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ABSTRACT A refined discussion of the near-field scattering of
spherical nanoparticles and the electromagnetic fields close to
the particle surface is given. New results for the dependence
on the distance from the surface and the angular distribution of
the scattered light in the near-field are given. It will be shown
that the radial component of the electric field leads to strik-
ing differences in the phase functions in the near-field and the
far-field. Exemplary computations are presented for Ag and Au
particles with different size. In a second part the discussion is
extended to assemblies of spherical Ag and Au nanoparticles. It
will be shown that large near-fields at wavelengths commonly
used in SERS experiments are obtained for aggregates. In the
near-field scattering intensity “hot spots” mark regions between
particles in the aggregate where the near-field is particularly
high.

PACS 42.25.Bs; 78.66.Vs; 82.70.Dd

1 Introduction

Measuring absorption of light and elastic light scat-
tering has turned out to be a useful tool to examine samples
containing small particles. In common experimental setups
and in technical applications the measurements are carried
out in the far-field zone, i.e. far away from the surfaces of
the particles. However, in SERS (surface enhanced Raman
scattering) the large local electromagnetic fields on the sur-
face or in the vicinity of a small particle or an aggregate of
particles are used to enhance Raman scattering of light by
adsorbed molecules (see for instance [1–5]). Such enlarged
electromagnetic fields also play an important role for nonlin-
ear optical properties of small particles (e.g. [6]), or in guid-
ing light along nanostructures [7]. The optical near-field is
also a central topic in scanning near-field optical microscopy
(SNOM), where evanescent waves are used. As such waves
are spatially restricted, the scattering of evanescent waves by
small particles is best for nanoparticles on the surface where
the evanescent wave is generated by, e.g. total internal reflec-
tion. Some results for homogeneous and coated particles and
for aggregates of spherical particles were recently published
( [8–11] and references therein).
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Elastic light scattering and absorption by single spherical
particles was already solved in 1908 by Mie [12]. The solution
is based upon the expansion of the incident wave, the scattered
wave and the wave interior of the particle into correspond-
ing vector spherical harmonics. The extinction and scattering
cross-sections of the spherical particle follow from the cal-
culation of the total absorption rate according to Poynting’s
theorem. In addition to these quantities Messinger et al. [13]
introduced new quantities: near-field efficiencies, which are
a measure for the spatially averaged square of the electric
field. Messinger et al. [13] discussed the wavelength depen-
dence of the near-field efficiencies at distance R = a, i.e. at
the surface of the particle, for Ag, Au and Cu clusters of vari-
ous sizes. In 1995 Quinten [14] extended the theory also to the
magnetic field of the scattered wave and discussed the depen-
dence of the near-field efficiency on cluster size and the dis-
tance from the cluster surface, including the Poynting vector
of the scattered wave. The aim of this paper is to give a refined
discussion of the near-field scattering of spherical particles.
New results for the dependence on the distance from the clus-
ter surface and the angular distribution of the scattered light
in the near-field are obtained. For that purpose the efficiencies
and the phase functions are discussed. It will be shown that the
radial component of the electric field determines the electric
field in the vicinity of the cluster, leading to striking differ-
ences in the phase functions in the near-field and the far-field.
In a second part this discussion is extended to aggregates of
spherical particles. The far-field optical cross-sections of ag-
gregates can be calculated according to the model of Gérardy
and Ausloos [15]. In this model the coherent superposition of
the electromagnetic fields of all scattered waves in the near-
field determines the total cross-sections for extinction and
scattering of light by the aggregate. It is therefore a rather
simple task to calculate also the field intensities in the vicin-
ity of the particles in an aggregate. The cross sections and
the near-field intensities will be discussed for exemplary gold
nanoparticle aggregates.

2 Theory

2.1 Single particles

The description of the light scattering by spheri-
cal particles is based upon the expansion of all electromag-
netic waves into spherical partial waves using vector spherical
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harmonics, and applying Maxwell’s boundary conditions to
resolve the unknown expansion coefficients of the scattered
and interior wave. From Poynting’s law the power rates for
absorption and scattering are determined. These rates are nor-
malized on the intensity I0 of the incident wave to obtain the
optical cross-sections σext and σsca for extinction (absorption
plus scattering) and scattering. For better comparison in the
following, it is convenient to normalize these quantities on
the geometrical cross-section of a sphere with diameter 2a
to obtain the dimensionless extinction and scattering efficien-
cies Q:

Qext = 2

(ka)2

∞∑
n=1

(2n +1) Re (an +bn) , (1)

Qsca = 2

(ka)2

∞∑
n=1

(2n +1)
(|an|2 +|bn|2

)
. (2)

The quantity k = (2πnM(λ))/λ is the wavenumber outside the
particle in the surrounding medium M with refractive index
nM. The quantities an and bn are the scattering coefficients of
the sphere and Re means the real part.

In a previous publication [14] it has been shown that these
quantities are identical in the near-field and in the far-field.
Hence, Qext and Qsca solely are a measure for the ability to
extinguish and to scatter an electromagnetic wave at incident
wavelength λ to a certain amount. They do not provide infor-
mation about the strength of the electromagnetic fields nearby
or far from the particle at distance R ≥ a from particle cen-
ter. This information is contained in the near-field efficiencies
QNF and QR:

QNF(R) = R2

πa2 I0

2π∫
0

π∫
0

(
Esca(R)E∗

sca(R)
)

sin θ dθ dϕ , (3)

QR(R) = R2

πa2 I0

2π∫
0

π∫
0

(
Er,sca(R)E∗

r,sca(R)
)

sin θ dθ dϕ , (4)

introduced in 1981 by Messinger et al. [13]. QNF represents
the square of the spatially averaged electric field of the scat-
tered wave, and QR represents the square of only the spatially
averaged radial component Er of the electric field of the scat-
tered wave, which is included in QNF. It is mainly this radial
component, Er, that determines the difference between the
far-field and the near-field. Er is excluded from the energy flux
of the scattered wave, and therefore from Qsca. QNF is larger
than Qsca in the near-field zone because Er increases with R−2

faster than with R−1 as one moves from far-field to the surface
of the particle. For large R, QNF decreases to the asymptotic
value Qsca and QR vanishes, because Er now decreases with
R−2 faster than with R−1. The explicit calculation of QNF and
QR yields

QNF(R) = 2
R2

a2

∞∑
n=1

{
|an|2

[
(n +1)

∣∣∣h(1)
n−1(kR)

∣∣∣2

+n
∣∣∣h(1)

n+1(kR)

∣∣∣2
]

+ (2n +1) |bn|2
∣∣h(1)

n (kR)
∣∣2

}
,

(5)

QR(R) = 2

(ka)2

∞∑
n=1

(2n +1)(n +1)n |an|2
∣∣h(1)

n (kR)
∣∣2

, (6)

where h(1)
n are spherical Hankel functions of first kind and

order n.
Messinger et al. [13] discussed the wavelength depen-

dence of these quantities at distance R = a, i.e. at the surface
of the spherical particle, for Ag, Au and Cu clusters of var-
ious sizes. In 1995 Quinten [14] extended the theory also to
the magnetic field of the scattered wave and discussed the de-
pendence of QNF on cluster size, distance D = R − a from
the cluster surface and wavelength of the incident light. It
was shown that the local electric and magnetic field of the
scattered wave are strongly enlarged in the vicinity of the
spherical particle, and that giant enhancements in the ratio
QNF/Qsca are obtained for very small particles independently
of the particle material. In this paper a refined discussion of
QNF and a discussion of QR in dependence on R or D, respec-
tively, will be given for spherical clusters.

Moreover, the phase functions that describe the angular
distribution of the scattered light are discussed in more detail.
Within the framework of Mie’s theory it is common to express
the scattering efficiency by introducing phase functions S1(θ)

and S1(θ) perpendicular and parallel to the scattering plane, so
that

Qsca = R2

πa2 I0

2π∫
0

π∫
0

(
I1(θ) sin2 ϕ+ I2(θ) cos2 ϕ

)
sin θ dθ dϕ ,

(7)

with

I1(θ) = I0

(kR)2
|S1(θ)|2

= I0

(kR)2

∣∣∣∣∣
∞∑

n=1

2n +1

n(n +1)
(anπn(θ)+bnτn(θ))

∣∣∣∣∣
2

(8)

I2(θ) = I0

(kR)2
|S2(θ)|2

= I0

(kR)2

∣∣∣∣∣
∞∑

n=1

2n +1

n(n +1)
(anτn(θ)+bnπn(θ))

∣∣∣∣∣
2

. (9)

The angle-dependent functions τn(θ) and πn(θ) are defined as
τn(θ) = ∂Pn1/∂θ and πn(θ) = Pn1/ sin θ . Pn1(cos θ) are asso-
ciated Legendre polynomials for m = 1.

I1(θ) and I2(θ) give detailed information about the angu-
lar distribution of the scattered light in the far field. However,
in the near-field the R-dependence is different from 1/(kR)2.
For discussion of the near-field behavior, R-dependent phase
functions s1(θ) and s2(θ), respectively, intensities i1(θ) and
i2(θ) must be introduced. They are defined as

i1(θ) = |s1(θ)|2 = I0
∣∣eϕ(θ)

∣∣2
(10)

i2(θ) = |s2(θ)|2 = I0
{|eθ(θ)|2 +|er(θ)|2

}
, (11)

with er , eθ and eϕ being the normalized components of
the electric field vector in spherical coordinates. The R-
dependence is included in these field components. For R � a,
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i.e. in the far-field zone, it is

I1(θ) = lim
R�a

i1(θ) , (12)

I2(θ) = lim
R�a

i2(θ) . (13)

The definition of i1(θ) and i2(θ) follows from (3) using the
multipole expansion of the scattered electric field. Therefore,
the radial field component Er only contributes to i2(θ).

2.2 Aggregates

The theory of extinction and scattering by aggre-
gates of spherical particles with arbitrary topology according
to Gérardy and Ausloos [15] is used to calculate cross-section
spectra of various gold nanoparticle aggregates. In this theory,
the electromagnetic fields of the scattered waves of all neigh-
boring particles are taken into account for each of the N par-
ticles in the aggregate. Then, Maxwell’s boundary conditions
yield a set of linear equations for the expansion coefficients
αnm(i) and βnm(i) of the scattered wave of particle i:

αnm(i) = exp(ikri)an(i)

+an(i)
N∑

j 	=i

∞∑
q=1

q∑
p=−q

αqp( j)Snmqp(i, j)+βqp( j)Tnmqp(i, j) ,

(14)

βnm(i) = exp(ikri)bn(i)

+bn(i)
N∑

j 	=i

∞∑
q=1

q∑
p=−q

αqp( j)Tnmqp(i, j)+βqp( j)Snmqp(i, j) .

(15)

The coefficients an(i) and bn(i) are the scattering coefficients
of the single isolated sphere i for the TM-mode and TE-mode
of order n, following from Mie’s theory [12]. The matrix
elements Snmqp(i, j) and Tnmqp(i, j) take into account the top-
ology of the aggregate, i.e. the relative spherical coordinates
dij , θij and ϕij of particle j in the coordinate frame of particle
i. They decrease with increasing center-to-center distance dij

and become negligible at sufficiently large distances dij . Then,
αnm(i) and βnm(i) reduce to an(i) and bn(i), except for the
phase factor exp(ikri) which accounts for the phase of the in-
cident wave at the site of particle i.

The extinction and scattering cross-sections of the aggre-
gate follow as

Cext(N) = 2π

k2

N∑
i=1

∞∑
n=1

n∑
m=−n

Re {αnm(i)+βnm(i)} , (16)

Csca(N) = 2π

k2

N∑
i=1

∞∑
n=1

n∑
m=−n

|αnm(i)|2 +|βnm(i)|2

+ 2π

k2

N∑
i=1

∞∑
n=1

n∑
m=−n

Re
{
α∗

nm(i)

(
1 − αnm(i)

an(i)

)

+β∗
nm(i)

(
1 − βnm(i)

bn(i)

)}
.

(17)

Extinction and scattering of light by an arbitrary N-sphere
aggregate not only depend on the sizes of the primary par-
ticles, the size and topology of the aggregate and the particle
materials, but also on the polarization and the propagation
direction of the incident wave. Hence, it seems appropriate
in the following to take an average over different angles of
incidence and polarizations to obtain results for unpolarized
light.

For calculating the near-field intensities, the electromag-
netic fields of the scattered waves of all particles are added up
in a point P with position r

E(r) =
N∑

i=1

Ei
sca(r) (18)

The intensity in P is then proportional to |E(r)|2.

3 Numerical results for single particles
3.1 Efficiencies

Large enhancement factors QNF/Qsca are obtained
for very small particles. This follows from Fig. 1, show-
ing QNF/Qsca in dependence on the particle size for par-
ticles smaller than 2a = 400 nm at a fixed wavelength λ =
514.5 nm. Giant electric fields of the scattered wave are ob-
tained for particles smaller than 2a = 20 nm. This result for
QNF/Qsca is independent of the particle material, however, for
metal particles Qsca is already much bigger than for dielec-
tric clusters of same size. Then, QNF also approaches very
large values. A further increase is obtained for distinct metals
for which nanoparticles exhibit a surface plasmon polariton
resonance, e.g. Au- Ag- or Cu-clusters. In these resonances
Qsca is much bigger than at off-resonance wavelengths. For
example, a silver cluster in air with diameter 2a = 20 nm ex-
hibits a surface plasmon resonance at λ = 367 nm. This is,
however, the position of the maximum absorbance due to the
particle with an efficiency of Qabs = 1.8248. In the scatter-
ing efficiency the maximum value of Qsca is obtained at λ =
372 nm, amounting to Qsca = 1.8978 ×10−2 (a factor 100 (!)
smaller than the absorption). At λ = 514 nm (off-resonance),
Qsca amounts to Qsca = 1.1349 ×10−3. In contrast, for a sil-
ica cluster of 2a = 20 nm they amount to Qsca(372 nm) =
1.7133 ×10−4 and Qsca(514 nm) = 4.4961 ×10−5.

Giant electromagnetic fields as obtained for particles
smaller than 2a = 20 nm should give rise to strong enhance-
ments in, e.g. Raman scattering of chemisorbed molecules
at cluster surfaces. However, the Raman intensity in sur-
face enhanced Raman scattering (SERS) is the product of
electromagnetic effects and molecular effects. Only if the in-
elastically scattered light is in resonance with the local field
of the particles, is the reradiation efficiency of the adsorbed
molecules also enhanced. Therefore, the largest enhance-
ments in SERS are not necessarily obtained for the smallest
particles, as discussed in [2, 3].

Figure 2 depicts the wavelength dependence of QNF, QR

and Qsca for clusters of Au and Ag with diameter 2a = 10 nm
at distance R = a, i.e. at the surface of the particle (D = 0).
The optical constants of Au and Ag are taken from [16].
For better comparison Qsca is multiplied by the given fac-
tors. It can be seen that QNF and QR exhibit similar spectral
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FIGURE 1 Enhancement factor of the local electric field of the scattered
wave in dependence upon the particle size at wavelength λ = 514.5 nm

features as Qsca, interband transitions at short wavelengths
and a surface plasmon polariton resonance. However, there
are also clear differences. First, the wavelengths with max-
imum QNF and QR are slightly redshifted compared to the
wavelength at which Qsca is maximum. In detail, Qsca is max-
imum at λ = 514 nm and λ = 371 nm for the Au and Ag
cluster, respectively, whereas QNF and QR are maximum at
λ = 522 nm and λ = 375 nm, respectively. Moreover, it be-
comes obvious that in the interband transition region, the
near-field efficiencies are almost wavelength-independent, in
contrast to Qsca. At longer wavelengths the near-field efficien-
cies decrease more slowly than Qsca because the scattering
of light by small particles depends on the ratio of particle
circumference/wavelength. Then, the effect of an increasing
wavelength is similar to the effect of a decreasing particle size
at fixed wavelength, as illustrated in Fig. 1. Therefore, the de-
crease in QNF and QR with increasing wavelength must be

a b

FIGURE 2 Spectral dependence of QNF, QR and
Qsca for a spherical metal cluster with diameter 2a =
10 nm for gold (a), silver (b). The optical constants are
taken from [13]

slower than that of Qsca. Indeed, they become approximately
constant for large wavelengths. In general, it can be seen that
QR is the main contribution to QNF. QR amounts to 67% of
QNF for R = a. That means that in the near-field the elec-
tric field is dominated by the radial component, which is very
large.

In Fig. 3 series of spectra of QNF, QR and Qsca are given
for Au-clusters with particle sizes 2a = 10, 20, 40, 100, 150
and 200 nm. The conclusions from Fig. 2 can also be drawn
from this figure. The spectral dependence of the efficiencies
changes when the particle size is increased, since, for larger
particles, multipoles higher than the dipole contribute to the
scattered and interior field of the clusters. This leads to the
obvious broadening of the plasmon resonance for larger par-
ticles. In a first rough approximation the multipole of order n
is resonant at the condition

∣∣∣∣ε(λ)+ n +1

n
εM

∣∣∣∣
2

= minimum . (19)

The quantities ε and εM are the dielectric functions of
the cluster material and the surrounding matrix material. The
best-known is the dipole resonance (n = 1) at ε ≈ −2εM,
which corresponds to the surface plasmon polariton in Fig. 2.
From the dispersion of ε(λ) of Au it follows that for larger Au-
particles the dipole resonance is redshifted followed by the
other multipoles at smaller wavelengths.

A further result is that with increasing particle size the
enhancement of the near-field decreases compared to that of
the far-field. For the largest particle under consideration with
2a = 200 nm, QNF approximately amounts to only QNF ≈
Qsca in the whole spectral region.

In Fig. 4 the dependence of QNF and QR on the distance
D = R − a from the particle surface are shown for a gold
cluster with 2a = 100 nm at two wavelengths λ1 = 514.5 nm
and λ2 = 780 nm. For comparison Qsca is given as a ho-
rizontal line. The behavior of QNF and QR is similar for both
wavelengths. Very close to the surface, QR is the domin-
ant contribution to QNF. With increasing distance both quan-
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a b

c d

e f

FIGURE 3 Size dependence of spectra of QNF, QR and Qsca for a spherical gold clusters with increasing diameter: 2a = 10 nm (a), 2a = 20 nm (b),
2a = 40 nm (c), 2a = 100 nm (d), 2a = 150 nm (e), 2a = 200 nm (f)

a b

FIGURE 4 Dependence of QNF, QR and Qsca on the
distance D from the cluster surface for gold clusters
with 2a = 100 nm at wavelength λ = 514.5 nm (a) and
at wavelength λ = 780 nm (b)

tities decrease. While QNF approaches Qsca, QR decreases
more rapidly and amounts to about 1/20 of Qsca at a dis-
tance of D = 0.5 µm, corresponding in the present example
to D = 10a. Also for smaller particles, many further cal-
culations showed that at D = 0.5 µm QR has decreased to
approximately 1/20 of Qsca, and, hence, becomes negligi-
ble. For the gold particle under consideration QR is in the
order of Qsca at D = 0.076 µm = 3a for λ1 = 514.5 nm and
D = 0.15 µm = 6a for λ2 = 780 nm.

For a more quantitative discussion of Figs. 1, 2 and 4 we
assume particle sizes as small compared to the wavelength,
as the main contribution to the efficiencies in (2), (5) and
(6) is given by the dipole (n = 1). Then, it follows from (2)
that

Qsca = 6|a1|2
(ka)2

, (20)
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and from (5)

QNF = 6|a1|2
(ka)2

(kR)2

3

(
2

∣∣∣h(1)
0 (kR)

∣∣∣2 +
∣∣∣h(1)

2 (kR)

∣∣∣2
)

, (21)

and from (6)

QR = 6|a1|2
(ka)2

2
∣∣∣h(1)

1 (kR)

∣∣∣2
. (22)

The TM-dipole a1 is in this approximation given as

a1 = 2

3
i(ka)3 ε(λ)− εM(λ)

ε(λ)+2εM(λ)
(23)

with ε and εM being the dielectric functions of the particle
material and the surrounding matrix M. Note that in these
equations we only take into account the contribution of the
TM-dipole a1, which exhibits the surface plasmon resonance.
The TE-dipole b1 is in the order of the TM quadrupole a2 and
can be neglected. Furthermore, for nanoparticles it does not
exhibit a resonance. It is obvious from (21) and (22) that in
this approximation the behavior of the Hankel-functions h(1)

0 ,
h(1)

1 and h(1)
2 determines the values of QNF and QR with re-

spect to Qsca for all wavelengths and all particle sizes (as long
as the particles are small compared with the wavelength). For
small arguments kR, i.e. close to the surface of the particle, the
Hankel-functions become approximately

h(1)
n (kR) ≈ Γ(0.5)

2Γ(n +1.5)

(
kR

2

)n

− i
Γ(n +0.5)

2Γ(0.5)

(
2

kR

)n+1

.

(24)

The function Γ(m) is the Gamma function. For large argu-
ments kR they become approximately

h(1)
n (kR) ≈ (−i)n+1 exp(ikR)

kR
. (25)

Within this approximation it is easy to show that for large
arguments, kR, the near-field efficiencies become QNF = Qsca

and QR = 0. Furthermore, at a fixed wavelength λ the value
QR = Qsca/20 is always obtained for the same distance R, in-
dependently of the particle size as already mentioned in the
discussion of Fig. 4. On the other hand, the distance R where
QR = Qsca/20 depends on the wavelength. When this value
is approached for λ1 at a distance R1, it is obtained at R2 for
wavelength λ2 with R1/λ1 = R2/λ2.

Small arguments kR can be obtained either for distances
R close to the particle surface, i.e. R ≈ a, or for long wave-
lengths, i.e. small wavenumbers k. For example, for a par-
ticle with 2a = 20 nm and R = a, the enhancement QNF/Qsca
amounts to 13 544 which is in very good agreement with the
exact value of 13 587 in Fig. 1. Since for small arguments
kR due to large wavelengths QNF ≈ 3Qsca/(kR)4 and QR ≈
2Qsca/(kR)4, both become approximately constant as already
seen in Fig. 2. The decrease of Qsca proportional to 1/λ4 is
counteracted by the increase of 1/(kR)4 with λ4. Moreover,
the ratio QR/QNF approaches the value 0.67, as obtained in
the evaluation of Fig. 2.

3.2 Phase functions

For discussion of the phase functions, the angu-
lar distribution of the scattered intensities perpendicular (azi-
muthal angle ϕ = 90◦, I1 and i1) and parallel (ϕ = 0◦, I2 and
i2) to the plane of incidence is plotted in Fig. 5 for a gold par-
ticle with diameter 2a = 100 nm for distances up to R = 5a.
i1(θ) and i2(θ) are compared with I1(θ) and I2(θ). Note that
the results for I1 and I2 in the near-field are obtained using
the formulae (8) and (9) which are valid only in the far-field
zone. The hatched spherical region in the center of each plot
corresponds to the cluster. The intensities are plotted with
a logarithmic scale.

I1(θ) and I2(θ) obviously correspond to the intensity dis-
tribution expected for a dipole in the far-field, i.e. I1(θ) in-
dependent of the angle θ , and I2(θ) proportional to (cos θ)2.
That means that the scattering of light by this particle at wave-
length λ = 514.5 nm is still dominated by the dipole mode
in the multipolar expansion of the scattered wave. This is
in agreement with the result for the total scattering cross-
section in Fig. 3d. i1(θ) is rather similar to I1(θ) except that
the magnitudes are increased by a factor 7 close to the particle
surface. At R = 5a the intensities are of comparable magni-
tude. In contrast, i2(θ) completely differs from I2(θ). Close
to the particle surface the near-field intensity is increased
by a factor 40. At R = 5a the intensities are of comparable
magnitude, because of the contribution of the radial com-
ponent Er of the electric field that only contributes to i2(θ)

(see again (13)). As already shown above in Fig. 4, this con-
tribution becomes negligible just at R = 10a for the gold
particle with 2a = 100 nm. More significant than the differ-
ences in the magnitudes is the completely different angular
distribution of the near-field intensity compared to the far-
field intensity. In the far-field, the intensity I2(θ) is propor-
tional to (cos θ)2 and, hence, exhibits minima at θ = ±90◦.
In contrast, in the near-field these minima have vanished
and the intensity at θ = ±90◦ is even larger than those at
θ = 0◦ and θ = 180◦. For further discussion it seems ap-
propriate to divide i2(θ) in the two contributions from the
field components eθ and er . Then, it can be expected that
the contribution |eθ |2 will be similar to I2(θ). This division
is made in Fig. 6. As can be seen from this figure, actu-
ally, the contribution |eθ |2 is rather similar to I2(θ), except
for the magnitude, which is increased by a factor 7 close to
the particle surface, similar to i1 in comparison with I1. The
contribution of the radial field component |er|2 is 6 times
larger than |eθ |2. Therefore, the near-field scattering pattern
is dominated by the radial component. However, the most
significant feature is that the angular distribution of |er|2 is
obviously perpendicular to that of |eθ |2 in the plane of inci-
dence. Then, the sum |eθ |2 +|er|2 is maximum at θ = ±90◦
and is minimum at θ = 0◦ and θ = 180◦, as already shown in
Fig. 5d.

4 Numerical results for aggregates

In this section we report on numerical results for
planar silver and gold nanoparticle aggregates with N = 9,
13 and 16 primary particles with diameter 2a = 50 nm, as
illustrated in Fig. 7. Efficiency spectra and in addition the
scattering enhancement Qsca(N)/(N∗ Qsca(1)) are compiled
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FIGURE 5 Angular distribution of the intensity of
the light scattered by a spherical gold particle with
diameter 2a = 100 nm. a Perpendicular to the plane of
incidence, near-field, i1. b In the plane of incidence,
near-field, i2. c Perpendicular to the plane of incidence,
far-field, I1. d In the plane of incidence, far-field, I2

FIGURE 6 Contributions of Er and Eθ to the inten-
sity i2 in the plane of incidence for the gold particle in
Fig. 5. a Contribution of Eθ . b Contribution of Er

in Fig. 8 for silver, and in Fig. 9 for gold. The spectra are cal-
culated for unpolarized incident light. In addition near-field
intensities at wavelength λ = 830 nm are given for the gold
nanoparticle particle aggregate with N = 16 primary particles
in Fig. 10.

Beginning with the spectra of the silver aggregates on
the left side of Fig. 8, the effect of aggregation of nanoparti-
cles is clearly recognizable. Compared to the spectrum of N
isolated particles, the corresponding N-particle aggregate ex-
hibits additional extinction features at longer wavelengths λ

where the surface plasmon of the single particle is strongly

decreased. In the spectral region of the surface plasmon, the
extinction by the aggregate is decreased. Moreover, it can
be seen that at long wavelengths the scattering is the main
contribution to the extinction, also for the single particles,
whereas at short wavelengths the absorption dominates the
extinction. For the single particle the scattering can be de-
scribed by Rayleigh scattering, i.e. it is proportional to 1/λ4.
The additional extinction features are due to the electromag-
netic coupling among the primary particles in the aggregate.
This coupling yield a splitting of the plasmon resonance of
the primary particle in several new resonances, the number
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FIGURE 7 Sketch of planar aggregates with N = 9,
N = 13 and N = 16 primary particles

FIGURE 8 Efficiency spectra (left side) and scatter-
ing enhancement (right side) of planar aggregates of
silver nanoparticles with diameter 2a = 50 nm

of which is proportional to the number of particles in the
aggregate. However, the strengths of these resonances are
different, depending on size and topology of the aggregate.
Hence, only a few resonances finally contribute to the ex-
tinction and scattering spectra of the aggregate. For an ex-
tended discussion of the differences in light scattering by
isolated single nanoparticles or by aggregates, it is useful to
introduce the scattering enhancement, defined by the ratio
Qsca(N)/(N∗ Qsca(1)). It is shown on the right side of Fig. 8.
The scattering enhancement for the considered aggregates
is minimum 20 (N = 9) and is peaked at a wavelength λ0

that is dependent upon the number N of primary particles.
For N = 9 it is λ0 = 519 nm and the enhancement amounts
to 78, for N = 13 it is λ0 = 545 nm and the enhancement
amounts to 94, and for N = 16 it is λ0 = 587 nm and the en-
hancement amounts to 100. This means that already in the
far-field zone the scattering of light by these aggregates ex-
ceeds the scattering by N isolated particles by a factor of
80–100 at λ0. Compared to one single particle the enhance-
ment is still larger by the factor N, e.g. it is 1600 for the
aggregate with N = 16 primaries. The maximum enhance-
ment shifts to longer wavelengths with increasing aggregate
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FIGURE 9 Efficiency spectra (left side) and scatter-
ing enhancement (right side) of planar aggregates of
gold nanoparticles with diameter 2a = 50 nm

FIGURE 10 Near-field intensities in the equatorial
plane (x–y-plane) of the planar aggregate with N = 16
Au particles for an incident wave propagating along the
z-axis, being polarized. a Along the x-axis. b Along the
y-axis

size. Nevertheless, we point to the fact that this shift will run
into saturation for large aggregates. This is because the par-
ticles in an aggregate interact via the scattered waves. Their
amplitudes, however, decrease with increasing distance. For
a sufficiently large distance between two particles – amount-

ing to at least 5 primary particle diameters – the interaction
becomes negligible.

For aggregates of gold nanoparticles the extinction spec-
tra in Fig. 9 are similar to those of silver aggregates in Fig. 8
except that the resonances of the aggregates are less resolved
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than for silver. Only one broadened extinction peak can be
observed that is shifted to longer wavelengths. The peak pos-
ition, and in consequence also the peak in the scattering en-
hancement, shifts to longer wavelengths with increasing ag-
gregate size. The corresponding values for λ0 and the peak
magnitude are λ0 = 619 nm with magnitude 64 for N = 9,
λ0 = 634 nm and magnitude 84 for N = 13, and λ0 = 667 nm
with magnitude 87 for N = 16. The minimum enhancement
amounts to 20 compared to N primary particles.

In turning to the discussion of the spatial distribution of
the near-field intensities, we restrict ourselves to the aggregate
of N = 16 gold particles. For this aggregate the intensity of
the scattered light in the vicinity of the 16 primary particles
is calculated at λ = 830 nm in the equatorial plane, which is
in the present case the x–y-plane. The results are depicted
in Fig. 10 for a plane incident wave propagating along the
positive z-axis of a reference frame centered in one particle
of the aggregate and being polarized either along the x-axis
(Fig. 10a) or along the y-axis (Fig. 10b). The hatched spheri-
cal regions correspond to the nanoparticles. The intensities are
plotted with a logarithmic scale. Comparing with the results in
Fig. 5, some similarities with the near-field scattering by a sin-
gle particle can be recognized for the scattering intensities
outside the aggregate. The aggregate as a whole just behaves
similar to a larger single particle whose size is still small com-
pared to the wavelength λ = 830 nm as the dipole radiation
dominates the scattering intensities. In between the particles,
however, the constructive interference of all scattered fields
yields distinct regions where the near-field intensities are par-
ticularly large. The location of these “hot spots” depends on
the polarization of the incident light, which can be recognized
when comparing Figs. 10a and 10b. For the electric field par-
allel to the x-axis the hot spot includes the seven leftmost
particles in the aggregate, whereas for the electric field par-
allel to the y-axis, the hot spot is centered in the aggregate
and includes six particles. Comparing the intensity in the hot
spots with the near-field intensities at the surface of a single
particle with 2a = 50 nm (not presented here), the intensity
in the hot spot is increased by a factor of 37, which exceeds
a factor of 16 coming from the number of primaries in the
aggregate.

Aggregation of nanoparticles has been experimentally
found to be essential also in SERS to realize large Raman
signals [5, 17]. A few first theoretical treatments [18, 19] and
some recent works [20, 21] already gave qualitative agree-
ment with experimental results and also yield “hot spots” in
dependence on size and topography of the aggregates and on
the polarization of the incident light [20, 21]. However, these
works are based on the coupling of dipoles, i.e. the primary
particles in the aggregates are assumed to be small compared
to the wavelength of light and also the radiated fields of the
particles are approximated by only dipole radiation. This is
a serious restriction compared with the analytical solution of
light scattering by aggregates presented above. Hence, a quan-
titative determination of Raman intensities remains difficult
from the coupled-dipole approximation. Markel et al. [21]
give an estimation also for the near-field intensity in the “hot
spots”, showing that it can exceed a factor of 105. They con-
clude that with these local fields, SERS enhancements of
1010 can be achieved. A more quantitative analysis, how-

ever, is missing. In contrast, we find from our calculations
that at wavelengths in common SERS experiments (780 nm,
830 nm) the enhancement of the far-field intensity of the elas-
tically scattered light of the considered aggregates amounts to
≈ 180 (N = 9)−640 (N = 16) compared to one single par-
ticle for silver or gold particle aggregates of particles with
2a = 50 nm. From the analysis of the near-field intensities we
obtain a further enhancement by a factor of 37 in the “hot
spots” for the aggregate with N = 16 primary particles. That
means that we obtain a total enhancement of the intensity in
elastic light scattering amounting to 24 000 in the “hot spots”.
This is only a factor 4 smaller than the estimation in [21],
but also shows that enhancements of at least 108 can be ob-
tained in SERS when using the appropriate single particles
and aggregates. The advantage of our approach is that we can
calculate near-field and far-field intensities of aggregates be-
yond the coupled-dipole approach, i.e. also for larger primary
particles.

5 Summary

We have discussed the differences between the
near-field and the far-field scattering of light by small par-
ticles. The behavior of the scattered wave in the near-field of
the scatterer is very important in, e.g. surface enhanced Ra-
man scattering (SERS) or for near-field optical microscopy.

Whereas Messinger et al. [13] discussed the wavelength
dependence of the near-field efficiencies QNF and QR at dis-
tance R = a, i.e. at the surface of the particle with diameter
2a, in this paper the discussion has been extended to the dis-
tance dependence. It has been shown that the contribution of
the radial field component becomes negligible for distances
R ≥ 10a and QNF tends to the limiting value Qsca, the far-
field scattering efficiency according to the Mie theory. In the
vicinity of the cluster, however, the radial component of the
electric field determines the electric field, leading to strongly
enhanced fields. The contribution of QR to QNF amounts to
67% at the surface of a nanoparticle. As QNF and QR repre-
sent the square of either the spatially averaged total electric
field of the scattered wave, or the spatially averaged radial
component Er of the electric field of the scattered wave, no
information about the angular distribution of the intensity of
the scattered light is contained in these quantities. Therefore,
phase functions that describe the angular distribution of the
scattered light are introduced in the near-field and have been
discussed in comparison with the far-field scattering intensi-
ties in the plane of incidence and perpendicular to the plane
of incidence according to the Mie theory. It has been shown
that the contributions of Eθ and Eϕ of the scattered electric
field are similar to the far-field, except that the magnitude of
the corresponding intensities are increased by a factor 7 close
to the particle surface. At distances R = 5a, the intensities
are of comparable magnitude as in the far-field. However, the
component Er leads to striking differences for the intensity in
the plane of incidence, as |Er|2 only contributes to this inten-
sity. For a small particle that can be described in the far-field
by a scattering dipole, the intensity of the scattered light in
the plane of incidence is proportional to (cos θ)2, having min-
ima at scattering angles given by θ = ±90◦. In contrast, in the
near-field these minima have vanished due to |Er|2, which ap-
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pears to be perpendicular to |Eθ|2 in the plane of incidence,
and the intensity at θ = ±90◦ is even larger than that at θ = 0◦
and θ = 180◦.

In a second part, we have extended the discussion to ag-
gregates of spherical particles, for which the electromagnetic
interaction in the near-field leads to striking effects in the scat-
tering and absorption already in the far-field. At long wave-
lengths, where the surface plasmon peak in the scattering
and absorption of light by a single particle is strongly de-
creased, the aggregates exhibit strong spectral features mainly
in the scattering. In this wavelength region the far-field scat-
tering by an N-particle aggregate is enhanced by a minimum
factor of about 20 compared to the scattering by N isolated
particles. Larger enhancements of ≈ 60−100 can also be ob-
tained at distinct wavelengths where the ratio (scattering of
an N-particle aggregate)/(scattering of N isolated particles)
is peaked. The wavelength of this maximum depends on the
particle material and the number N of primary particles in
the aggregate. It shifts to longer wavelengths with increasing
N. For the considered silver aggregates, it ranges approxi-
mately between 500 nm and 600 nm, and for the considered
gold aggregates between 600 nm and 700 nm. In the near-field
intensities, “hot spots” appear between particles in the aggre-
gate where the near-field intensity is particularly large, with
additional enhancements by a factor of approximately 40. The
total enhancement of the elastically scattered light amounts to
a minimum of 104 for aggregates of appropriate size of about
15−20 primary particles. If the inelastically scattered light in
SERS is resonant with these local fields, therefore, enhance-
ments of the Raman intensity in SERS of a minimum of 108

can be achieved, which is in agreement with estimations from

a coupled-dipole approximation [21]. However, the advantage
of our approach is that we can determine near-fields and far-
fields beyond the dipole approximation, i.e. also for larger
primary particles.
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