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ABSTRACT The temporal behavior of a nanosecond pulsed
singly resonant periodically poled lithium niobate optical para-
metric oscillator has been studied both theoretically and ex-
perimentally. Taking into account the cylindrical symmetry of
the system, a numerical model based on the Hankel transform
has been developed. Good agreement is obtained between ex-
periment and simulation. Moreover, the computation time is
reduced roughly by a factor of 60 compared to the usual simula-
tion software.

PACS 42.65.Yj; 42.72.Ai

1 Introduction

In the past few years the discovery of new non-
linear optical materials, the improvements in the performance
of solid-state lasers and progress in high-damage-threshold
optics have stimulated renewed interest in optical parametric
oscillators (OPOs). Recently, widely tunable low-threshold
pulsed (nanosecond) demonstrations of OPOs based on quasi-
phase-matched materials such as periodically poled lithium
niobate (PPLN) have been numerous in the literature [1–5].
Quasi-phase-matched materials are very attractive because di-
rections of much higher non-linearity become accessible and
potentially broader tuning ranges can be obtained.

OPOs based on these new materials display a low thresh-
old and thus allow new compact high repetition rate sources
to be used. It has then become timely to investigate in detail
the behavior of OPOs according to various physical parame-
ters such as input power, pulse duration, . . . . Indeed, the high
gain of these non-linear materials results in new effects such
as strong conversion of signal and idler waves back into the
pump waves or ‘cascading’ effects [6].

These effects influence strongly the efficiency of OPOs.
For this reason, some computer simulations and numerical
models have been published to interpret laboratory observa-
tions and to optimize OPOs’ design. Smith and co-workers
[7] have constructed a numerical model of a nanosecond
seeded OPO taking into account the different interactions
in the crystal, non-linear coupling, pump depletion, birefrin-
gence, diffraction, walk-off and realistic spatial and temporal
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beam profiles, with arbitrary cavity-mirror reflectivities and
absorption losses in the crystal. The model was used to cal-
culate the performance of a 532-nm-pumped KTP OPO and
numerical results were compared with experimental measure-
ments. The calculation program, named SNLO, may be down-
loaded from the web site of Sandia National Laboratory [8]. In
a further publication the same authors describe an OPO with
a walk-off-compensating crystal configuration [9] and new
methods for modeling a broad-bandwidth, nanosecond OPO
in the plane-wave approximation [10]. The spatial properties
of the OPO output beam even at high conversion efficiencies,
as well as the temporal dynamics of the spatial intensity dis-
tribution of OPO pulses, were also studied by Urschel and
co-workers [11]. However, all these numerical models are
computer-time-consuming and do not allow easy OPO cavity
optimization procedures on laboratory computers.

In this paper, we report a numerical model taking into
account the cylindrical symmetry of OPOs based on quasi-
phase-matched materials, pumped by Gaussian or more gen-
erally cylindrical beams. In this case, due to the absence of
walk-off, the isotropy of the non-linear crystal allows the use
of a one-dimensional Hankel transform rather than a two-
dimensional Fourier transform to evaluate spatial frequency
components of the different electric fields. The use of cylin-
drical symmetry enables us to gain a factor of 60 over the
calculating time compared to other models. We then compare
our model with an experiment carried out with a singly reso-
nant optical parametric oscillator (SROPO) with a 1-cm-long
crystal of PPLN. The SROPO is pumped by a high repetition
rate YAG laser source emitting at 1.064 µm, in which one can
vary independently the pulse duration and the power to study
the dynamic behavior of pulses (depleted pump, signal and
idler) at the exit of the OPO. The observed dependencies of
the output power versus the input pump power are in excellent
agreement with these very simple simulations. The experi-
mental data and the numerical model show the importance of
the pump depletion, the pump reconstruction and the different
behavior between the signal and idler pulses in the dynamics
of nanosecond OPOs.

2 Numerical model

The parametric interactions between the pump,
signal and idler fields inside the non-linear crystal of the OPOs
are classically described by a set of coupled amplitude equa-
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tions. We consider here three monochromatic quasi-plane
waves propagating along the same direction k. In scalar ap-
proximation, the total field is given by

E(r, t) =
∑

n=1,2,3

1

2
An(r, t)en exp i(ωnt −kn · r)+ c. c., (1)

where k is the wavenumber. For periodically poled materials,
no walk-off has to be considered in the propagating equations.
Also, in the nanosecond regime, the dispersion-velocity dif-
ferences between optical waves are negligible as well as fast
variation of temporal envelope. In the slowly varying approx-
imation and the paraxial approximation and for perfect phase
matching, the spatio-temporal variations of the three field am-
plitudes (Ap, As and Ai respectively for the pump, the signal
and the idler) are given by [12]

∂As

∂z
= i ωs

c ns
deff A∗

i Ap − αs As

2
− 1

2iks
∆⊥ As, (2)

∂Ai

∂z
= i ωi

c ni
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s Ap − αi Ai
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2iki
∆⊥ Ai, (3)

∂Ap

∂z
= i ωp

c np
deff As Ai − αp Ap

2
− 1

2ikp
∆⊥ Ap, (4)

where deff is the effective non-linear coefficient, c the light
velocity and αs, αi and αp absorption terms which can be
derived from the literature. The symbol ∆⊥ represents the
transverse Laplacian differential operator defined in Cartesian
coordinates by

∆⊥ = ∂2

∂x2
+ ∂2

∂y2
. (5)

The first terms on the right-hand sides of (2)–(4) describe the
parametric interactions, the second are the absorption losses
and the last the diffraction effect. The possibility of back-
conversion of signal and idler to pump amplitude is taken into
account in (4).

Since these coupled equations (2)–(4) cannot be analyti-
cally solved, we develop a numerical model that can be easily
run on a laboratory PC (using MatLab software for instance).
Although this model can deal with both singly resonant and
doubly resonant optical parametric oscillators (SROPO and
DROPO), we will only consider here the SROPO case.

The algorithm starts with the spatio-temporal description
of the pump field given by our recorded data. The radial de-
pendence is simply given by a Gaussian law:

Ap � A0 exp

(
− x2 + y2

w0

)
, (6)

where w0 is the waist of the beam. This planar approxima-
tion is still valid providing that the Rayleigh length (zR) is
long compared to the crystal length [12]. On the other hand,
the temporal waveform is given by a function f(t) which will
be specified in Sect. 3. The incident pump pulse is divided
into equal intervals ∆t (see Fig. 1a) corresponding to the cav-
ity round-trip time of the signal wave. At each time t, the
idler and signal wave amplitudes at the cavity output are cal-

culated by spatially integrating the steady-state parametric
equations using the value of the input pump field distribu-
tion Ap(z = 0, r, t). The generated signal, idler and depleted
pump radiation are transmitted by the output mirror according
to the corresponding reflectivity. In the SROPO configura-
tion, only one part of the signal radiation is reflected back
at the entrance of the crystal at the time t +∆t. At this new
time, pump, signal and idler waves propagate again using
the input pump fields Ap(z = 0, r, t +∆t) and As(z = 0, r, t +
∆t) = rs As(z = L, r, t), where rs is the output mirror signal re-
flectivity (see below for the exact calculation of the return trip
in the cavity). The propagation of the three fields is then re-
peated in the cavity until exhaustion of all the pump temporal
samples. For example, the calculations presented in this pa-
per contains 1084 iterations separated by about 0.15 ns. For
the first round trip, the amplitudes of the signal and idler fields
are given by the vacuum fields (which are equivalent to the in-
tensity of half a photon in the volume of the cavity during the
cavity round-trip time) [12].

We now describe the procedure used to calculate the field
propagation in the cavity. We use the circular symmetry to
form the space grid in the plane perpendicular to the direction
of propagation z. The complex fields of the three interacting
waves are taken at a fixed number of points along a ray (see
Fig. 1b). To avoid numerical problems and to obtain a good
resolution of the beam profile, at least 64 points are used for
the radial discretization. The spatial step between two points
depends on the waist of the pump beam.

spaceskip0.2em plus0.1em minus0.1em The propagation
of the beams in the crystal is governed by coupled non-linear
differential equations (2)–(4) in the steady-state regime. As
can be seen in these equations, the absorption and non-linear
coupling terms do not couple with the radial diffraction oper-
ator. One thus treats separately the two sets of phenomena: it is
the well-known split-step method. Between z and z +∆z, the
system of equations (2)–(4) is integrated using Runge–Kutta
algorithms, neglecting the diffraction terms. In the plane z +
∆z, the beams are then diffracted using the radial diffraction
operators (cf. (5)). The same operation is then applied to these
new fields up to the output of the crystal. The length ∆z is
optimized during calculation (adaptive step).

a b
FIGURE 1 Discretization of the pump pulse. a Temporal profile divided
into equal steps. b Gaussian spatial profile and cylindrical calculation grid
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As is well known, diffraction operators are conveniently
expressed in Fourier space. However, because of the cylindri-
cal symmetry, we have used Hankel transformations instead
of Fourier ones, in a way described in detail in the Appendix.
These operations are repeated until the waves are propagated
from the entrance up to the exit of the non-linear crystal. No
parametric interaction is considered during the return trip of
the signal wave since quasi-phase-matching is then not ef-
fective. On the other hand, the calculation of the return trip
takes into account all the parameters of the cavity: diffrac-
tion in the vacuum and in the non-linear crystal, reflections on
the mirrors (output, input). This whole process is described
by the multiplication of the electric field amplitude vector by
a square matrix.

The outputs of the calculation are the time variation of
the electric-field amplitudes and the phases of the three waves
emerging in each point of a transverse plane of the OPO cav-
ity. We can then calculate from these three fields the temporal
evolution of powers (J/s) by spatial integration and/or spa-
tial fluences (J/m2) by temporal integration. For each incident
pump power, the calculation takes less than one minute with
a Pentium II computer. The same calculation with the SNLO
program takes about one hour.

3 Experimental setup

A schematic diagram of our experimental setup is
shown in Fig. 2. The mid-infrared beam is produced at the
output of the singly resonant OPO pumped with a commer-
cial multimode Q-switched Nd:YAG laser (Light Solutions,
model 1010).

For typical operation, the pump laser delivers 500-µJ
pulses at 1.064 µm with a 12.5-kHz repetition rate. The laser
pulses show an asymmetric temporal shape (see dotted curves
in Figs. 4 and 5) with a duration that can be changed between
20 and 45 ns (FWHM), depending on the pumping conditions.
These pulses are well fitted in a normalized form by a hyper-
bolic asymmetric secant:

f(t) = 2

exp(−t/T1)+ exp(t/T2)
. (7)

A linearly polarized Gaussian beam is available at the out-
put of the Nd:YAG laser with the following specifications:
M2 = 1.1 and depolarized ratio < 0.01. A half-wave plate is
used in combination with a Glan polarizer to adjust the input
energy at the entrance of the OPO. Inside the non-linear crys-
tal, the pump beam radius is reduced to 80 µm (1/e2 of the
peak intensity) by means of an antireflection-coated silica lens
(150-mm focal length).

The OPO resonator is a stable linear cavity delimited with
a pair of dielectric mirrors deposited onto YAG substrates to
avoid any residual absorption in the mid-infrared range. The
input mirror M1 and the output coupler M2 are spaced 12-mm
apart; M1 is flat while M2 is concave with a 50-mm radius of
curvature (see Fig. 2). The geometry of the cavity has been
designed using an ABCD matrix calculation to ensure a good
overlapping of the pump and idler fields within the non-linear
crystal. Both mirrors have a high reflectivity (R > 0.97) at
the signal wavelength (1.65–2.5 µm) and a high transmis-
sion (T > 0.95) at the pump and idler wavelengths (1.064 and

Nd : YAG
pump laser

Half-wave plate
and polarizer

lens
(f = 150 mm)

M1 PPLN M2

� �pump=1.064 m

� �pump=1.064 m

lens
(f = 50 mm)

� �idler=3.69 m

� �signal=1.495 m

P1

P2

P3

FIGURE 2 Experimental setup. Mirrors M1 and M2 and photodiodes P1,
P2 and P3 are described in the text

3.5–4 µm, respectively). In addition, the back side of the two
mirrors is antireflection-coated at the three wavelengths and
these mirrors can support without optical damage an intensity
of 300 MW/cm2.

A multiple-grating PPLN crystal from Crystal Technol-
ogy Inc. was inserted inside the cavity. This crystal, which is
10-mm long, 10-mm wide and 0.5-mm thick, consists of eight
parallel gratings with a spatial period ranging from 28.6 to
29.9 µm. In order to minimize Fresnel losses, the end faces of
the PPLN were antireflection-coated at the pump and signal
wavelengths. During operation, the PPLN crystal was heated
to 140 ◦C to avoid any photorefractive damage.

The light generated by the OPO is monitored by the use
of a variety of instruments. Usually, we employ the 29.7-µm
grating period, which quasi-phase matched at 1.495 µm
for the signal and at 3.69 µm for the idler. As already
mentioned [1, 13], we also observe visible wavelengths at
440.7 nm, 498.8 nm, 532 nm, 622.7 nm and 749.5 nm, which
are respectively attributed to non-linear combinations of ωp +
2ωs, 3ωs, 2ωp, ωp +ωs and 2ωs. At the output of the OPO,
a germanium plate (M3 in Fig. 2) is used in combination with
a dichroic mirror (M4 in Fig. 2) to separate the idler, signal
and pump beams. The time evolution of the different pulses
is recorded by means of three photodiodes (P1, P2 and P3
in Fig. 2) connected to a digitizing oscilloscope. Note that
a 50-mm-focal-length lens is used to focus the residual pump
beam onto the photodiode in order to take account of the total
contribution of the beam. Otherwise, a 20-cm-focal-length
visible spectrometer (Jobin Yvon) and a broadband power
meter are used for measuring the visible wavelengths and the
energies of the different output beams.

4 Results and simulations

Figure 3a and b illustrate the dependence of the
idler power (λi = 3.69 µm) versus the pump power for
two input pulse durations, 21 and 40 ns (FWHM) respec-
tively. In both cases, experimental values were recorded with
a 12.5-kHz pumping repetition rate. The parameters of the
simulation correspond to the experimental values detailed
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above and the refractive indexes (n(λ)) as well as the second-
order non-linear optical coefficient (deff ∼14 pm/V) are taken
from the literature [14, 15]. Comparison of experimental and
calculated values shows a good agreement for the output
power versus the input pump power over a large range of
operation, whereas the calculated parametric threshold is
overestimated by 20%. At low pump power levels, the slope
efficiency given in Fig. 3a, b leads to a conversion efficiency
(η = Pi/Pp) of 22%, yielding a total optical conversion ef-
ficiency (η′ = (Pi + Ps)/Pp) of 73%. This value decreases
at high power levels as a consequence of the pump power
depletion.

Reducing the pump pulse duration from 40 ns to 21 ns
leads to an increase of the experimental threshold intensity
from 9.95 MW/cm2 to 14.4 MW/cm2. Although the calcu-
lated threshold is slightly overestimated, the dependence of
the threshold value versus the pump pulse duration is well
predicted since the ratio of the calculated thresholds is 1.48
compared to 1.44 for the experiment. Note that the increase
of the threshold value at short pump pulse duration is also
well described by use of the expression given by Brosnan and
Byer [16]. As concerns the slight discrepancy between cal-
culated and measured thresholds, one can argue that all loss
terms are not included in our model, such as residual absorp-
tion within the coatings and Fresnel reflections on the two
faces of the PPLN crystal, especially for the idler field.

Figure 4 illustrates the temporal pulse shapes of the signal
and idler fields as well as the input and depleted pump pulses,
all responses being normalized to their respective maxima.
Experiments have been performed with 21-ns input pulses, for
three pump powers leading to different power levels: 1.5, 3
and 5 times above threshold. For each condition, the calcu-
lated pulses (see Fig. 4b, d and f) agree well with the experi-
ment (see Fig. 4a, c and e). Whatever the pumping conditions,
the signal and idler pulses show an asymmetric shape contain-
ing a short rise time followed by a more or less long decrease.
Also, from Fig. 4, it is seen that the build-up time of the idler
pulse is always shorter than the signal one. Conversely, the
signal field persists for a longer time. This temporal behav-
ior illustrates the different dynamics of the signal and idler
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FIGURE 5 ‘Cascading’ effect: experimental pulse shape for four times
threshold energy. The dotted, dot-dashed, solid and dashed curves denote the
irradiated pump, the depleted pump, the idler and the signal, respectively. The
bold curve denotes the idler pulse (at 3.296 µm) of the secondary OPO

fields which are coupled in a singly resonant cavity. On the
one hand, the non-resonant idler field is produced at the out-
put of the cavity as soon as it is created from the parametric
interaction, whereas the signal pulse shows a small delay as
a result of the signal energy storage within the cavity. On the
other hand, the decay time of the idler field mainly depends on
the pumping level, while the damping time of the cavity plays
an important role in the signal decrease.

Next, from the temporal responses plotted in Fig. 4, one
notices that different operating regimes are accessible with
the OPO. Firstly, if the pumping power is fixed at 1.5 times
the threshold value (see parts a and b), the signal and idler
pulses are detected after the maximum of the pump due to
the relatively long build-up time of the fields. Under such
conditions, the output pulse clearly shows the pump power
depletion as the result of the growth of the signal and idler
fields. Secondly, increasing the pump power up to three times
the threshold (see parts c and d) reduces the build-up time so



DRAG et al. Temporal behavior of a high repetition rate infrared optical parametric oscillator 199

that the signal and idler pulses appear before the maximum
of the pump pulse. For this regime, the output pump pulse
shows a small overshoot, which is due to a back-conversion
process. Thirdly, for the highest pumping value, i.e. five times
the threshold value (see parts e and f), one observes that a sec-
ond maximum appears in the idler pulse. Such a temporal
behavior is well described by the model. However, the sig-
nal pulse becomes shorter compared to the simulation and
the energy of the signal leaves the cavity before the energy
of the idler. In fact, this difference is linked to the ‘cas-
cading’ effect described in [6]. This phenomenon is due to
the appearance of a secondary parametric oscillation pumped
by the resonant OPO signal itself. Note that the cascading
process can take place in our PPLN OPO due to the fortu-
itous simultaneous phase matching of both OPOs as well as
the use of broadband mirrors. As a result of the secondary
OPO, the signal energy of the primary OPO shows a small
reduction which can be observed during the signal decrease
(depletion).

To verify this ‘cascading’ effect, we have performed
a complementary experiment. The existence of the cascading
process has been confirmed by analyzing the spectral output
of the OPO by means of a mid-infrared spectrometer (model
TR25, Jobin Yvon). During this test, the 28.9-µm grating
period was used for a crystal temperature of 140 ◦C, leading
to a 1.56-µm signal wavelength and a 3.396-µm idler wave-
length. If the pumping power is fixed at a high level, typically
four times the threshold value, one observes the production of
a 3.296-µm line attributed to the idler field of the cascading
OPO. From Fig. 5, it is seen that this new emission appears
in coincidence with the primary signal depletion. The wave-
length produced at 3.296 µm corresponds to the idler of the
secondary OPO and is compatible with the 28.9-µm grating
period.

5 Conclusion

A simple numerical model has been described,
which takes into account the behavior of a nanosecond pulsed
mid-infrared SROPO using isotropic non-linear materials
(e.g. PPLN), regarding both the temporal response as well as
the input–output characteristics. The model takes advantage
of the isotropic nature of the new periodically poled materials
(such as PPLN but also PPRTA, PPKTP, . . . ) by using cylin-
drical coordinates and describing diffraction in the crystal by
a Hankel transform. The agreement between the experiment
and the numerical model is excellent in very different situ-
ations (pulse duration, pumping level above threshold, . . . )
in spite of the simplicity of the model. Computation time is
typically 60 times shorter than using the usual simulation pro-
grams. This model will clearly help in the design of new OPO
cavities.

Appendix A:
Hankeltransform for the diffraction calculation in
parametric interactions

In the slip-step calculation, one needs to compute the diffrac-
tion of the different waves A(x, y, z) between z and z +dz in
the non-linear crystal. This is usually done most conveniently
in Fourier space. Indeed, the evolution of the two-dimensional

(2D) Fourier transform of the diffracted wave Ã(µ, ν, z +dz)
is obtained by a simple product:

Ã(z +dz) = Ã(z) exp

[
−iπ

λ

n

(
µ2 + ν2) dz

]
. (A.1)

However, this calculation is time consuming since it involves
the 2D Fourier transform of 2D functions f(x, y):

f̃ (µ, ν) = 1

2π

+∞∫
−∞

+∞∫
−∞

f(x, y) exp[−i(µx + νy)] dxdy. (A.2)

This calculation is tremendously simplified if we take the
cylindrical symmetry of a function f(x, y) into consideration
in the following way. If we introduce the following functions
F and F̃ as

f(x, y) = f(r cos θ, r sin θ) = F(r), (A.3)

f̃ (x, y) = f̃ (� cos ϕ, � sin ϕ) = F̃(�), (A.4)

then F and F̃ are related by

F̃(�) =
+∞∫
0

J0(2πr�)F(r)rdr. (A.5)

J0 is the zero-order Bessel function and F̃ is the zero-order
Hankel transform of function F. One notes that the integral
in (A.5) is one-dimensional while the one in the Cartesian
coordinates (A.2) is two-dimensional. Thus calculations of
the Hankel transform are far faster than 2D Fourier-transform
ones. The wave diffraction between z and z +dz is described
by the differential equation
(

∂

∂z
A

)
diff

= − 1

2ik

1

r

∂

∂r

(
r

∂

∂r
A

)
. (A.6)

The Hankel transform of A is then the solution of(
∂

∂z
Ã

)
diff

= − 1

2ik
�2 Ã, (A.7)

which integrates trivially into

Ã(�, z +dz) = Ã(�, z) exp

[
−iπ

λ

n
�2dz

]
. (A.8)

Practical implementation of the Hankel transform is quite
tricky because the origin r = 0 is a singular point. We have
used the following numerical procedure to calculate Hankel
transforms.

One first notes that the Hankel transform F̃ may be written
as

F̃(�) = f̃ (µ, 0) = 1

2π

+∞∫
−∞




+∞∫
−∞

f(x, y) dy


 exp(−iµx) dx,

(A.9)
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so that F̃(�) is the Fourier transform of

p(x) =
+∞∫

−∞
f(x, y) dy =

+∞∫
−∞

F
(√

x2 + y2
)

dy. (A.10)

The procedure is then the following. We first discretize
F(n∆r) from 0 to N −1. We then calculate the intermediate
function p(l∆r) through (A.10). To obtain good convergence
properties of our simulations, we have made use of the follow-
ing variable-step integration procedure:

p(l∆r) = 2∆r
n=N−1∑

n=0

αl,n F(l∆r), (A.11)

with

αl,0 =
√

(l +1/2)2 − l2, (A.12)

αl,n =
√

(l +n +1/2)2 − l2 −
√

(l +n −1/2)2 − l2. (A.13)

We thus construct the constant N × N matrix {αl,n} and mul-
tiply it by the column vector {F(n∆r)} to obtain the column
vector {p(l∆r)}. The Hankel transform is then obtained by
a FFT transform of the column vector {p(l∆r)}. The total pro-
cedure is between 50 and 100 times faster than the usual 2D
FFT algorithms.
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