional horizontal and a two-dimensional lattice
potential. Several important features can be seen in these im-
ages. First, the higher-order momentum components become
more intense as the potential depth is increased due to the
tighter localization of the atomic wavefunctions on each lat-
tice site. In addition, the horizontal momentum components
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with |py| = 2hk appear curved. This is pronounced for the 1D
horizontal standing wave configuration (see e.g. Fig. 3, mid-
dle row). When the different momentum components begin
to separate in real space after the lattice potentials have been
switched off, the repulsive mean-field potential acts like a de-
focusing lens for the higher-order momentum components.
Due to the nonspherical distribution of the condensate wave-
function in the magnetic trap, this defocusing effect is much
more pronounced along the horizontal direction, which has
been confirmed in a 2D numerical simulation.

Second, s-wave scattering spheres become increasingly
visible as the potential depth is increased. These spheres orig-
inate from collisions between the separating momentum com-
ponents after the trapping potential has been switched off [12,
13]. The scattering probability is highest along the horizontal
direction, which coincides with the long axis of the conden-
sate and results in long interaction times.

We estimate the number of occupied lattice sites by count-
ing the lattice sites within the Thomas–Fermi extension of the
magnetically trapped condensate. Using the above condensate
parameters we find that almost 3000 lattice sites are popu-
lated, with an average population of N̄i of 170 atoms per site.

We have modeled the wavefunction Ψ(r) of the Bose–
Einstein condensate in the optical lattice as a sum of localized
lattice wavefunctions w(r − rk, j) on each lattice site (k, j)
with a phase φ(rk, j) weighted with a population factor A(rk, j ):

Ψ(r) =
∑
k, j

A(yk, zj)w(x, y − yk, z − zj)eiφ(yk,zj ) . (2)

Here (yk, zj) denotes the two-dimensional position of the
k, jth lattice site and A(yk, zj)

2 corresponds to the average
number of atoms on the k, jth lattice site. The localized wave-
functions w(r− rk, j) have been assumed to take the form of
a Gaussian wavefunction in all three dimensions:

w(r− rk, j) ∝ e
−1/2

{
((y−yk)

2+(z−zj )
2)/σ2

r +x2/σ2
x

}
. (3)

The effective widths of these wavefunctions are obtained
by first calculating the ground-state extensions in the com-
bined potential of the lattice and the magnetic trap, including
effects due to the finite depth of the lattice potential. Then
the additional broadening of the wavefunction due to the re-
pulsive interactions between the atoms is considered by min-
imizing the ground-state energy of N̄i atoms per lattice site
through a variation of the widths of the Gaussian trial wave-
function (see [14]). For lattice depths of U0 = 12Er we find
that the radial width of a single lattice wavefunction is on the
order of σr = 0.12λ. The maximum chemical potential per lat-
tice tube µloc can then be calculated to be on the order of
µloc ≈ h ×5 kHz, much smaller than the radial trapping fre-
quencies of ωr ≈ 2π ×18 kHz. Each quantum gas in a lattice
tube is therefore in the 1D regime [15]. The resulting dens-
ity distribution of the atoms in a central part of the lattice is
displayed in Fig. 4a. A strong localization of the atoms on
each lattice site can be seen for this potential depth. The cor-
responding momentum distribution can be directly obtained
by Fourier transformation of the periodic wavefunction Ψ(r).
The experimentally measured number of atoms in a single
higher-order momentum component with p = 2hk relative to

FIGURE 4 a Calculated density distribution of the atoms for a potential
depth of U0 = 12Er assuming the theoretical model described in the text.
b Fraction of atoms with momentum p = +2hk relative to the number of
atoms with p = 0hk evaluated for the horizontal (y-)momentum component.
The solid line is the theoretical prediction with no adjustable parameters
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FIGURE 5 Theoretical momentum distribution for a one-dimensional pe-
riodic condensate wavefunction localized to σr = 1/15λ in each potential
well. The phase differences between neighboring lattice sites are a ∆φ = 0,
b ∆φ = π/2 and c ∆φ = π

the central p = 0hk component is compared with the theor-
etical prediction in Fig. 4b. The graph shows that the theor-
etical prediction is in good agreement with the experimental
results.

Arbitrary phase gradients can be mapped onto the con-
densate in the periodic potential by exposing the atoms to
a potential gradient. In a band-structure picture this is equiva-
lent to being able to populate an arbitrary Bloch state within
the first energy band. For simplicity we restrict the following
discussion to a one-dimensional situation which can easily be
extended to higher dimensions.

In order to prepare an arbitrary phase gradient we switch
on an additional potential gradient V ′ which is directed along
the lattice axis. Since each localized lattice wavefunction is
now lifted to a different potential height, their phases also
evolve differently with time [1]. The phase difference between
neighboring lattice sites ∆φ = φ(xj+1)−φ(xj) after a time t is
then given by

∆φ = − (V ′λ/2)t

h
. (4)
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FIGURE 6 Experimentally measured momentum distributions after expos-
ing the trapped periodic quantum gas to a potential gradient for a variable
period of time. Momentum distributions of Bose–Einstein condensates that
were stored in a one-dimensional standing wave potential: a with ∆φ = 0
and b with ∆φ = π between neighboring lattice sites. c Momentum distri-
bution of a Bose–Einstein condensate that was stored in a two-dimensional
standing wave potential, with ∆φz = π. The time of flight in all images was
15 ms

As can be seen from (4) arbitrary phase differences be-
tween neighboring lattice sites can be achieved by turning
off the potential gradient after a distinct time t, thereby cre-
ating a Bloch state with crystal momentum q = V ′t/h. The
resulting momentum distributions of the atoms can be seen
in Fig. 5 for three phase differences ∆φ = 0, π/2 and π be-
tween neighboring lattice sites. In the experiment the phase
gradients that have been mapped onto the condensate wave-
function are determined by evaluating the momentum distri-
bution of the atoms after release from the trapping potential.
This can be seen in Fig. 6a and b for the case of a one-
dimensional vertical standing wave, for which the phase dif-
ference between neighboring lattice sites was set to ∆φ = 0
(Fig. 6a) and ∆φ = π (Fig. 6b). The same idea can be applied
to a Bose–Einstein condensate in a two-dimensional lattice
potential as is shown in Fig. 6c. Here a magnetic field gra-
dient of B′ = 20 G/cm was pulsed on for 450 µs along the
vertical direction, resulting in a phase difference of ∆φz = π

between neighboring lattice sites. By applying a similar gradi-
ent along the horizontal direction, any Bloch state in the
lowest-energy band of the two-dimensional lattice can be
reached.

In conclusion, we have demonstrated that a Bose–Einstein
condensate can be coherently transferred into the ground state
of a one- and two-dimensional optical lattice potential. In the
two-dimensional lattice the condensate consists of an array of
narrow potential tubes, each filled with a 1D Bose–Einstein
condensate. The coherence of the quantum gas in the lattice
potential can be explored by monitoring the multiple matter-
wave interference pattern after suddenly releasing the atoms
from the trapping potential. Furthermore, we have shown that
phase gradients can be mapped onto the periodic wavefunc-
tion by pulsing-on potential gradients for a suitable period of
time. With the several thousand copies of 1D quantum gases
in the two-dimensional optical lattice it seems possible to en-
ter the regime of a Tonks gas [15–19], for which the crossover
from bosonic to fermionic behavior of the atoms could be ob-
served. By adding a third orthogonal standing wave, the atoms
could in the future also be trapped in a three-dimensional light
crystal with an average occupation number of up to 10 atoms
per lattice site. In this setup it seems especially promising
to reach the quantum-phase transition from a superfluid to
a Mott-insulator phase [20] with an exact atom number in each
lattice site.
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