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ABSTRACT In order to study the ultrafast relaxation dynam-
ics of surface plasmon excitation in metal nanoparticles in the
presence of inhomogeneous line broadening and investigate the
influence of the reduced dimensions on the dephasing time
T2 in the size regime below about 10 nm, we have recently
demonstrated a novel technique based on persistent spectral
hole burning [1]. Here, we describe a theoretical model that
has been developed for evaluation of the experimental data and
precise determination of T2 for particles of different size and
shape. Comparison of the model to experimental data for Ag
nanoparticles on sapphire shows that the theoretical treatment
does not only reproduce the shape of the generated holes but
also the dependence of their widths on the applied laser fluence.
As a result, we have a reliable and versatile tool at hand making
possible systematic studies of the ultrafast electron dynamics in
small metal particles, and the dependence of the femtosecond
dephasing time on their size, shape and surrounding dielectric.

PACS 78.66.Bz; 61.46.+w; 71.45.Gm

1 Introduction

Among many other characteristics, the optical
properties of nanoparticles, i.e. systems with reduced dimen-
sions, have long attracted special interest in fundamental and
applied sciences [2]. In particular, the optical spectra of metal
nanoparticles composed of gold, silver or alkali atoms have
been investigated quite extensively and are dominated by
plasmon polaritons, i.e. collective oscillations of the conduc-
tion electrons relative to the lattice of the ion cores that remain
at rest. Such excitations can be stimulated with light and give
rise to pronounced resonances, the position of which can be
varied over a wide spectral range by choosing different metals,
by preparing particles of different sizes and shapes and by
supporting or embedding them on different substrates or in
different matrices. This allows one to tailor novel materi-
als with predetermined special linear and non linear optical
properties. Furthermore, excitation of surface plasmons is
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accompanied by a considerable enhancement f of the local
electric field in the vicinity of the nanoparticles [3, 4]. It can be
exploited quite profitably to enhance, for example, the photon
emission rate of fluorescing species such as dyes or the Raman
scattering signal of molecules adsorbed on nanoparticles or on
rough metal films [5–7]. This field enhancement is currently
being exploited or discussed for applications like all optical
switching devices [8], improved biophysical sensors [9] or
optical tweezers [10].

While the positions of the resonances of surface plasmon
excitation as a function of particle size, shape and dielec-
tric properties are well understood, the ultrafast dynamics of
these collective electronic excitations in nanoparticles has re-
mained a highly interesting issue to be elucidated in much
greater detail [1, 11–22]. An essential issue is, for example,
how rapidly the collective excitations lose their phase coher-
ence [1, 15–17, 19–22]. Further, one would like to investigate
the mechanisms responsible for dephasing, i.e. clarify the role
of relaxation processes like Landau fragmentation, electron–
electron and electron–surface scattering or chemical interface
damping [2, 15, 23–25]. For this purpose, study of the influ-
ence of the reduced dimensions of the particles, i.e. of con-
finement of the electrons, and of the surrounding material on
the dephasing time T2 and the relaxation mechanisms is es-
sential. We also note that knowledge of T2 is important for the
applications mentioned above since the enhancement factor f
of the electric field near the nanoparticles is directly propor-
tional to T2; therefore, measurement of this quantity makes
possible the experimental determination of f . Detailed un-
derstanding of the dependence of the dephasing time on the
size and shape of the metal particles would also allow one to
optimize f . In short, knowledge of the dephasing time T2 is es-
sential for basic science and for a large variety of applications.
Undoubtedly, however, determination of T2 constitutes a great
experimental and conceptual challenge since typical values
are as small as several femtoseconds [1, 15–17, 20–22].

In contrast to the pronounced scientific and applied in-
terest, systematic investigations of T2 = 2h/Γhom, Γhom being
the homogeneous line width of the resonance, are not avail-
able at present. At first glance, one might argue that T2 can
be readily extracted from the widths of the resonances that
appear in the absorption spectra of the nanoparticles. In prac-
tice, however, the particles usually have broad size and shape
distributions. Since the plasmon frequency depends on both
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parameters, this introduces inhomogeneous line broadening
of the plasmon resonances of such samples. Since the magni-
tude of the inhomogeneous broadening is not known quantita-
tively, the homogeneous width Γhom and the decay time can-
not be extracted: the absorption spectra only provide a lower
limit of the surface plasmon dephasing time. Furthermore, in-
homogeneous broadening also prevents determination of T2

by time resolved experiments using femtosecond laser pulses
and second or third harmonic generation. In such measure-
ments, inhomogeneous line broadening causes narrowing of
the recorded autocorrelation traces, an effect that prevents an
accurate determination of Γhom and, at best, allows one to ex-
tract an upper limit of T2 [26, 27].

In principle, the problem of inhomogeneous broadening
of the plasmon resonances can be overcome by fabricating
very narrow size and shape distributions, for example using
lithographic techniques [20, 21] or, alternatively, by measur-
ing characteristics of single nanoparticles [16, 17, 22]. Both
approaches, however, are limited at present to rather large ag-
gregates with diameters above about 40 nm, dimensions at
which no influence of the reduced size of the nanoparticles on
the decay of the collective excitation is expected [2, 24, 25].

Recently, we have developed a novel technique based on
persistent spectral hole burning that allows us to investigate
nanoparticles in the particularly interesting size regime below
about 10 nm and determine the surface plasmon dephasing
time with high accuracy even in the presence of inhomoge-
neous broadening [1]. For evaluation of the experimental data
and extraction of T2 a theoretical model has been developed.
Presentation of this model together with its experimental ver-
ification for the case of silver nanoparticles supported on
sapphire substrates is the subject of the present paper. The
theoretical treatment does not only describe the hole burning
process in detail but also quantitatively reproduces the shape
of the generated holes and the dependence of their widths on
the applied laser fluence. Altogether, we have developed a re-
liable and versatile tool for systematic studies of the ultrafast
electron dynamics in small metal particles, and its dependence
on their size, shape and surrounding dielectric.

2 Method of persistent spectral hole burning

Among the variety of non linear optical techniques
that do not suffer from inhomogeneous line broadening, hole
burning is the most universal and simplest to implement in the
case of resonances that exhibit ultrashort decay times. Before
describing in detail the theoretical model, the basic princi-
ple of hole burning in the absorption profile of an ensemble
of metal nanoparticles will be recalled briefly. The idea of
our method is as follows, Fig. 1. In a first step, nanoparti-
cles with a broad size distribution are prepared on a transpar-
ent substrate by deposition of metal atoms with subsequent
surface diffusion and nucleation, i.e. Volmer–Weber growth,
Fig. 1a. After measuring their optical absorption spectrum,
the nanoparticles are irradiated with nanosecond laser pulses,
the photon energy being located within the inhomogeneously
broadened absorption profile and the spectral width of the
light being negligibly small as compared to the homogeneous
and inhomogeneous line broadening, Fig. 1b. In the particles
the absorbed photon energy is rapidly converted into heat [11–

FIGURE 1 Schematic representation of persistent spectral hole burning in
inhomogeneously broadened surface plasmon absorption profiles of metallic
nanoparticles. Particle distribution and optical spectra a before b during and
c after laser irradiation

13]. The fluence of the light is chosen such that the resulting
temperature increase of the particles is sufficiently high to
stimulate evaporation and/or surface diffusion of atoms [28].
As a result, the size and shape of the nanoparticles interacting
with the light change, i.e. a hole is burnt into the absorp-
tion profile, Fig. 1c. Finally, the optical spectrum is measured
a second time and subtracted from the spectrum of the par-
ticles as grown to determine the width of the hole, i.e. Γhom

and T2.
In such experiments, two different kinds of hole burning

have to be distinguished. Very small clusters with sizes below
about 1 nm resemble spheres which display a single plasmon
resonance and the inhomogeneous line broadening is entirely
due to quantum size effects [2, 15]. Larger particles, however,
are oblate and can be described as rotational ellipsoids with
two main axes a and b, Fig. 1 [28, 29]. The axial ratio a/b is
a measure of the shape while the mean radius 〈r〉, i.e. the ra-
dius of a sphere with the same volume as the actual clusters,
characterizes their size. a/b drops off as a function of the ra-
dius, i.e. there is a correlation between size and shape [28, 29].
For such particles the surface plasmon frequency is essentially
size independent; it splits, however, into two modes, the fre-
quencies of which depend on a/b [30, p. 141 ff.]. As a result,
the inhomogeneous line width for such deformed nanoparti-
cles is determined mainly by the shape distribution and hole
burning in this regime depletes the population of nanopar-
ticles within a certain interval of axial ratios. This makes it
possible to selectively excite aggregates with different a/b
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values by changing the photon energy and thus study T2 as
a function of cluster shape. In fact, there is a twofold change of
the resonantly excited clusters. First, since atoms are preferen-
tially released from the edges and perimeters of the clusters,
their long axis b shrinks predominantly, making the clus-
ters more spherical and increasing their plasmon frequency.
Secondly, since material is being removed, the particle vol-
ume decreases and the amplitude of the plasmon drops off,
Fig. 1. In addition, surface self-diffusion may contribute to
the shape changes although it does not change the particle
volume.

Spectral hole burning is, of course, a well-known tech-
nique in atomic, molecular and solid state physics (see, for
example, [31, 32]). There is, however, an essential difference
of the “classical” experiments as compared to the application
described here. In the present case, the “final” state, i.e. the
size and shape of the particles after interaction with light, is
close to the initial dimensions of the clusters as grown. The
nanoparticles change size or shape only until they do not in-
teract with the laser light any more. As a result, an adjacent
peak accompanies the hole making its profile asymmetrical
(Fig. 1c), a feature that naturally called for the development of
the model presented here including an analytical expression of
the line shape.

The technique of spectral hole burning as outlined above
has a number of advantages, the most essential ones being that
it is not restricted to certain particle sizes, does not require
special size and shape distributions and is compatible with
ultra high vacuum (UHV) conditions, i.e. it allows one to con-
trol and systematically vary the chemical environment. Fur-
thermore, there is no need for ultrashort laser pulses with rise
times and pulse widths in the femtosecond regime. Since the
hole burning process is thermally activated, the most essential
parameter is the energy deposited in the particles; therefore,
use of laser pulses with several nanoseconds duration and
fluences on the order of several tens of mJ/cm2, which are
readily delivered by standard laser systems in the visible and
infrared range, is sufficient to obtain the required heating rate
of metal nanoparticles on a transparent substrate [28].

3 Theory of spectral hole burning in
the inhomogeneously broadened absorption
profile of metal nanoparticles

3.1 General remarks

Before we describe the model that allows us to ex-
tract the plasmon dephasing time in nanoparticles, several
preconditions for the theoretical treatment will be mentioned
briefly. Firstly, an inhomogeneous distribution of resonance
frequencies of isolated clusters as a result of a certain size
and/or shape distribution is not necessarily the only reason
for large broadening of the linear extinction spectra. In fact,
spectra of identical metal particles that are densely packed and
interact via dipole fields may look very similar to the spectrum
of an ensemble of non interacting particles with a broad size or
shape distribution [2, 33]. However, if the width of the extinc-
tion spectrum is mainly due to the interaction between the par-
ticles, there is obviously no possibility to selectively deplete
a narrow part of the whole spectrum. Conversely, observation
of hole burning in our experiments furnishes clear evidence

of inhomogeneously broadened and non-interacting particles.
Scanning force microscopy images of the supported metal
clusters support this conclusion [28, 29]. Secondly, in view of
the thermal constants of the dielectric substrate as well as the
nanometer-size of the metal particles, laser illumination leads
to a highly selective temperature distribution over the sub-
strate surface. Since the substrate does not absorb laser light,
it is heated only through the energy flow originating from the
clusters, see Fig. 2. The heat diffusion length in a metal is
much larger than the cluster size; therefore, each cluster is
heated almost homogeneously and may be regarded as a point
source of heat located on the substrate surface. The three-
dimensional heat flow from a single nanoparticle is known
to lead to a saturation of the temperature rise, the maximum
value being reached during the laser pulse [34, p. 47]. In con-
trast, the heat diffusion length in the substrate is smaller than
the mean distance between the clusters; hence, the clusters do
not heat each other appreciably. Nevertheless, this small ef-
fect may be accounted for by an average temperature rise due
to the one dimensional heat flow [34, p. 42], [35, p. 75] from
the whole illuminated area into the interior of the substrate.
Finally, the spectral bandwidth of the applied laser light is
so small as compared to the involved homogeneous and in-
homogeneous widths of the plasmon transition that it can be
ignored.

The model to be described in the following sections con-
sists of four steps:

1. Computation of the optical absorption spectrum of the
nanoparticles as grown with a size and shape distribution,
i.e. inhomogeneous line broadening

2. Calculation of the temperature rise induced by absorption
of laser light

3. Calculation of the evaporation rate of atoms from the sur-
faces of the nanoparticles and of their dimensions after
selective laser heating

4. Computation of the optical spectrum of the modified dis-
tribution and of the difference of the spectra after and
before laser irradiation, i.e. of the shape of the spectral
hole and its width.

FIGURE 2 Scheme of the energy deposition and redistribution in an en-
semble of supported metal nanoparticles on a transparent substrate during the
thermally induced hole burning process
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3.2 Theoretical treatment of spectral hole burning

The extinction cross section of a small metal par-
ticle depends on its size as well as on its shape. There are two
important simplifications of this dependence for particles in
the size range of up to several tens of nanometers. Firstly, for
such particle sizes the quasistatic approximation can be ap-
plied, and the optical extinction is mainly due to absorption,
the absorption cross section being directly proportional to the
particle volume [30, p. 140, p. 145 ]. Secondly, the spectral de-
pendence of the absorption cross section is determined only
by the particle shape and is independent of its volume. Careful
analysis of the extinction spectra in combination with atomic
force microscopy shows that the particles can be described
as oblate, rotational ellipsoids with two main axes a and b,
the smaller one, a, being perpendicular to the surface plane.
Each particle possesses two resonance frequencies, corres-
ponding to plasmon excitations parallel and perpendicular to
the surface [30, p. 141 ff.]. The values of these resonance fre-
quencies depend solely on the axial ratio a/b [30, p. 141 ff.].
For s-polarized light only the low frequency (1,1)-mode con-
tributes to the extinction spectrum. Hence, there is a one to
one correspondence between the particle shape and its res-
onance frequency. Moreover, the strong correlation between
the size and the shape of the particles as observed experimen-
tally [28, 29] gives us the possibility of classifying the whole
particle ensemble by the resonance frequency Ω, the particle
volume V being a function of Ω. The absorption cross sec-
tion of a particle with resonance frequency Ω and volume V
at any particular frequency Ω will be denoted as σ(ω,Ω). If
we assume that the metal may be characterized by a frequency
dependent complex dielectric function ε = ε1 + iε2, the qua-
sistatic formula for σ(ω,Ω) reads as

σ(ω,Ω) = Vω

c

[1 − ε1(Ω)]2 ε2(ω)

[ε1(Ω)− ε1(ω)]2 + ε2
2(ω)

(1)

where c is the speed of light. For Drude-like metals with bulk
plasma frequency ωp and damping constant γ , the dielectric
function has the explicit analytical form

ε(ω) = 1 − ω2
p

ω(ω+ iγ)
(2)

and (1) simplifies to

σ(ω,Ω) = Vγω2
p

4c

1

(ω−Ω)2 + (γ/2)2
, (3)

provided γ � Ω and |ω−Ω| � Ω. In this case, the spectral
dependence of the absorption cross section is a Lorentzian, the
width and amplitude of which are independent of the particle
resonance frequency. This suggests a widely accepted inter-
pretation of surface plasmon excitation as a damped harmonic
oscillator. This interpretation may be extended to real metals
with dielectric functions rather different from (2) if one de-
fines the frequency dependent width of the plasmon resonance
as follows [2]:

ΓΩ = 2ε2(Ω)

| [dε1(ω)/dω]ω=Ω | (4)

and its strength

σ0(Ω) = VΩ

c

[1 − ε1(Ω)]2

ε2(Ω)
. (5)

Then, in close proximity of the plasmon frequency Ω, (1) may
be written as

σ(ω,Ω) = σ0(Ω)
(ΓΩ/2)2

(ω−Ω)2 + (ΓΩ/2)2 . (6)

This is similar to (3) except that the spectral width and
strength of the plasmon resonance now depend on the plas-
mon resonance frequency which, in turn, is defined by the par-
ticle shape. Using (6) is justified as long as ΓΩ does not vary
too much when Ω changes by ±ΓΩ , i.e. |ΓΩ±ΓΩ

−ΓΩ| � ΓΩ .
This condition definitely breaks down when ε1(Ω) reaches its
maximum and ΓΩ defined by (4) tends to infinity.

Equation (6) may be further generalized by substituting
ΓΩ of (4) by the more general parameter Γhom(Ω). It is larger
than ΓΩ and allows for all damping mechanisms like quan-
tum size effects, chemical interface damping, etc., as well as
for the damping already included in (4). Now, the absorption
spectrum of the whole ensemble is given by

S1(ω) =
∫

f(Ω)σ(ω,Ω)dΩ , (7)

f(Ω) being the inhomogeneous distribution of the plasmon
frequencies due to the shape distribution of the particles. Sub-
stituting (6) for σ(ω,Ω) in (7), one obtains the final form of the
absorption spectrum of the nanoparticles before laser treat-
ment

S1(ω) =
∫

f(Ω)σ0(Ω)
(Γhom(Ω)/2)2

(ω−Ω)2 + (Γhom(Ω)/2)2 dΩ . (8)

As the next step the temperature rise of the nanoparticles dur-
ing the laser pulse was calculated under the assumption that
the absorbed photon energy is totally converted into heat.
When a several nanometer large metal particle on a trans-
parent support is illuminated with a laser pulse of several
nanoseconds duration its temperature rise can be very well es-
timated if it is treated as a point source of heat on the infinite
substrate in steady state. The temperature rise of a cluster with
resonance frequency Ω induced by the laser radiation with
frequency ΩL and fluence F is CΩ Fσ(ΩL ,Ω), where CΩ is
a constant determined by the thermal conductivity of the sub-
strate λ and by the radius RΩ of the contact area between the
cluster and the substrate:

CΩ = 1

πλRΩτ
, (9)

where τ is the laser pulse duration. The temperature during
illumination is

T(Ω) = T0 +CΩ Fσ(ΩL ,Ω) , (10)

T0 being the initial sample temperature before illumination.
When the temperature rise is large enough, different ther-

mally activated processes may lead to changes of the particle
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resonance frequency and the strength of the resonance. We
consider evaporation of atoms first. The rate of atom evapo-
ration and the resulting variations of the volume and the axial
ratio of the clusters are proportional to exp[−Ea/kBT(Ω)],
where Ea is the activation energy for evaporation and kB the
Boltzmann constant. Assuming first order evaporation kinet-
ics with a pre exponential factor v of the order of the vibra-
tional frequency 1012 s−2 we obtain

dσ0(Ω)

dt
= −vσ0(Ω)exp [−Ea/kBT(Ω)] . (11)

In what follows we will restrict ourselves to short illumination
times τ , which results in rather small changes of the particle
volume. Then, the overall change of σ0(Ω) is

δσ0(Ω) = −a(Ω)exp [−Ea/kBT(Ω)] , (12)

where a(Ω) = vτσ0(Ω) varies with Ω much more slowly than
the exponential function. As outlined above, reduction of the
particle size is accompanied by a change of its shape, so that
the resonance frequency after laser treatment is shifted from
its original position by some amount δΩ. To account for a pos-
sible contribution of surface diffusion and to preserve the
generality of the theoretical model we assume that the activa-
tion energy for shape changes, Eb, may be quite different from
Ea. Hence, δΩ should be written as

δΩ = b(Ω)exp [−Eb/kBT(Ω)] , (13)

where b(Ω) is a slowly varying function of Ω, as compared
to the exponential function. Substituting the new values of the
resonance frequency and the corresponding absorption cross
section in (8), we obtain for the absorption spectrum after
laser treatment

S2(ω) =
∫

f(Ω)
[
σ0(Ω)+ δσ0(Ω)

]
× (Γhom(Ω)/2)2

(ω−Ω − δΩ)2 + (Γhom(Ω)/2)2
dΩ . (14)

The shape of the spectral hole is determined as the difference
between the absorption spectra after and before the laser treat-
ment:

δS(ω) = S2(ω)− S1(ω) . (15)

To facilitate the comparison with the experimental results this
expression will be further simplified in the following section.

3.3 Analytical expression for the profile of the spectral
hole

Expanding (14) to the first order in small changes
δσ0(Ω) and δΩ, we obtain

δS(ω) = δSa(ω)+ δSb(ω) , (16)

where

δSa(ω) =
∫

f(Ω)
δσ0(Ω) (Γhom(Ω)/2)2

(ω−Ω)2 + (Γhom(Ω)/2)2 dΩ (17)

and

δSb(ω) =
∫

f(Ω)
2(ω−Ω)σ0(Ω) (Γhom(Ω)/2)2 δΩ[

(ω−Ω)2 + (Γhom(Ω)/2)2]2 dΩ .

(18)

To make the next step, closer examination of the exponential
function in (12) and (13) is required. Let us consider (12) first.
We introduce the dimensionless quantities θ0a and θLa:

θ0a = kBT0

Ea
, θLa = kBCΩ Fσ0(Ω)

Ea
, (19)

which correspond to the initial temperature of the sample and
the maximum temperature rise for particles illuminated at the
resonance frequency; one obtains the following expression

exp [−Ea/kBT(Ω)] =

exp


− 1

θ0a + θLa
1

1+(Ω−ΩL )2/(Γhom(Ω)/2)2


 .

(20)

This function reaches its maximum value of

exp
[
− 1

θ0a + θLa

]
(21)

for Ω = ΩL . As θ0a is assumed to be much smaller than unity
and θLa is of the order of θ0a or larger, the exponential function
in (20) falls very rapidly for Ω 
= ΩL . The effective width of
the region where it has values comparable with its maximum
value (21) may be described by the inequality

|Ω −ΩL| < ∆La , (22)

where

∆La = θLa + θ0a√
θLa

(Γhom (ΩL) /2) . (23)

In this region (20) simplifies to

exp [−Ea/kBT(Ω)] =

exp
[
− 1

θ0a + θLa

]
exp

[
− (Ω −ΩL)2

∆2
La

]
,

(24)

where ∆La represents the half width of the Gaussian function
at the level of exp(−1). Substitution of (24) into (12) and (17)
leads to

δSa(ω) =
∫

Ā(Ω)

exp
(

− (Ω−ΩL )2

∆2
La

)
(Γhom(Ω)/2)2

(ω−Ω)2 + (Γhom(Ω)/2)2 dΩ ,

(25)

where

Ā(Ω) = f(Ω)a(Ω)exp
(

− 1

θ0a + θLa

)
. (26)
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Following the same steps one obtains

δSb(ω) =
∫

B̄(Ω)

exp
(

− (Ω−ΩL)2

∆2
Lb

)
(ω−Ω) (Γhom(Ω)/2)2

[
(ω−Ω)2 + (Γhom(Ω)/2)2]2 dΩ , (27)

where

B̄(Ω) = 2 f(Ω)σ0(Ω)b(Ω)exp
(

− 1

θ0b + θLb

)
(28)

and

θ0b = kBT0

Eb
, θLb = kBCΩ Fσ0(Ω)

Eb
,

∆Lb = θLb + θ0b√
θLb

(Γhom (ΩL) /2) (29)

are defined in full analogy to (19), (23) and (26).
As long as ∆La and ∆Lb are so small that all other func-

tions in (25) and (27) may be regarded as constant and taken
out of the integral, these equations simplify to

δSa(ω) = −√
π∆La Ā (ΩL)

(Γhom (ΩL) /2)2

(ω−ΩL)2 + (Γhom (ΩL) /2)2 ,

(30)

and

δSb(ω) = √
π∆Lb B̄ (ΩL)

(ω−ΩL) (Γhom (ΩL) /2)2[
(ω−ΩL)2 + (Γhom (ΩL) /2)2]2 ,

(31)

Summing up both contributions to (16) we finally obtain

δS(ω) = − Ã
(Γhom (ΩL) /2)2

(ω−ΩL)2 + (Γhom (ΩL) /2)2

+B̃
(ω−ΩL) (Γhom (ΩL) /2)3[

(ω−ΩL)2 + (Γhom (ΩL) /2)2]2 , (32)

where Ã and B̃, which may be readily obtained from (30) and
(31), are independent of ω.

It is essential to note that, contrary to the conventional
hole burning techniques, this spectral hole consists of two
contributions of different parity. The first, even term of (30)
describes the spectral changes induced by the overall shrink-
ing of the resonantly excited nanoparticles; the second, odd
term represents the changes brought about by the increase
of the axial ratio. Ã and B̃ reflect the relative importance
of both processes. Another peculiarity of the thermal mech-
anism of hole burning as used here is that the width of the
spectral hole is equal to the width of the individual reson-
ance, although in classical hole burning it is doubled. This is
a consequence of the enhanced selectivity of the thermally ac-
tivated process (24). As long as the laser fluence is low enough
the width of the hole in the frequency distribution function
is much narrower than the homogeneous width of the reson-
ance. Hence, the width of the spectral hole described in the
limit of low fluences by (32) is equal to the homogeneous
width.

3.4 Fluence broadening of spectral holes

When the laser fluence rises the spectral hole
broadens since the temperature rise of particles with neighbor-
ing axial ratios not fully in resonance with the laser gains im-
portance as more and more energy is absorbed in the wings of
their plasmon profiles. Formally, (32) holds for the limit when
the widths ∆La and ∆Lb are much smaller than Γhom (ΩL).
In reality, however, these widths can not be made arbitrarily
small. According to (23) the ratio ∆La/Γhom (ΩL) reaches its
minimum value of

√
θ0a, when θLa = θ0a. Moreover it may be

desirable, from the experimental point of view, to use larger
fluences than given by this relation to obtain better signals.
When the power broadening of the spectral hole is known, it
may be used to extrapolate the width to zero fluence and thus
obtain the homogeneous width of the plasmon resonance even
though the measurements were carried out under conditions
of non negligible fluence broadening. Hence, the integrals in
(25) and (27) should be computed more accurately to include
the effects of the finite width of the Gaussian functions. At this
point it is desirable to account also for the frequency depen-
dence of other factors entering the integrands in (25) and (27),
namely Ā(Ω) and B̄(Ω). As these terms are assumed to vary
rather slowly, their frequency dependence may be modeled by
Gaussian functions with central frequencies Ω0A and Ω0B and
widths ∆0A and ∆0B

Ā(Ω) = Ā (ΩL) exp

(
(ΩL −Ω0A)2

∆2
0A

)

× exp

(
− (Ω −Ω0A)2

∆2
0A

)
(33)

and

B̄(Ω) =B̄ (ΩL) exp

(
(ΩL −Ω0B)2

∆2
0B

)

× exp

(
− (Ω −Ω0B)2

∆2
0B

)
. (34)

The reason for this choice is that the product of two Gaussian
functions may be represented as one Gaussian function. The
width and the central frequency of this new Gaussian function
are given by

ΩA =ΩL + (Ω0A −ΩL)
∆2

La

∆2
La +∆2

0A

and ∆2
A = ∆2

La∆
2
0A

∆2
La +∆2

0A

(35)

in the case of (25) and by

ΩB = ΩL + (Ω0B −ΩL)
∆2

Lb

∆2
Lb +∆2

0B

and ∆2
B = ∆2

Lb∆
2
0B

∆2
Lb +∆2

0B

(36)
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in the case of (27). With these definitions we have

δSa(ω) = A∗
∫ exp

(
− (Ω−ΩA)2

∆2
A

)
(Γhom(Ω)/2)2

(ω−Ω)2 + (Γhom(Ω)/2)2 dΩ (37)

and

δSb(ω) =

B∗
∫ exp

(
− (Ω−ΩB)2

∆2
B

)
(ω−Ω) (Γhom(Ω)/2)3

[
(ω−Ω)2 + (Γhom(Ω)/2)2]2 dΩ . (38)

For simplicity and clarity, the explicit formulations of A∗
and B∗ that are independent of ω will not be given here, al-
though they may be obtained in a straightforward manner.
The integral in (37) resembles a Voigt spectral line shape.
It can be expressed in terms of the plasma dispersion func-
tion [36]. The same is true for (38). For small values of
∆A/Γhom and ∆B/Γhom the spectral shapes of δSa(ω) and
δSb(ω) do not deviate considerably from (30) and (31), re-
spectively, so that δS(ω) may be expressed in almost the same
form as (32)

δS(ω) =− A
(γa/2)2

(ω−ΩA)2 + (γa/2)2

+ B
(ω−ΩB) (γb/2)3[

(ω−ΩB)2 + (γb/2)2]2 , (39)

where A and B may be expressed through A∗ and B∗, corre-
spondingly. The apparent widths γa and γb of the even and odd
profiles contributing to (39) are different from the homoge-
neous width Γhom (ΩL) of the plasmon by small quantities that
are proportional to ∆A and ∆B:

γa = Γhom

(
1 + 3

4

∆2
A

(Γhom/2)2

)
,

γb = Γhom

(
1 + 3

2

∆2
B

(Γhom/2)2

)
, (40)

Equations (39) and (40) together with (23) and (29) constitute
the theoretical background for fitting the spectral holes and
evaluation of Γhom (ΩL).

4 Experimental

For the experiments described in this article, Ag
nanoparticles were prepared under UHV conditions by depo-
sition of atoms on a sapphire substrate at room temperature.
As a consequence oblate shaped clusters were generated by
surface diffusion and nucleation of the adsorbed atoms [29].
In order to tune the dependence of the axial ratio of the par-
ticles on the size and to shift the maximum of the inhomoge-
neous distribution into a predetermined position, the sample
was irradiated with ns laser pulses during the growth pro-
cess. As a light source, the second harmonic of a Nd:YAG
laser (λ = 532 nm) was used at a pulse fluence of 160 mJ/cm2,
the pulse duration being 7 ns. The laser system was oper-
ated at a repetition rate of 10 Hz and the angle of incidence

of the p polarized light was set to 45◦. Further details of
the sample preparation are given in [28, 37]. As a result, by
deposition of 15 ×1015 atoms/cm2, measured using a quartz
crystal microbalance, a particle ensemble with a mean radius
of 〈r〉 = 10 nm was formed.

The mean axial ratio of the spheroidally shaped aggregates
was deduced from the position of the low energy (1,1)-mode
surface plasmon resonance and comparison with calculations
using the quasistatic approximation [30, p. 141 ff.] and the op-
tical constants of [38]. For measurement of the absorption
spectra before and after laser irradiation, the s-polarized light
of a Xe-arc lamp was used in combination with a monochro-
mator, the angle of incidence on the substrate being 45◦. After
preparation the optical spectra of the particles reveal a reson-
ance position of the (1,1)-mode of 2.91 eV corresponding to
a mean axial ratio of 0.47, see Fig. 3.

For spectral hole burning the particles were irradiated
using the light of a BBO OPO that was pumped by the third
harmonic of the Nd:YAG laser. The pulse duration of the OPO
was specified at 2–4 ns and again the laser system was op-
erated at a repetition rate of 10 Hz. In order to optimize the
interaction between laser light and particles, the photon en-
ergy of the OPO was tuned almost to the maximum of the
inhomogeneously broadened plasmon resonance of the clus-
ter ensemble, i.e. 2.93 eV. In subsequent steps the particles
were irradiated with 100 laser pulses using seven different
laser fluences evenly distributed between 20 and 50 mJ/cm2,
the optical spectra being measured between subsequent steps,
see Fig. 3.

Figure 4 displays the difference of the absorption spectra
measured after and before irradiation with 100 laser pulses
of a fluence of 30 mJ/cm2 (open circles). An asymmetri-
cal hole is produced in the vicinity of the laser frequency.
It shows a minimum of −1.3% at 2.85 eV that is followed
by an increase of absorption with a maximum of 0.75% at
3.05 eV. Similar curves are obtained for the other fluences.
Our theoretical model (39) reproduces the shape of the gen-
erated hole quite nicely. It was found also that the number
of variable parameters may be further reduced by setting
γa = γb = γ and Ωa = Ωb without loss of quality of the
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FIGURE 3 Optical absorption spectra (measured with s polarized light at
an angle of incidence of 45◦) before and after laser irradiation with 100 laser
pulses at a photon energy of 2.93 eV and different fluences
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FIGURE 4 Difference of absorption after and before laser irradiation with
100 laser pulses at a fluence of 30 mJ/cm2 (open circles). The solid line
represents a fit to the theoretical model of (39). Separation of the theoret-
ical curve into even (dotted line) and odd (dashed line) contributions is also
shown

fit. Figure 4 plots such a fit as well as the even and odd
contributions to the theoretical curve. The fluence depen-
dence of γ obtained in this way is shown in Fig. 5. Linear
dependence of γ on the laser fluence suggested by the ex-
perimental results may be obtained in the framework of the
theoretical model described above under the following two
additional assumptions. Firstly, we neglect the initial tem-
perature T0 of the surface as compared to the temperature
rise during illumination. We further assume that the fluence
broadening is considerably smaller than the inhomogeneous
broadening even for the largest fluences used experimentally.
These two assumptions lead to the conclusion that the flu-
ence broadening is directly proportional to the fluence. Hence,
linear extrapolation to zero fluence may be used to find the
homogeneous line width. In the case presented above we ob-
tain the homogeneous width Γhom(2.93 eV) = (230±20) meV
that corresponds to a dephasing time of T2(2.93 eV) =
(5.7±0.5) fs.
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]
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FIGURE 5 Fluence dependence of the apparent width of the difference
spectra (closed circles). The homogeneous width is obtained via linear ex-
trapolation to zero fluence (solid line)

5 Conclusions

In summary, we have developed and verified exper-
imentally a theoretical model that quantitatively reproduces
the spectral hole shapes as well as their dependence on the ap-
plied laser fluence. With this tool at hand the dephasing times
of the surface plasmon excited in the nanoparticles may be
readily obtained despite the large inhomogeneous broadening
inherent in many methods of sample preparation. Hence a new
possibility to study the ultrafast electron dynamics in small
metal particles opens up.
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