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ABSTRACT We have investigated theoretically and experimentally the generation of
shaped pulses at 400 nm by frequency-doubling of phase-modulated, ultrashort laser
pulses. We present an analytical description of frequency-doubled pulses with a si-
nusoidal spectral phase modulation. It is shown that such a phase modulation can be
transferred completely into a spectral amplitude modulation with a resolution deter-
mined only by the phase-modulating device. A criterion for achieving the maximum
modulation contrast is given.
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1 Introduction

The techniques of generating
programmable ultrashort laser pulses [1,
2] allow the creation of nearly any pulse
shape. This opportunity has found its
applications in dispersion control, in
communication systems, including en-
cryption and decryption of informa-
tion [3], or and the generation of com-
plex pulse structures for the coherent
control of atomic [4, 5], molecular [6, 7]
or solid-state systems [8]. The most
common technique to achieve mod-
ulated fs pulses is the manipulation
of the spectral phase [9] and/or am-
plitude [10] of the laser pulses using
a zero-dispersion compressor setup with
a liquid crystal [1], an acousto-optical
modulator (AOM) [2] or a deformable
mirror [11] acting in the Fourier plane.
Because of the limited range of trans-
parency of most modulators, these tech-
niques are restricted to the visible and
near-infrared (NIR) spectral regions.
Recently reported experiments have
extended pulse-shaping techniques to
other wavelength regions [12, 13]. Al-
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though deformable mirrors in principle
offer the possibility of directly access-
ing other spectral regions, the range
of producible phase modulations is re-
stricted to rather smooth functions with
small amplitudes. These devices are
therefore only preferred for the com-
pensation of residual phases in laser
systems. For direct electronic excitation
of molecular or atomic systems, shaped
pulses in the ultraviolet spectral region
are essential. One-photon excitations
offer new possibilities for transitions
in quantum systems as a consequence
of the selection rules, considering the
different angular momentum transfer
compared to two-photon absorption ex-
citation schemes [5].

Because the phase modulation of ul-
trashort laser pulses in the NIR has be-
come a state-of-the-art technique, in-
cluding the availability of quite sophisti-
cated phase shaping devices [14, 15], we
investigate the second harmonic gener-
ation (SHG) of phase-modulated pulses
as a way of generating shaped ultra-
short pulses in the ultraviolet region.
Several methods are available to extend

the spectral acceptance of thick non-
linear crystals [16–19]. Therefore, we
restricted our studies to SHG in thin
crystals that accept the full input band-
width. To the best of our knowledge,
the only known technique for gener-
ating shaped SH pulses is the use of
fixed, longitudinally nonuniform, quasi-
phase-matching (QPM) gratings [20].

In this paper we first discuss the
general theoretical relationship between
phase-modulated fundamental pulses
and the corresponding SH pulses. A the-
oretical examination of frequency-
doubled sinusoidally phase-modulated
fundamental pulses is specifically pre-
sented. This type of phase modulation
is not only important for the gener-
ation of pulse trains, but also is central
for coherent quantum control of atomic
systems by two-photon transitions [5].
The non-resonant, two-photon absorp-
tion probability in an atomic medium
driven by sinusoidally phase-modulated
laser pulses can be derived from the de-
scription of the SH spectrum of the same
frequency-doubled pulses. Finally, we
discuss the experiments and compare
them to the theory.

2 Second harmonic generation
of phase-modulated pulses
For a theoretical investiga-

tion of SHG of ultrashort laser pulses
in a nonlinear crystal, the coupled dif-
ferential equations describing the three-
wave mixing of the involved pulse spec-
tra [21] have to be evaluated. Several
program packages [22, 23] are avail-
able that solve these equations numer-
ically.

Assuming a crystal thin enough to
accept the whole incident fundamen-
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tal pulse spectrum, and imposing no
appreciable phase modulation on the
pulse, the acceptance function η may
be approximated as η � 1. In the case
of a type-I SHG process and assuming
a non-depleted fundamental field, the
coupled differential equations reduce
to

E2(ω2)∝
∫

E1(ω1)E1(ω2 −ω1)dω1 ,

(1)

i.e.

E2(t)∝ E2
1(t) (2)

for the generated SH field envelope E2

of frequency ω2. The quantities E1 and
ω1 characterize the fundamental field
envelope.

As long as (2) is valid, frequency
mixing does not affect the temporal
pulse shape, apart from the squaring of
the temporal amplitudes. But because
(1) is a convolution integral, a mix-
ing of frequency components within
the pulse spectrum occurs which may
influence both the spectral phase and
amplitudes. Whether the phase modu-
lation and the spectral phase are con-
served in the frequency-doubling pro-
cess depends on the nature of the phase
modulation applied to the input pulse
and cannot be easily determined. For
example, linear and quadratic spectral
phase modulations applied to Gaussian
pulses are transferred to the SH with-
out having any influence on the shape
of the generated spectrum. Therefore,
the phase modulation still carries the in-
formation about the temporally shaped
pulse, and only a spectral broadening
by a factor of

√
2 occurs. In contrast,

a variety of phase modulations exists
which change the shape of the gener-
ated SH spectrum: examples are cubic
and sinusoidal phase modulations. In
this case, information about the tempo-
ral pulse shape is transferred from the
spectral phase to the spectral amplitude.
Consequently, the SH spectrum expe-
riences an amplitude modulation, and
the spectral phase modulation may even
vanish.

In the following we will discuss the
effects of this type of phase modulations
with the help of an exemplary problem.
For the input field we assume a Gaus-
sian pulse carrying a sinusoidal phase
modulation with a spectral modulation

frequency ∆t:

E1 (ω1)∼ exp

[
−

(
ω1

∆ω1

)2
]

× exp [iΦ cos (∆t ·ω1 +ψ)] , (3)

where ω1 is the frequency relative to
the center frequency, ∆ω1 the spectral
width, Φ the modulation amplitude and
ψ an arbitrary constant phase. This field
corresponds to a pulse train with a tem-
poral separation ∆t between subsequent
pulse maxima:

E1(t)∼
∞∑

n=−∞
Jn(Φ)

× exp
[
in

(π
2

−ψ
)

− 1

4
(n∆t + t)2 ∆ω2

1

]
. (4)

By inserting the field E1 (ω1) into
(1), we obtain the following result:

E2 (ω2)∼ exp

[
−1

2

(
ω2

∆ω1

)2
]

×
∞∑

n=−∞
an , (5)

where

an = Jn

(
2Φ cos

(
1

2
∆t ·ω2 +ψ

))

× exp

[
1

2
inπ− 1

8
(n∆t∆ω1)

2

]
.

(6)

Obviously, only terms containing
Bessel functions of low orders dominate
the result, since the terms an exponen-
tially decrease with |n|. Therefore, if
∆t ·∆ω1 is sufficiently large, (5) can be
approximated by the term containing the
zero-order Bessel function:

E2 (ω2)∼ exp

[
−1

2

(
ω2

∆ω1

)2
]

× J0

(
2Φ cos

(
1

2
∆t ·ω2 +ψ

))
.

(7)

A qualitative criterion for the validity of
this approximation is given by the fol-
lowing inequality:

∆t ·∆ω1 >
√−8 ln p , (8)

where p defines the ratio |a1|/|a0|.

Clearly, the resulting SH spectrum
contains no phase modulation anymore
but is strongly amplitude modulated
instead, with the same modulation fre-
quency as the phase modulation ap-
plied to the input pulse. Note that for
every modulation frequency it is pos-
sible to achieve perfect modulation con-
trast, i.e. to produce periodic dips in the
SH spectrum by choosing the appro-
priate phase modulation amplitude Φ.
This would not be possible by SHG of
a perfectly amplitude-modulated funda-
mental spectrum. In this case the SH
spectrum would be subject to a spec-
tral smearing caused by the convolu-
tion. Therefore the modulation con-
trast would decrease with an increas-
ing spectral modulation frequency. If
only the central spectral component
S2 = E2 (0) of the SH is considered,
(7) reduces to S2 ∼ J0 (2Φ), which is
equivalent to the result obtained for the
transition probability for non-resonant
two-photon absorption in an atomic
medium [5].

3 Experimental setup

We used a pulse shaper and
ultrashort pulse diagnostics to study ex-
perimentally the dependence of the SH
spectrum on the modulation frequency
∆t for different relative phases ψ and
on the phase-modulation amplitude Φ.
The schematic arrangement used for
the experiments is depicted in Fig. 1.
Ultrashort laser pulses were delivered
by a Ti:sapphire oscillator–amplifier
system. The center wavelength was
810 nm, the bandwidth about 25 nm, the
pulse duration 50 fs at a pulse-energy
level of 1 mJ and a repetition rate of
1 kHz.

First, the laser pulse was divided
by a glass plate used as a beam-splitter
into a main pulse, which was sent to
a phase-only pulse-shaper, and an un-
modified reference pulse, which was
required for the subsequent diagnostics.
A detailed description of the phase-
only pulse-shaper is given in [15]. After
the main pulse was modified by the
pulse-shaper it was either directly char-
acterized by a cross-correlator or sent
to a 100- or 500-µm-thick BBO crys-
tal to generate shaped SH pulses. The
cross-correlator used for the charac-
terization of the shaped fundamental
pulses was based on SHG in a 100-µm-
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FIGURE 1 Experimental setup. BS: beam-splitter; CM: cylindrical mirror; D: detector; DM: dichroic
mirror; DS: delay stage; FM: flap mirror; G: diffraction grating; LC SLM: liquid-crystal spatial light
modulator; M: mirror; P: pinhole; SHG: second harmonic generation; SM: spherical mirror; THG: third
harmonic generation. Dotted lines: optional beam lines

thick BBO crystal. Shaped SH pulses
were characterized either by a spectrom-
eter or a second cross-correlator. This
intensity cross-correlator consisted of
a 300-µm-thick BBO crystal in which
the shaped SH pulses and the refer-
ence fundamental pulses were mixed
to generate third harmonic radiation as
a cross-correlation signal. The thicker
frequency-doubling crystal was used
for the generation of shaped SH pulses
with sufficient pulse energy to permit
subsequent characterization by cross-
correlation.

4 Experimental results

To prove the validity of (7),
the spectra of frequency-doubled, sinu-
soidally phase-modulated fundamental
pulses were first measured as a function
of the spectral modulation frequency
∆t. To achieve perfect modulation, the
modulation amplitude Φ was set to 1.2
rad, which corresponds to the first zero
of the Bessel function J0. Figure 2a and
b show the measured SH spectra ob-
tained for sine and cosine modulations,
which correspond to relative phases in
the exponent of (3) of ψ = π/2 and
ψ = 0, respectively. The spectra show
complete modulation as expected the-
oretically. For the sine modulation, the
intensity of the center-frequency com-
ponent is always maximal as theoret-
ically expected, while for the cosine
modulation the center frequency is only
a clear minimum for ∆t > 100 fs. Ob-

viously, the theoretical description fails
for smaller spectral modulation fre-
quencies. This is in excellent agreement
with (8), which predicts the validity
of (7) for ∆t > 100 fs for a spectral
bandwidth ∆ωFWHM = √

2 ln 2 ·∆ω1 of

FIGURE 2 Measured spectra of frequency-doubled fundamental pulses with a antisymmetric sine and
b symmetric cosine phase modulation as a function of the modulation frequency ∆t = 0–1000 fs with
Φ = 1.2 rad: a ψ = π/2; b ψ = 0. A white pixel corresponds to a normalized spectral intensity of 0 and
a black pixel to 1

FIGURE 3 a Measured spectrum of frequency-doubled, sinusoidally phase-modulated fundamental
pulses as a function of the modulation amplitude Φ for ψ = 0 and ∆t = 130 fs. A white pixel corres-
ponds to a normalized spectral intensity of 0 and a black pixel to 1, respectively. b Intersection through
a at the central spectral component, i.e. 405 nm. Circles: experimental results; solid line: function

J0

(
2Φ cos

(
∆t·ω2

2 +ψ
))2

25 nm at a center wavelength of 800 nm
and p = 0.01. The decreasing modu-
lation contrast at high modulation fre-
quencies is attributed to the finite reso-
lution of the spectrometer, because even
at very high modulation frequencies
(∆t > 10 ps), where spectral modula-
tions were no longer visible, pulse trains
were still detectable using the cross-
correlator.

If we vary the modulation ampli-
tude Φ for a sinusoidal phase modula-
tion at a constant spectral-modulation
frequency ∆t we obtain the SH spec-
tra shown in Fig. 3a. The dependence
of the spectral intensity at the center
of the SH spectrum (405 nm) is shown
in Fig. 3b and is superposed with the
theoretically expected curve calculated
using (7). As predicted, a full modula-
tion of the SH spectrum is achieved only
using phase-modulation amplitudes Φ
which correspond to zeros of the Bessel
function J0. The occurrence of well-
defined minima at different Φ can be
utilized for testing directly the phase
calibration of the phase-modulating
device.
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FIGURE 4 Measured intensity cross-correlation traces of the unmodified fundamental reference pulse
with a sinusoidally phase-modulated fundamental pulse (a) and the corresponding frequency-doubled
pulse (b). Note that curve (a) represents the square of the measured values. The phase-modulation am-
plitude was set to Φ = 1.2 rad, the relative phase to ψ = 0 rad and the spectral modulation frequency to
∆t = 1000 fs

The dependence shown in Fig. 3b
is equivalent to that of the probability
of a non-resonant two-photon transi-
tion in an atomic system excited by si-
nusoidally phase-modulated femtosec-
ond laser pulses [5]. This problem was
solved in [5] for the special case of
a squared-uniform input spectrum. The
results presented here therefore provide
a generalization for the non-resonant
two-photon transition. Both the center-
frequency component and the two-
photon transition probability are basi-
cally determined by a self-convolution
of the input pulse spectrum. In princi-
ple, the authors of [5] take advantage
of the possibility of creating construc-
tive or destructive interference at the
center-frequency component of a vir-
tual SH spectrum to control the two-
photon transition probability, depending
on whether a symmetric (cosine) or an-
tisymmetric (sine) phase modulation is
applied to the input pulse at the funda-
mental frequency.

To show that (2), i.e. the description
of shaped SH pulses in time, is cor-
rect, we temporally characterized both
phase-modulated fundamental pulses
and the corresponding frequency-
doubled pulses by means of cross-
correlations. Fig. 4 shows intensity
cross-correlation traces of an unmodi-
fied fundamental reference pulse with
a sinusoidally phase-modulated funda-
mental pulse (curve (a)) and the cor-
responding frequency-doubled pulse
(curve (b)). To allow for a compari-

son of the two curves, the values of the
cross-correlation of the shaped funda-
mental pulse are squared. The phase-
modulation amplitude was again set
to Φ = 1.2 rad, to yield the maximum
modulation contrast, and the spectral-
modulation frequency to ∆t = 1000 fs.
The relative phase has no effect on these
curves and was set toψ = 0 rad.

In agreement with the applied
spectral-modulation frequency, the re-
sulting triple pulses show a temporal
separation between the peaks of exactly
1000 fs.

Equation (2) implies that the tem-
poral amplitudes within a shaped SH
pulse are equal to the square of that
within the incident shaped fundamen-
tal pulse. This is clearly illustrated by
comparing curves a and b, considering
that curve a shows the squared cross-
correlation of the shaped fundamental
pulse. The increased widths of the SH
pulse replica can be assigned to a group-
velocity mismatch of the fundamental
and the SH in the 500-µm-thick BBO
crystal used for SHG and its reduced
spectral acceptance. In contrast to the
100-µm-thick crystal, which can easily
accept the whole fundamental spectrum,
the 500-µm-thick crystal can only ac-
cept about half of it. Nevertheless, it
was employed to provide sufficient SH
power for the cross-correlation meas-
urements, and the general temporal
shape of the modulated pulse is still in
excellent agreement with the theoretical
predictions.

5 Conclusion

We have shown that fre-
quency doubling of phase-modulated
fundamental pulses in nonlinear crystals
of a moderate thickness is an appropri-
ate way to achieve shaped SH pulses.
While the temporal shape of a gener-
ated SH pulse may be approximated
very well by the squared temporal shape
of the incident fundamental pulse, the
spectral amplitudes and phases of the
resulting SH spectrum can show dras-
tic alterations compared to the spectral
amplitudes and phases of the incident
fundamental pulse.

As an example, it was shown that
sinusoidal phase modulations are trans-
ferred into amplitude modulations of the
SH spectrum, with modulation depths
depending on the phase-modulation
amplitude. We have presented an ana-
lytical expression for the spectrum of
frequency-doubled sinusoidal phase-
modulated fundamental pulses which
perfectly matches the experimental re-
sults. An important implication of this
analytical expression is that the spec-
tral resolution of the periodic amplitude
modulation is determined only by the
spectral resolution of the phase-only
shaper.

By employing a common liquid-
crystal spatial light modulator (LC SLM)
with a transparency range down to
420 nm, in combination with a BBO
crystal for SHG which supports phase
matching down to 410 nm, the pre-
sented technique should be able to gen-
erate shaped ultraviolet pulses down to
210 nm.
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