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h.j.w.m. hoekstra3
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4 Laboratoire TSI, Université Jean Monnet, St. Etienne, France

Received: 16 May 2001 /Revised version: 28 August 2001
Published online: 30 October 2001 • © Springer-Verlag 2001

ABSTRACT Abnormal reflecting mirror (ARM) structures, con-
sisting of a corrugated optical waveguiding structure, can
serve as a wavelength-selective end mirror in a laser cavity.
The ARM structure shows, for each wavelength in a cer-
tain region, 100% reflection at a certain angle of incidence.
In the vicinity of this angle the waveguide is resonantly ex-
cited, leading to strong enhancement of the optical field in
the layer structure, which is interesting for efficient second-
harmonic generation (SHG). In this paper, experimental re-
sults of a first prototype, exhibiting Čerenkov SHG, are
reported.

PACS 41.60.Bq; 42.40.Eq; 42.79.Nv; 42.65.Wi; 42.82.E

1 Introduction

Due to the growing importance of coherent short-
wavelength sources (green/blue light), efficient sources for
second-harmonic generation (SHG) are very attractive. Here
one may choose between guided–guided SHG, where guided
modes are involved at both frequencies, or the so-called
Čerenkov SHG (ČSHG), where the second-harmonic light is
radiative [1–6]. The latter is often believed to be less effi-
cient but also less stringent with respect to phase matching,
but as was shown by Asai et al. [4] for the first time, the
conversion efficiency of ČSHG exhibits a few very sharp
maxima as a function of the wavelength and the layer thick-
ness (see also [6]). The origin of this feature was discussed
in [5, 6]. It was shown theoretically [6] that more degrees
of freedom, with respect to the wavelengths corresponding
to such peaks, are introduced by using three- and four-
layer systems. It was also shown, both theoretically [4] and
experimentally [2, 3], that the peak conversion efficiency
is just a transition point between ČSHG and the SHG of
a guided mode. A normalised conversion efficiency of about
1000%/W cm2 was reported [3]. In this work we present the-
oretical and experimental results of ČSHG in a not yet fully
optimised, with respect to SHG, abnormal reflecting mirror
(ARM) device.
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2 Čerenkov-regime SHG

This section describes basic properties of the
Čerenkov-regime SHG. First of all, only relevant expressions
from the theory are extracted and adapted. Furthermore, only
the TEω − TE2ω conversion is considered because the results
relating to the TM modes may be deduced similarly to the cor-
responding results for the TE modes. The conversion of the
fundamental TEω guided mode to the second-harmonic TE2ω

radiation mode is analysed using the coupled-mode analysis
in the configuration of a three-layer slab optical waveguide.

A waveguiding high-refractive-index layer of the thick-
ness h made from an optically linear material is deposited
onto a non-linear substrate (the only substrate we consider
is non-linear; in our case KTP is exploited) and covered by
a lower-index superstrate. The axis z belongs to the propaga-
tion direction of the fundamental guided mode. The principle
of the ČSHG is as depicted in Fig. 1, i.e. the phase matching
between the pump guided mode and the generated second-
harmonic mode is satisfied automatically [1]. The second-
harmonic radiation leaks into the substrate under a pertinent
Čerenkov angle, which thus obeys the relation

cos θ = Nω/ns,2ω . (1)

Nω is the effective index of the fundamental guided mode and
ns,2ω is the refractive index of the substrate for the second-
harmonic radiation.

If Tamada’s procedure [1] is followed then the distribution
of the guided fundamental (ω) field in the substrate, i.e. for
x < −h, obeys the relation

Ey,ω = Ag

[
cos(κh)+ δ

κ
sin(κh)

]
exp[γ(x +h)] , (2)

FIGURE 1 The phase-matching diagram in the case of ČSHG
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where κ = k
(

n2
g,ω − N2

ω

)1/2
, γ = k

(
N2

ω −n2
s,ω

)1/2
, and

δ = k
(
N2

ω −n2
c,ω

)1/2
, with k = 2π/λ. The subscripts g, s, and

c relate to a guide, a substrate, and a cladding, respectively.
The normalisation constant Ag is given by (see for the whole
theoretical background e.g. [7, Chapt. 1])

Ag =
(

4ωµ0κ
2

βω(κ2 − δ2)(h +γ−1 + δ−1)

)1/2

(3)

to fulfil the condition
∫∞
−∞ |Ey,ω|2 dx = 1 (W/m). The second-

harmonic field is expressed as a radiation mode. Thus,

Ey,2ω = Ar

{[
cos(σx)+ ∆

σ
sin(σx)

]
cos

[
�(x +h)

]
+σ

�

[
sin(σx)− ∆

σ
sin(σx)

]
sin
[
�(x +h)

]}
(4)

where σ = 2k
(

n2
g,2ω − N2

ω

)1/2
, � = 2k

(
n2

s,2ω − N2
ω

)1/2
, and

δ = 2k
(
N2

ω −n2
c,2ω

)1/2
. The normalisation constant Ar is given

as follows:

Ar =
(

8ωµ0σ
2�2

πβω

{
σ2[σ sin(σh)−∆ cos(σh)]2 +�2[σ cos(σh)+∆ sin(σh)]2}

)1/2

.

(5)

As the next step the wave equation with a perturbed po-
larisation vector is to be solved (for details see e.g. [1] or
especially [8]). The solution of the wave equation leads to
the following expression describing the generated second-
harmonic power P2ω as the function of the pump power Pω and
the interaction length L (we integrate over all radiation modes,
because of the continuum of the radiation-mode propagation
constants):

P2ω = P2
ω L2

∞∫
0

ηIpm d� . (6)

The quantity η is the so-called normalised conversion effi-
ciency given by

η = d2
33ω

2ε2
0|F|2 , (7)

where ω is the frequency of the fundamental radiation, ε0 is
the permittivity of the vacuum, and d33 is a pertinent non-
linear coefficient (i.e. d33 plays an essential role in the config-
uration exploiting KTP). The so-called overlap integral F is
defined by

F =
∫

sub.

E2
y,ωEy,2ω dx . (8)

Substituting from (2) and (4), the overlap integral yields

F = A2
g Ar A2

−h∫
−∞

exp[2γ(x +h)]

×
{

B cos[�(x +h)]+C
σ

�
sin[�(x +h)]

}
dx

(9)

with A = cos(κh) + (δ/κ) sin(κh), B = cos(σh) + (∆/σ)×
sin(σh), and C = sin(σh)− (∆/σ) cos(σh). Hence, a simple
integration gives

F = A2
g Ar A2

[
2Bγ −Cσ

4γ 2 −�2

]
. (10)

The term Ipm = sin2(∆pm L/2)/(∆pm L/2)2 in (6), with
∆pm = 2βω −β2ω, describes the phase mismatch between all
possible radiation modes and the guided pump mode. The
overlap integral is a slowly varying function of � compar-
ing this mismatch factor and can be taken off the integration
sign. If we consider relatively large Čerenkov angles (say
θ > 2◦), the integral in (6) may be approximately expressed
in the form (�2 = 4n2

s,2ωk2 − β2
2ω → d� = d∆pmβ2ω/�)∫∞

0 Ipm d� = β2ω�−1
∫∞
−∞ Ipm d∆pm = 2πβ2ω/(L�). We ex-

press, according to Fig. 1, that cos θ = β2ω/�. Hence,

P2ω,C = 2πηL P2
ω cos θ . (11)

Note that the generated second-harmonic power is just
proportional to the propagation length for large enough
Čerenkov angles. However, the relation (11) diverges for
small Čerenkov angles.

Assuming the case of the small Čerenkov angles, i.e.
� � 1, we may approximately express the mismatch factor as
follows:

∆pm = 2βω −
√

4k2n2
s,2ω −�2 ≈ 2βω −2kns,2ω + �2

4kns,2ω

.

The integral in (6) then takes the form (we may again ex-
tend the integration interval, because of the sharply peaked
behaviour of the ‘sinc’ function)

∞∫
−∞

sin2
[(

2βω −2kns,2ω +�2/4kns,2ω

)
L/2

]
[(

2βω −2kns,2ω +�2/4kns,2ω

)
L/2

]2 d�

≈ 16

3

√
2πkns,2ω√

L
.

We have considered just the vicinity of well-phase-matched
interaction, i.e. βω

∼= kns,2ω. Substituting this result back into
(6) yields the relation for the ČSHG for small Čerenkov angles
close to the phase-matched interaction:

P2ω,peak = 8

3

√
2πkns,2ωηP2

ω L3/2 . (12)

We have used the subscript peak because, as will be seen
later, this relation is valid just in the peaked Čerenkov conver-
sion efficiency (see Fig. 2). Here we find that the generated
SH power follows P2ω ∝ L3/2. This result was first reported
in [8] and may be further understood as a transition between
the ČSHG and the classical guided–guided SHG interaction
(GSHG) described e.g. in [9], where the generated SH power
exhibits a quadratic dependence on the propagation length, as
is well-known.

Let us further study the role of the overlap integral on the
conversion-efficiency behaviour for small Čerenkov angles,
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FIGURE 2 The conversion efficiency for a 1-mm-long KTP/Si3N4/SiO2
device calculated by (11) and (12), respectively (Eff. = P2ω/P2

ω). ČSHG does
not occur in the dark area at the right corner of the graph. The GSHG
conversion efficiency would have been depicted there

because the maximum of the conversion efficiency can be ex-
pected in this region. Since, as was said, � → 0 for θ → 0◦, it
can be seen from the normalisation constant of the radiation
SH mode given in (5) that this constant is everywhere equal to
zero for � = 0 except for the very close vicinity given by the
following relation:

σ sin(σh) = ∆ cos(σh) = 0 (13)

which produces the modified dispersion relation giving the ef-
ficiency as follows (see also [10]):

arctan(δ/κ)+ arctan(γ/κ)

κ
− arctan(∆/σ)+π

σ
= 0 . (14)

Solving the modified dispersion relation (14), one finds
that there is only one suitable wavelength that can be con-
verted with the highest conversion efficiency for given refrac-
tive indices. This can be done only for a particular thickness
of the guiding layer, namely that given by the explicit expres-
sion h = [arctan(δ/κ)+arctan(γ/κ)]/κ. Similar remarks hold
for four-layer systems, which is the subject matter of our study
(a grating may be understood as an extra layer of specific
properties).

Finally, the peak exhibits a rather narrow FWHM (see
Fig. 2) similar to the guided–guided SHG behaviour. In fact,
this peak is the first point of the pure phase-matched SHG.
This causes certain hurdles in device fabrication (e.g. an ac-
curacy of the guide thickness of ±0.2 nm is needed). These
strict requirements are furthermore complicated with the de-
mands necessary for an ordinary working ARM (see below).
But, it still leads to a promising offer to exploit the Čerenkov
regime apart from its peaked conversion efficiency, because of
the ‘automatically’ satisfied phase matching.

The sharply peaked second-harmonic efficiency in the
transition point was experimentally studied in two papers by
Doumuki et al. [2, 3]. We recognised [8, Fig. 7b] and fur-
ther considered [10, (7)] that the generated SH power in the
position of the peaked ČSHG conversion efficiency obeys ap-
proximately (please note the difference of the factor of two
missed in [8, 10]):

P2ω,peak ≈ 0.12

(
L

L1 mm

)3/2

P2
ω , (15)

FIGURE 3 Power distribution related to the structure of Table 1. The in-
coming power (◦◦◦), the reflected power (+++), and the transmitted power
(���) are given in W/m2 (left scale); the modal power (solid line) is given in
W/m (right scale). The total incoming power is 1 W/m

Layer Thickness/nm n(1053 nm) n(526.5 nm)

Air − 1 1
Grating 180 1.5607 1.5849
Si3N4 462 1.9676 2.006
KTP − 1.83005 1.889

TABLE 1 Relevant parameters for the structure used for ČSHG; the grat-
ing period was 440 nm and a duty cycle of 0.5 was assumed

where the bracketed term denotes the relative interaction
length related to 1 mm. The pump power in the relation (15) is
understood to be normalised to 1 µm of the slab width.

3 The ARM structure

Si3N4 layers were deposited by PECVD (plasma-
enhanced chemical vapour deposition) on a KTP substrate.
The gratings were made by standard holographic exposure
(with an Ar laser) of a resist, followed by developing and ion-
beam etching for the transfer of the grating from the resist
film into the Si3N4 layer. The parameters of the fabricated
structure are given by Table 1; the KTP substrate was ori-
ented such that all electrical vectors are along the z-axis. The
calculations based on [11] have led to the following quanti-
ties: propagation constant β = 11.177 /µm, coupling constant
κ = 0.0090 /µm, and angle of excitation for maximum reflec-
tion 31.33 degrees.

The structure was excited by a beam with a width of
2w = 500 µm. The amplitude distributions, calculated using
the analytical expressions of [11], assuming 1 W/m incoming
power, are given in Fig. 3. From these we find for the angle
corresponding to maximum reflection a theoretical power re-
flection of 87.5%, and a power transmission of 12.5%. Using
standard theory for ČSHG (see e.g. [8] and references therein)
we found, based on a value of χ(2)

zzz = 23.6 pm/V, a conversion
efficiency of η = 4.0 ×10−6 /W. Using the latter and the cal-
culated modal amplitude distribution, a SH power not higher
than ≈ 0.4 µW was calculated.
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FIGURE 4 Experimental power reflection (peaked curve) and transmission
curves for linear ARM (corrugated Si3N4 layer on the glass substrate). Total
Si3N4 layer thickness is 506.6 nm. 200 nm of this layer is corrugated with
corrugation period 460 nm

screen or
detector

CCD camera

l = 1.053µm

θ

nf= 1.9911

KTP l = 0.527µm

FIGURE 5 The scheme of the experimental set-up for ČSHG

4 Experiments

As a first step we measured the transmission and re-
flection of the structure for low power levels. With the same
experimental parameters as above we found the curves as pre-
sented in Fig. 4 for a linear ARM structure. The minimum
transmission is of the correct order of magnitude (∼ 4% of the
total power) but the peak in the reflection is less than expected
(∼ 92%), attributed to scattering due to imperfections, which
becomes relatively large when the guided mode is resonantly
excited.

At a power level of 2 W of the fundamental beam, ČSHG
could be observed in the form of green light escaping through
the KTP substrate. A green power level of ≈ 1 µW was
measured, in close agreement with the theoretical value (the
scheme of the experimental set-up is presented in Fig. 5).

5 Why is an ARM necessary for ČSHG?

The next question is: why need we use ARM
structures for ČSHG experiments? Can this approach give
us some advantages? Let us consider some experimental
schemes where the use of an ARM could be useful for ČSHG
experiments. Figure 6 presents the scheme where an ARM
structure is used with an additional mirror. Calculations show

ω

2ω

FIGURE 6 Combination of ARM and flat mirror

ω

2ω

FIGURE 7 Combined ARM structure placed inside a laser cavity

f

2ω

ARM

FIGURE 8 ARM structure used as a mirror in a Fabry–Pérot cavity together
with a cylindrical lens

that a combination of an abnormal reflection mirror with the
usual mirror gives a sufficient increase of the SH signal.

Figure 7 presents the scheme of a laser cavity with an
ARM and an additional mirror inside it. In this scheme we
can keep all energy inside the cavity and as a consequence we
can increase the power density inside the optical waveguide.
In both cases the type of laser we used in our experiments is
not important. However, it is necessary to note that use of an
ARM structure inside a solid-state laser cavity is not effective.
Our experiments with an ARM inside a solid-state laser cavity
(in collaboration with the research group of Dr. V.I. Ustyugov,
Institute of Laser Physics, St. Petersburg) showed that total
losses equal to 8% (see Fig. 4) could not allow us to ob-
tain an effective device. For this reason we believe that the
better solution is to use an ARM structure inside the cavity
of a semiconductor laser. The last results demonstrated that
ARM structures could be used effectively inside the cavity of
a semiconductor laser [12, 13].

Figure 8 presents the scheme of using an ARM inside
a semiconductor laser cavity for ČSHG. We believe that this
scheme can serve as a prototype of a device for a direct
frequency-doubling device, instead of frequency doubling as
an alternative to intra-cavity frequency doubling in a solid-
state laser with pumping by a semiconductor laser.

6 Conclusions

The presented study investigated an interesting
connection of two phenomena. Namely, an ARM structure,
which allows for wavelength selectivity and wavelength tun-
ing, combined with SHG in one device. Both phenomena have
already been studied separately in detail. Exploitation of both
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phenomena simultaneously offers several new experimental
possibilities. But, as can be concluded from the presented
study, obtaining efficient SHG needs special care. The effi-
ciency might be increased in the first place by using the ARM-
SHG device in a laser cavity with high intra-cavity power.
Secondly, the interaction length in the presented device is only
a few hundreds of micrometres, and as the efficiency in the
Čerenkov regime (not too close to the high-efficiency peaks)
is proportional to the length, the efficiency can be further in-
creased by using lasers with a broader (along the propagation
direction) beam, together with a correspondingly weaker grat-
ing. An even further increase of efficiency can be obtained by
frequency conversion close to the high-efficiency peaks in the
Čerenkov regime, or on the high-efficiency line in the guided–
guided SHG regime, by utilising e.g. quasi-phase matching.
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