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Abstract. We have considered the interference spectra that
occur at the three-photon generated frequency arising from
the interaction of three laser fields with a four-level atom,
where two of the laser fields are on two-photon resonance
with the three levels forming a “Λ” scheme while the third
laser operates between the second ground and the second ex-
cited state of the atom. At low intensities of all three laser
fields, the overall intensity of the peak at the three-photon
generated frequency, describing the spectrum of an electron
in the second excited state, depends on the strength of the
combined field of the two laser fields that are on two-photon
resonance and it takes negative values. This indicates that
light amplification without population inversion is likely to
occur at the three-photon generated frequency. The combined
field of the three laser fields induces multiphoton excitations
near the three-photon generated frequency, whose peaks are
characterized by linewidths which are much less than the
natural linewidths of the atoms. These excitations describe
absorption or stimulating emission processes depending on
the values of the detunings of the laser fields. The derived
results are graphically presented and discussed.

PACS: 32.80.-t; 42.50.Hz

Considerable attention has been recently shown in achieving
electromagnetic induced transparency (EIT) and light ampli-
fication without population inversion (LAWI) in three- and
four-level atomic systems. The attractive applications of EIT
and LAWI include the possiblity of enhancing the efficiencies
of nonlinear processes and the possibility of producing laser
action without population inversion [1–9]. Several mechan-
isms giving rise to EIT and LAWI have been proposed, which
are based on simple models indicating that the foundations
EIT and LAWI are the atomic coherence and the destruc-
tive quantum interference among different transitions. There
have been reviews on the subject by Kocharovskaya [10], by
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Scully [11], by Arimondo [12], by Harris [13] and by Scully
and Zubairy [14]. Experimental observation of EIT has been
made in the “Λ” type atomic systems [15], while several
interesting experiments have demonstrated the existence of
LAWI in a number of four-level atomic systems [16–21].

Schmidt and Imamoglu [22] have shown that the four-
level atomic system shown in Fig. 1 exhibits EIT and yields
giant resonantly enhanced nonlinearities, while the linear sus-
ceptibilities, namely, the one-photon losses, are identically
zero for all participating fields. These giant Kerr optical non-
linearities are obtained in the low-intensity limit for all laser
fields provided that the two-photon resonance condition is ap-
plicable [22]. The four-level atomic system depicted in Fig. 1
consists of the levels |1〉, |2〉 and |3〉, which form a “Λ” con-
figuration and an excited level |4〉. The two lower states |1〉
and |2〉 of the atom have very long lifetimes in comparision
with the lifetimes of the two excited levels |3〉 and |4〉. The
atom is pumped by the laser fields a, b and c with frequen-
cies ωa, ωb and ωc and a generated frequency ω = ωa +ωb −
ωc and operating in the |1〉 ↔ |3〉, |2〉 ↔ |4〉, |2〉 ↔ |3〉 and
|1〉 ↔ |4〉 transitions, respectively. The two-photon resonance
condition occurs when the frequency of the two laser fields a
and c becomes equal to the frequency splitting of the two
lower levels of the atom, namely, when ω21 = ωa −ωc, where
ω21 = ω2 −ω1. In the absence of the excited level |4〉 and, of
course, in the absence of the laser field b, at two-photon res-
onance, the excited state |3〉 is decoupled, the population is
trapped in a linear superposition of the two laser levels |1〉
and |2〉 and no absorption to the excited state |3〉 will take
place [12, 23–26]. As a result, the fluorescence from the ex-
cited state |3〉 decreases sharply and a narrow dip appears in
the absorption spectrum known as a black resonance [12, 23–
26]. The presence of the excited level |4〉 and the laser field b
operating in the |2〉 ↔ |4〉 transition changes the dynamics of
the absorption spectrum drastically.

Harris and Yamamoto [27] have shown that the four-level
atomic system depicted in Fig. 1 under certain conditions and
at the frequency ω = ωa will absorb two photons but will not
absorb one photon. This is due to the fact that the presence
of the laser b destroys the single-photon quantum interfer-
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Fig. 1. Energy level diagram of a four-level atom or ion. Full lines represent
laser fields operating between the levels |1〉 ↔ |3〉, |2〉 ↔ |3〉 and |2〉 ↔ |4〉,
respectively. Wavy lines represent radiative decays where γ31, γ32, γ42 and
γ41 denote the spontaneous decay rates for the |3〉 → |1〉, |3〉 → |2〉, |4〉 →
|2〉 and |4〉 → |1〉, transitions, respectively

ence that occurs at ω = ωa. It has been suggested [27] that
such a system may function as an optical switch where a light
source of one frequency will cause the absorption of light
at a second frequency. Ultra-slow light pulse propagation
has been recently observed in both cold and hot atoms [28–
30]. Hau et al. [28] have reported the experimental observa-
tion that the speed of light pulses through a Bose–Einstein
condensate is slowed to a mere 17 m/s, down by a factor
of nearly 20 million from light’s speed in a vacuum. The
problem is based on combining EIT and cold atom tech-
nology to create a sharp excitation having a transmission
linewidth, which is much less than the natural linewidth of the
atoms [28]. The consequences of nonlinear optics using sub-
natural linewidths and ultraslow group velocities have been
recently considered by Harris and Hau [31]. Experimental ob-
servations comparable to those of Hau et al. [28] have been
also reported by Budker et al. [29] and by Kash et al. [30] to
occur at room temperature.

In our previous work [32], the excitation spectra for an
electron in the excited state |3〉 of the four-level atom depicted
in Fig. 1 has been calculated. It is shown that in the low-
intensity limit of all three laser fields and when the two laser
fields a and c are on two-photon resonance, the laser field b
operating in the |2〉 ↔ |4〉 transition destroys the destructive
interference that occurs between the spontaneous radiative
decay and the process arising from the combined field of all
three laser fields. The result [32] is that the overall intensity of
the peak at the center of the line depends on the strength of the
laser field b and it takes negative values indicating that LAWI
can occur at the one-photon frequency ω = ωa. The spectra
of several induced excitations that occur at the one-photon
frequency ω = ωa have been also considered and discussed
in [32]; the reader is referred to [32] for details.

The purpose of the present study is to calculate the in-
terference spectra of a number of excitations that occur near
the generated three-photon frequency ω = ωa +ωb −ωc for
the four-level atom depicted in Fig. 1. It is shown that at
two-photon resonance of the two laser fields a and c and in
the low-intensity limit of all three laser fields, the interfer-
ence spectra for an electron is the excited |4〉 arising from
the competition of the following processes: a spontaneous
one described by the weak signal (vacuum) field that has
a short lifetime, induced excitations by the combined field of
all three laser fields whose lifetimes are long and determined
by the strength of the laser fields in question and induced
excitations arising from the combined field of the two laser
fields a and c, which have short lifetimes. The induced ex-

citations by the combined field of the three laser fields form
a superposition of two asymmetric Lorentzian lines, which
compete with the spontaneous radiative emissions |4〉 → |1〉
and |4〉 → |2〉 by the excited state |4〉 of the atom, and the
frequency profiles of their peaks cancel each other out com-
pletely at the center of the line, namely, at the three-photon
generated frequency ω = ωa +ωb −ωc. The remaining inten-
sity of the peak at ω = ωa +ωb −ωc depends on the strength
of the combined field of the two laser fields a and c and takes
negative values and, therefore, LAWI is likely to occur at the
generated frequency ω = ωa +ωb −ωc. Therefore, the pres-
ence of the combined field of the two laser fields a and c
destroys the destructive interference, which occurs between
the processes of spontaneous emissions and that arising from
the combined field of the three laser fields and creating the ap-
pearance of LAWI at the generated frequency ω = ωa +ωb −
ωc. This case is analogous to that predicted in [32], where
the laser field b creates the appearance of LAWI in the spec-
trum of an electron in the excited state |3〉 at the one-photon
frequency ω = ωa.

The excitation spectra for the state described by the op-
erator Φbc(t) defined by (2), which represents the physical
process arising from the symmetric linear superposition of the
excited state |4〉 and the two-photon Raman process, where
the excited state |3〉 of the atom absorbs a laser photon b and
emits simultaneously a laser photon c, have been found to be
similar to those describing the excitation spectra for the elec-
tron in the excited state |4〉.

The combined field of the three laser fields is found to
induce the following physical processes at the generated fre-
quency ω = ωa +ωb −ωc: (i) the absorption of a laser pho-
ton b by the second ground state |2〉 of the atom; (ii) the
three-photon process where two laser photons a and b are ab-
sorbed while a laser photon c is emitted simultaneously by
the ground state |1〉 of the atom; and (iii) the antisymmetric
linear superposition of the processes (i) and (ii), the state of
which is defined by the operator Ψabc(t) given by (41). It is
shown that the spectral functions for the three processes in
question describe induced absorption processes when all the
laser fields are at resonance with the corresponding transi-
tions, while at finite detunings they represent absorbing states
or states exhibiting LAWI near the frequency ω = ωa +ωb −
ωc, depending on the values of the frequency detunings in-
volved. The characteristic property of the induced excitations
by the combined field of all three laser fields is that their
linewidths are much less than the natural linewidths of the
excited states of the atom.

The problem is formulated in Sect. 1, where the model
Hamiltonian for the system under investigation is developed.
The equations of motion for the required Green functions are
derived in Sect. 2, where all the three laser fields have been
treated as classical entities while the radiation (vacuum) field
has been quantized. In Sects. 3 and 4, the expressions for
the relevant Green functions have been obtained when the
two laser fields a and c are on two-photon resonance and
when the low-intensity limit for all three laser fields is ap-
plicable. The spectral functions describing the interference
spectra under investigation have been derived in Sect. 5 while
the spectra for the antisymmetric three-photon state have been
considered in Sect. 6. The computed spectra are graphically
presented and discussed. A brief summary of the derived re-
sults is given in Sect. 7.
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1 The model Hamiltonian

The model Hamiltonian for the atomic system depicted in
Fig. 1 in the electric dipole and rotating wave approximation
may be taken as

H = ω21α2
†α2 +ω31α3

†α3 +ω41α4
†α4

+ igbc

2

[
α2
† exp (−iωbt) Φbc(t)−Φbc

†(t)α2 exp (iωbt)
]

+ iga

2

[
α1
†α3 exp (−iωat)−α3

†α1 exp (iωat)
]

+
∑
k,λ

ckβkλ
†βkλ + 1

2
iωp

×
∑
k,λ
i, j

[
fij (k, λ)

ωji

ck

]1/2 (
αi
†αjβkλ

†−αj
†αiβkλ

)
, (1)

where

Φbc(t) = [
gbα4 + gcα3 exp (iωbct)

]
/gbc, ωbc = ωb −ωc

(2)

with g2
bc = g2

b + g2
c and αi ,

†αi are the Fermi–Dirac creation
and annihilation operators describing the electronic states
i = 1, 2, 3 and 4 and ηi = αi

†αi is the number operator of the
state |i〉. The functions fij(k, λ) are the oscillator strengths
for the atomic transitions |i〉 ↔ | j〉, ωp is the atomic plasma
frequency defined as ω2

p = 4πe2/mV , where −e and m are
the charge and the mass of the electron, and V is the vol-
ume of the sample container. The functions ga, gb, and gc are
the classical Rabi frequencies of the laser fields a, b and c,
defined as ga = P31 · Ea, gb = P24 · Eb and gc = P32 · Ec, re-
spectively, where Ea, Eb and Ec are the strengths of the laser
fields a, b and c, while P31, P24 and P32 designate the tran-
sition dipole moments; units with h = 1 are used throughout.
The frequency modes ωa, ωb and ωc are defined as ωa = ω31 +
∆a, ωb = ω42 +∆b and ωc = ω32 +∆c where ω31 = ω3 −ω1,
ω42 = ω4 −ω2 and ω32 = ω3 −ω2 are the transition frequen-
cies while ∆a, ∆b and ∆c are the detunings of the laser
fields a, b and c, which are coupled to the electronic allowed
transitions |3〉 ↔ |1〉, |4〉 ↔ |2〉 and |2〉 ↔ |3〉, respectively.
The excited state |2〉 is a metastable one having a very long
lifetime. The creation and annihilation operators βkλ

† and
βkλ, respectively, describe the vacuum electromagnetic field,
which is quantized with wavevector k, frequency ck and trans-
verse polarization λ = 1, 2. Since the state |2〉 is a metastable
one, the transition |1〉 ↔ |2〉 is electric dipole forbidden and is
excluded from the last term on the right-hand side (rhs) of (1).

In writing (1) we have taken into consideration the rela-
tion η1 +η2 +η3 +η4 = 1.

The first three terms on the rhs of (1) describe the free
atomic fields, while the fourth and fifth terms designate the
interaction of the atom with the three laser fields, respectively,
where the three laser fields have been treated classically. The
last two terms denote the free vacuum (signal) field and its in-
teraction with the atomic levels, respectively. The two-photon
operator Φbc(t) defined by (2) satisfies Fermi–Dirac statistics.

The spectral function describing the excitation spectra for
an electron in the excited state |4〉 is determined by [33] the
imaginary part of the Fourier transform of the single-electron

Green function G4(ω) = 〈〈α4; α4
†〉〉. Our task is to calculate

the Green function G4(ω) by means of the Hamiltonian (1),
and then we shall take the imaginary part of the expression
G4(ω) to derive the corresponding spectral function, which
describes the required excitation spectra. In deriving the ex-
pression for G4(ω) we shall treat the three laser fields in the
Hamiltonian (1) on the same footing and then the appropriate
limits will be taken to obtain the required specific solutions
from the derived general expression. We shall make use of the
Green function formalism, which has been described in detail
by many authors [33].

2 Equations of motion for the Green functions

Using the Hamiltonian (1) we derive the following equations
of motion [33] for the Green function G4(ω)

G4(ω) = 1

2πd4
− igb

2d4

〈〈
α2 exp (iωbt) ; α4

†
〉〉

= 1

2πd4
+ g2

b

4d2
4

G2b(ω), (3)

where

d4 = ω−ω41 + iγ4

2
= x +∆b +∆c −∆a + iγ4

2
,

x = ω−ωac
†

b = ω−ωa −ωb +ωc, γ4 = γ41 +γ42,

G2b(ω) = 〈〈
α2 exp (iωbt) ; α2

†
(−iωbt ′

)〉〉
,

γ41 = 4

3
(ω41/c)3 |P41|2, γ42 = 4

3
(ω42/c)3 |P42|2 .

The functions γ41 and γ42 denote the spontaneous transition
probabilities for the radiative decays |4〉 → |1〉 and |4〉 → |2〉,
respectively while 2/γ4 = 2/(γ41 +γ42) defines the radiative
lifetime of the excited state |4〉. The Green function G2b(ω)
describes the physical process where one photon of the laser
field b is absorbed by the ground state |2〉 of the atom. The
equation of motion for the Green function G2b(ω) turns out to
be

G2b(ω) = 1

2d2b
+ igbc

2d2b

〈〈
Φbc(t); α2

† exp
(−iωbt ′

)〉〉
= 1

2d2b
+ g2

bc

4d2
2b

Φbc(ω), (4)

where the operator Φbc(t) is defined by (2), the propaga-
tor d2b = ω−ω21 −ωb = x +∆a −∆c and Φbc(ω) denotes
the Green function Φbc(ω) = 〈〈Φbc(t); Φ†bc(t ′)〉〉. The Green
function Φbc(ω) represents the excitation arising from the lin-
ear superposition of the excited state |4〉 and the state describ-
ing the two-photon Raman process where a laser photon b is
absorbed while a laser photon c is emitted simultaneously by
the excited state |3〉 of the atom.

The equation of motion for the Green function Φbc(ω) =
〈〈Φbc(t); Φ†bc(t ′)〉〉 turns out to be

Φbc(ω) = Rbc

2πg2
bc

− i Rbc

2gbc

〈〈
α2 exp (iωbt) ; Φ†bc

(
t ′
)〉〉

− gagc

2gbcd3c
†

b

〈〈
α1 exp

(
iωac

†
bt
) ; Φ†bc

(
t ′
)〉〉

(5)
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where

Rbc = g2
b/d4 + g2

c/d3c
†

b,

ωac
†

b = ωa +ωb −ωc,

d3c
†

b = x +∆a + iγ3/2,

γ3 = γ31 +γ32,

γ31 = 4

3
(ω31/c)3 |P31|2,

γ32 = 4

3
(ω32/c)3 |P32|2 . (6)

The functions γ31 and γ32 denote the spontaneous transition
probabilities for the radiative decays |3〉 → |1〉 and |3〉 → |2〉,
respectively, while 2/γ3 = 2/(γ31 +γ32) defines the radiative
lifetime of the excited state |3〉. Using the equation of motion

〈〈
α2 exp (iωbt) ; Φ†bc

(
t ′
)〉〉= igbc

2d2b
Φbc(ω), (7)

we may rewrite (5) as

Φbc(ω) = Rbc/2πg2
bc

(1 − Rbc/4d2b)
− igagc/2d3c

†
b

gbc(1 − Rbc/4d2b)

× 〈〈α1 exp
(
iωac

†
bt
) ; Φ†bc

(
t ′
)〉〉

= Rbc/2πg2
bc

(1 − Rbc/4d2b)
+ g2

a g2
c/4d2

3c
†

b

g2
bc(1 − Rbc/4d2b)

G1ac
†

b(ω),

(8)

where the Green function G1ac
†

b(ω) is defined as

G1ac
†

b(ω) = 〈〈
α1 exp

(
iωac

†
bt
) ; α1

† exp
(−iωac

†
bt ′
)〉〉

.

The first term on the rhs of (8) represents the excitation spec-
tra arising from the linear superposition of the excited state
|4〉 and the two-photon Raman process where the excited state
|3〉 of the atom absorbs a laser photon b and emits simultan-
eously a laser photon c. The last term designates the inter-
ference arising from the presence of the ground level |1〉 and
the laser field a operating in the |1〉 ↔ |3〉 transition, into the
three-level system in the “V” configuration formed by the lev-
els |2〉, |4〉 and |3〉 of the atom. The Green function G1ac

†
b(ω)

describes a three-photon process where two laser photons a
and b are absorbed while a laser photon c is emitted simultan-
eously by the ground state |1〉 of the atom.

Substitution of (8) into (4) and then the derived result into
(3) we obtain

G2b(ω) = 2d4d3c
†

b

2πDbc
+ g2

ag2
cd2

4

16D2
bc

G1ac
†

b(ω), (9)

G4(ω) = (d2bd3c
†

b − g2
c/4)

2πDbc
+ g2

a g2
bg2

c

64D2
bc

G1ac
†

b(ω), (10)

where

Dcb = Dcb(ω) = d2bd4d3c
†

b − g2
b

4
d3c
†

b − g2
c

4
d4. (11)

The last terms on the rhs of (8)–(10) indicate that the three-
photon process described by the Green function G1ac

†
b(ω)

creates the interference into the spectra of those repre-
sented by the Green functions Φbc(ω), G2b(ω) and G4(ω),
respectively.

Using the Hamiltonian (1) we derive now the equation of
motion for the Green function G1ac

†
b(ω), which turns out to

be

G1ac
†

b(ω) = 1

2πdc
†

b
+ iga

2dc
†

b
G3c

†
b,1ac

†
b(ω), (12)

G3c
†

b,1ac
†

b(ω) = iga

2d3c
†

b
G1ac

†
b(ω)− igc

2d3c
†

b
G2b,1ac

†
b(ω),

(13)

where use has been made of the following notation:

G3c
†

b,1ac
†

b(ω) =
〈〈

α3 exp (iωbct) ; α1
† exp

(−iωac
†

bt ′
) 〉〉

,

G2b,1ac
†

b(ω) =
〈〈

α2 exp (iωbt) ; α1
† exp

(−iωac
†

bt ′
) 〉〉

,

dc
†

ab = ω−ωa −ωb +ωc = x.

Substitution of (13) into (12) yields

G1ac
†

b(ω) =
[

d3c
†

b

2π
+ gagc

4
G2b,1ac

†
b(ω)

]/
Da

= d3c
†

b

2πDa
+ g2

a g2
c

16D2
a

G2b(ω), (14)

where

Da = d3c
†

bdc
†

ab − g2
a/4.

The solution of (8)–(10) and (14) yields

G4(ω) = (
d2b Da − g2

cdc
†

ab/4
)
/2πD4 (15)

G2b(ω) = d4 Da/2πD4, (16)

G1ac
†

b(ω) = Dbc/2πD4, (17)

Φbc(ω) = d2b
(
g2

b Da + g2
cd4dc

†
ab
)
/

2πg2
bc D4, (18)

where

D4 = D4(ω) = (
dc
†

abd3c
†

ab − g2
a/4
) (

d4d2b − g2
b/4
)

− g2
cd4dc

†
ab/4. (19)

The expression (15) for the Green function G4(ω) describes
the excitation spectrum of an electron in the excited state |4〉,
while the expression (16) represents the excitation spectrum
for the physical process where a laser photon b is absorbed
by the ground state |2〉 of the atom. The Green function
G1ac

†
b(ω) given by (17) designates the excitation spectrum of
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a three-photon process where two laser photons a and b are
absorbed while a laser photon c is emitted simultaneously by
the ground state |1〉 of the atom. The Green function Φbc(ω)
given by the expression (18) denotes the excitation spectrum
arising from the linear superposition of the excited state |4〉
and the two-photon Raman-type process where a laser pho-
ton b is absorbed while a laser photon c is emitted simultan-
eously by the excited state |3〉 of the atom. No approximations
have been made in the derivation of expressions (15)–(18),
where the three laser fields have been treated classically and
on the same footing; hence, (15)–(18) are exact within the
limits of the model Hamiltonian (1).

3 Two-photon resonance

When the two lasers a and c are tuned to the two-photon
resonance, the detunings ∆a and ∆c become equal and the
frequency separation between the two laser modes is equal to
the splitting between the two lower states of the atom, i.e.,
ω21 = ωa −ωc. At this limit, the propagators d2b and dc

†
ab be-

come equal to d2b = dc
†

ab = x while d4 = x +∆b + iγ4/2 and
d3c
†

ab = x +∆a + iγ3/2 in the expressions (15)–(19).

4 The low-intensity limit

The low-intensity limit for all the three laser fields occurs
when γ 2

31 � g2
a, γ 2

32 � g2
c, γ 2

42 � g2
b and γ 2

41 � g2
b. At the

low-intensity limit and at two-photon resonance, the function
D4(ω) defined by (19) for ∆a = ∆c factorizes into

D4(ω) = D4 = (x +∆b + iγ4/2) (x +∆a + iγ3/2)

× (x + iγ+/4) (x + iγ−/4) , (20)

where

γ± = γabc ∓ (γ 2
abc −4γaγb/λaλb

)1/2
, γ+ +γ− = 2γabc,

γ+γ− = 4γaγb/λaλb, (21)

and the following definitions have been used: γabc = γac/λa +
γb/λb, γac = γa + γc, γa = g2

a/γ3, γb = g2
b/γ4, γc = g2

c/γ3,
λa = 1 +4n2

a, λb = 1 +4n2
b, na = ∆a/γ3 and nb = ∆b/γ4.

Substituting (20) into (15)–(18), and after expanding the
numerators in power series at the roots of the corresponding
denominators, and retaining only the first nonvanishing terms
of the order g2

ac/γ
2
3 and g2

b/γ
2
4 , we obtain

G4(ω) = 1

2π

×
[

1 −µac (vba +2imba)

x +∆b + iγ4/2
+
(

γac

γ34λaλab

)
(vba +2imab)

x +∆a + iγ3/2

]

− 1

4πγ4λb(γ+ −γ−)

×
[
γ+
(

µ+ +2iv+
x + iγ+/4

)
−γ−

(
µ− +2iv−
x + iγ−/4

)]
, (22)

G2b(ω) = 1

2π(γ+ −γ−)

×
[
γ+ −2γa(1 +2ina)/λa

x + iγ+/4
− γ− −2γa(1 +2ina)/λa

x + iγ−/4

]
, (23)

G1ac
†

b(ω)= 1

2π(γ+ −γ−)

[
γ+ −2µ−4is

x + iγ+/4
− γ− −2µ−4is

x + iγ−/4

]
,

(24)

Φbc(ω) = g2
b

2πg2
bc

[
1 −µa (vba +2imba)

x +∆b + iγ4/2

+ g2
c/g2

b +γa(vab +2imab)/γ34λaλab

x +∆a + iγ3/2

]

− 1

8πg2
bc(γ+ −γ−)

[
γ 2

+

(
2µ−vγ− +4i(s−mγ−/2)

x + iγ+/4

)

−γ 2
−

(
2µ−vγ+ +4i(s−mγ−/2)

x + iγ−/4

)]
, (25)

where use has been made of the following notation:
µac = γ3γac/γ4γ34λbλab, vab = 1 − 4nanab, mab = na + nab,
vba = 1−4nbnab, mba = nb +nab, nab = ∆ab/γ34, ∆ab = ∆a −
∆b, γ34 = γ3 −γ4, λab = 1 +4n2

ab, v = 1 −4nanb, m = na +
nb, µ = γb/λb + γc/λa, s = nbγb/λb + naγc/λa, µ± = γ± −
2mγac/λa, v± = γ±nb −2mγac/λa and µa = γaγ3/γ4γ34λbλab.
The expressions (22)–(25) are valid in the low-intensity limit
for the three laser fields and when the two-photon reson-
ance condition ω21 = ωa −ωb is applicable, namely when
∆a = ∆c.

5 Spectral functions

Taking the imaginary part of (22)–(25) we obtain

I4(ω) = 2

γ4

(1 −µacvba)γ
2
4 /4 + (x +∆b)µacmbaγ4

(x +∆b)2 +γ 2
4 /4

+ 2γac

γ3γ34λaλab

vabγ
2
3 /4 − (x +∆a)mabγ3

(x +∆a)2 +γ 2
3 /4

− 2

γ4(γ+ −γ−)λb

[
µ+γ 2+/16 + xv+γ+/2

x2 +γ 2+/16

− µ−γ 2−/16 − xv−γ−/2

x2 +γ 2−/16

]
, (26)

I2b(ω) = 4

γ+ −γ−

[
(1 −2γa/λaγ+)γ 2+/16 + xγana/λa

x2 +γ 2+/16

− (1 −2γa/λaγ−)γ 2−/16 + xγana/λa

x2 +γ 2−/16

]
, (27)

I1ac
†

b(ω) = 4

γ+ −γ−

[
(1 −2µ/γ+)γ 2+/16 + xs

x2 +γ 2+/16

− (1 −2µ/γ−)γ 2−/16 + xs

x2 +γ 2−/16

]
, (28)



44

IΦbc(ω) = 2

g2
bc

{
γb

(
(1−µacvba)γ

2
4 /4+ (x +∆b)µambaγ4

(x +∆b)2 +γ 2
4 /4

)

+ (γc +γaγbγ4vab/γ3γ34λaλab)γ
2
3 /4− (x +∆a)γaγbmabγ4/γ3γ34λaλab

(x +∆a)2 +γ 2
3 /4

− 1

2(γ+ −γ)

[
γ+

(
(2µ+vγ−) γ 2+/16+ x (s −mγ−/2) γ+

x2 +γ 2+/16

)

−γ−

(
(2µ−vγ+) γ 2−/16− x (s −mγ+/2) γ−

x2 +γ 2−/16

)]}
, (29)

where I4(ω) = −2π Im G4(ω), I2b(ω) = −2π Im G2b(ω),
I1ac
†

b(ω) = −2π Im G1ac
†

b(ω), IΦbc(ω) = −2π Im Φbc(ω)
and Im denotes the imaginary part of the expression in ques-
tion.

The spectral function (26) describes the excitation spec-
trum of an electron in the excited state |4〉 when the two
laser fields a and c are tuned to the two-photon resonance,
ω21 = ωa −ωc and when the low-intensity limit for the three
laser fields is applicable. It represents the interference spectra
arising from the competition of four excitations which have
different lifetimes. The first term on the rhs of (26) describes
an asymmetric Lorentzian line which is peaked at the fre-
quency ω = ωa +ωb −ωc −∆b and has a spectral width equal
to γ4/2. The maximum intensity of this peak at the frequency
ω = ωa +ωb −ωc −∆b is equal to 2(1 −µacvba)/γ4, where
the first term γ4/2 denotes the radiative lifetime due to the
spontaneous radiative decays |4〉 → |2〉 and |4〉 → |1〉 while
the second term −2µacvba/γ4, takes negative values, and has
been induced by the combined field of the two lasers a and c
that operate in the |1〉 ↔ |3〉 and |2〉 ↔ |3〉 transitions, respec-
tively. The asymmetry of this peak at the frequency ω �= ωa +
ωb −ωc −∆b is also induced by the combined field of the
two laser fields a and c, it is equal to µacvbaγ4 and its impor-
tance depends on the numerical values of the detuning ∆a and
∆b. The second term on the rhs of (26) denotes an asymmet-
ric Lorentzian line that peaks at the frequency ω = ωa +ωb −
ωc −∆a and has a spectral width equal to γ3/2. This peak is
induced by the combined field of the two lasers a and c and
its maximum intensity at ω = ωa +ωb −ωc −∆a is equal to
2γacvab/γ3γ34λaλab. The asymmetry of this peak at ω �= ωa +
ωb −ωc −∆a is equal to mabγ3 = (na +nab)γ3 that depends
on the numerical values of the detunings ∆a and ∆b.

The last two terms on the rhs of (26) designate the su-
perposition of the two asymmetric Lorentzian lines that are
peaked at the generated frequency ω = ωa +ωb −ωc but have
different spectral widths of the order γ+/2 and γ−/2, respec-
tively. These two superposed excitations are induced by the
combined field of the three lasers a, b and c when the two
lasers a and c are on a two-photon resonance, ω21 = ωa −
ωc. At the frequency ω = ωa +ωb −ωc, the maximum inten-
sity arising from the superposition of these two induced peaks
is equal to −2(µ+ −µ−)/λbγ4(γ+ −γ−) = −2/λbγ4, which
takes negative values. The asymmetry of these two peaks at
ω �= ωa +ωb −ωc depends on the numerical values of the
expressions ν+γ+/2 and ν−γ−/2, respectively. Peaks having
positive and negative maximum intensities (heights) indicate
that the physical processes of absorption (attenuation) and
stimulated emission (amplification), respectively, are likely to
occur at the corresponding frequencies.

The total maximum intensity I4(ωa +ωb −ωc) at the gen-
erated frequency ω = ωa +ωb −ωc may be determined from

(26) and is equal to

I4(ωa +ωb −ωc) = 2

γ4

(
1

λb
− 1

λb
− γac

γ34λab
Sab

)

= −2γac

γ4γ34λab
Sab , (30)

where

Sab = γ3

γ4λ
2
b

(
1 −4n2

b −8nbnab
)− γ4

γ3λ2
a

(
1 −4n2

a −8nanab
)

.

(31)

The first two terms on the rhs of (30) imply that at ω = ωa +
ωb −ωc, the maximum intensities of the peaks describing the
spontaneous radiative decay and the excitations induced by
the combined field of the three laser fields cancel each other
out completely, while the remaining last term denotes the
height of the peak which is induced by the combined field of
the lasers a and c. In this case the combined field of the two
lasers a and c destroys the coherence, which is achieved by
the cancellation of the spontaneous radiative decay processes
|4〉 → |1〉 and |4〉 → |2〉 and by the processes arising from the
combined field of the three laser fields. The remaining net in-
tensity depends on γac, which is the strength of the combined
field of the lasers a and c.

When the three lasers are tuned at resonance with the cor-
responding transitions, i.e. when ∆a = ∆b = ∆c = 0, which
implies that ω21 = ωa −ωc and ω43 = ωb −ωc, where the laser
fields a and c as well as those of b and c are at two-photon
resonance, respectively, then (30) becomes equal to

I4(ωa +ωb −ωc) = −2γac

γ4

(
1

γ4
+ 1

γ3

)
. (32)

In this case the height of the peak at the frequency ω = ωa +
ωb −ωc takes negative values indicating that the process
of stimulating emission (amplification) is likely to occur at
the corresponding frequency. This behaviour is illustrated in
Fig. 2, where the relative intensity γ4 I4(ω) in units of 1/γ4
is plotted versus the relative frequency (ω−ωa −ωb +ωc)/γ4
for ∆a = ∆b = ∆c = 0, γ3 = γ4 and for values of γa = γc =
γb = 0.125γ4, 0.25γ4 and 0.5γ4, respectively. Figure 2 indi-
cates that for values of γac = 0.125γ4, 0.25γ4 and 0.5γ4, the
height I4(ωa +ωb −ωc) of the peak at the frequency ω = ωa +
ωb −ωc takes the numerical values of −1/γ4, −2/γ4 and
−4/γ4, respectively.

We may rewrite (32) as

γ4 I4(ωa +ωb −ωc)/ (γac/γ4) = −2 (1 +γ4/γ3) , (33)

which implies that for given values of γac/γ4, the maximum
height of the peak at ω = ωa +ωb −ωc takes always nega-
tive values and its magnitude depends on the value of the
ratio γ4/γ3. The behaviour of the spectral function (26) as
a function of the ratio γ4/γ3 is illustrated in Fig. 3, where the
relative intensity γ4 I4(ω) in units of 1/γ4 is plotted versus
the relative frequency (ω−ωa +ωb −ωc)/γ4 for ∆a = ∆b =
∆c = 0, γa = γb = γc, γa/γ4 = 0.5 and for different values
of γ4/γ3 = 0.6, 1, 1.5, 3, 4 and 5, respectively. It is shown in
Fig. 3 that the higher the value of the ratio γ4/γ3, the higher is
the negative value (in absolute units) of the relative intensity
at the frequency ω = ωa +ωb −ωc.
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Fig. 2. Interference spectra for an electron in the excited state |4〉 in the
low-intensity limit of all three laser fields and when the laser fields a
and c are on two-photon resonance. The relative intensity γ4 I4(ω) computed
from (26) is plotted versus the relative frequency (ω−ωa −ωb +ωc)/γ4
for ∆a = ∆b = ∆c = 0, γa = γb = γc, γ3 = γ4 and for different values of
γa = g2

a/γ4, namely, for γa = 0.125γ4, 0.25γ4 and 0.5γ4, respectively

When na = nb, namely when ∆b/∆a = γ4/γ3 then (30)
becomes

γ4 I4 (ωa +ωb −ωc) = −2γac

(
1

γ3
+ 1

γ4

)(
1 −12n2

a

)
(
1 +4n2

a

)3 . (34)

The behaviour of (34) is illustrated in Fig. 4 where γ4 I4(ωa +
ωb −ωc)/2γac(

1
γ3

+ 1
γ4

) is plotted versus the relative detuning
na = ∆a/γ3. It is shown in Fig. 4 that when ∆b/∆a = γ4/γ3,
the height of the peak at ω = ωa +ωb −ωc takes negative
values for na in the interval 0 ≤ na < 0.29, it becomes posi-
tive for na in the interval 0.29 < na < 2, while it vanishes for
na = 0.29 and for na > 2.

When the detunings ∆a and ∆b become equal, i.e. when
∆a = ∆ and ∆b = ∆, then nab = 0, λab = 1 and (30) takes the
form

γ4 I4 (ωa +ωb −ωc) = 2 (γac)

γ4

(
1 + γ4

γ3

)

×
[

−1 + 48∆4

γ 2
3 γ 2

4

+4∆2
(

1

γ 2
3

+ 1

γ 2
4

)]/
λ2

aλ
2
b . (35)

The expression (35) is illustrated in Fig. 5, where the quan-
tity γ4 I4(ωa + ωb − ωc)/(γac/γ4) in units of (γac/γ

2
4 ) is

Fig. 3. As in Fig. 2 but for γa = 0.5γ4 and for different values of γ4/γ3 =
0.6, 1, 1.5, 3, 4 and 5, respectively

Fig. 4. Variation of the relative height γ4 I4(ωa +ωb −ωc) of the peak
at the frequency ω = ωa +ωb −ωc. The relative intensity γ4 I4(ωa +ωb −
ωc)/2γac(1/γ3 + 1/γ4) in units of (2γac/γ4)(1/γ3 + 1/γ4) computed from
(34) is plotted versus the relative detuning na = ∆a/γ3 for ∆a/γ3 = ∆b/γ4

plotted versus the relative detuning n = ∆/γ4 for differ-
ent values of the ratio γ4/γ3 = 0.5, 1, 6 and 10, respec-
tively. It is shown in Fig. 5 that the height I4(ωa +ωb −
ωc) of the peak at the frequency ω = ωa +ωb −ωc takes
negative values for very small values of n = ∆/γ4, it be-
comes positive only in a very narrow range of values for
n = ∆/γ4 and then it practically vanishes for higher values
than n = ∆/γ4 > 0.3.

When ∆a �= ∆c and ∆2
ab � γ 2

34, then in the limit when γ3
takes values close to those of γ4, i.e. when γ3 → γ4, (30) be-
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comes equal to

γ4 I4 (ωa +ωb −ωc) = 4γac

γ4λ2
aλ

2
b

×
{

8∆a∆b

γ 2
4

[
1 + 2

γ 2
4

(
∆2

a +∆2
b +∆a∆b

) ]−1
}

. (36)

In this case the height I4(ωa +ωb −ωc) of the peak at the fre-
quency ω = ωa +ωb −ωc may take positive or negative values
depending on the values of the parameters ∆a, ∆b and γ4.
However, when I4(ωa +ωb −ωc) is positive, which occurs
only when the detunings ∆a, and ∆b become much larger
than γ4, the magnitude of the height of the peak is negligible.

The rhs of the expressions (32) and (33) for the height
I4(ωa +ωb −ωc) are similar to those of I3(ωa) given by (25)
and (26) in [32], respectively, and one can be obtained from
the other through the interchange gb� gac and γ3� γ4. The
basic difference is that I4(ωa +ωb −ωc) is the height of the
peak at the frequency ω = ω41 = ωa +ωb −ωc arising from
a three-photon process while I3(ωa) in [32] is the height of
the peak at the frequency ω = ω31 = ωa, which corresponds to
one-photon process.

The spectral function (27) represents the excitation spec-
tra for the physical process where a laser photon b is absorbed
by the second ground state |2〉 of the atom. It consists of
the superposition of two asymmetric Lorentzian lines peaked
at the same frequency ω = ωa +ωb −ωc but having different
spectral widths of the order γ+/4 and γ−/4, respectively. The
maximum intensity of the peak arising from the superposi-
tion of the two asymmetric lines at the generated frequency
ω = ωa +ωb −ωc is determined from (27) and is equal to

I2b (ωa +ωb −ωc) = 8γa

γ+γ−λa
= 2λb

γb
, (37)

which implies that the height of the peak at frequency ω =
ωa +ωb −ωc takes always positive values indicating that the
physical process of absorption (attenuation) takes place. The
behaviour of the spectral function (27) is illustrated in Fig. 6,
where the relative intensity (γb/λb)I2b(ω) in units of λb/γb is
plotted versus the relative frequency 4(ω−ωa −ωb +ωc)/γ+
for γa/λa = γb/λb = γc/λa and for different values of the rela-
tive detuning na = ∆a/γ3 = 0, 0.5, 1, 1.5 and 2, respectively.
Inspection of Fig. 6 indicates that for na �= 0, the relative in-
tensity (γb/λb)I2b(ω) takes negative and positive values for
positive and negative values of the relative frequency 4(ω−
ωa −ωb +ωc)/γ+, respectively.

The spectral function (28) describes a three-photon pro-
cess where two laser photons a and b are absorbed while
a laser photon c is emitted simultaneously by the ground |1〉
of the atom. It consists of the superposition of two asymmet-
ric Lorentzian lines that peak at the same frequency ω = ωa +
ωb −ωc but they have different spectral widths equal to γ+/4
and γ−/4, respectively. The maximum intensity arising from
the superposition of the two asymmetric lines at the generated
frequency ω = ωa +ωb −ωc is calculated from (28) and equal
to

I1ac
†

b(ωa +ωb −ωc) = 8µ

γ+γ−
= 2

(
λa

γa
+ λbγc

γaγb

)
(38)

which takes always positive values indicating that the phys-
ical process of absorption takes place for the three-photon

Fig. 5. As in Fig. 4. The relative intensity γ4 I4(ωa +ωb −ωc)/(γac/γ4) in
units of γac/γ

2
4 computed from (35) is plotted versus the relative detuning

n = ∆/γ4 for ∆a = ∆, ∆b = ∆ and for different values of the ratio γ4/γ3 =
0.5, 1, 6 and 10, respectively

Fig. 6. Interference spectra describing the physical process where a laser
photon b is absorbed by the second ground state |2〉 of the atom. The rela-
tive intensity (γb/λb)I2b(ω) in units of λb/γb computed from (27) is plotted
versus the relative frequency 4(ω−ωa −ωb +ωc)/γ+ for γa/λa = γb/λb =
γc/λa for different values of the relative detuning na = 0, 0.5, 1, 1.5 and 2,
respectively
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process in question. The asymmetric behaviour of the spec-
tral function (28) is demonstrated in Fig. 7, where the relative
intensity (γa/λa)I1ac

†
b(ω) in units of λa/γa is plotted versus

the relative frequency 4(ω−ωa −ωb +ωc)/γ+ for γa/λa =
γb/λb = γc/λa and different values of the relative detuning
na = nb = 0, 0.5, 1, 1.5 and 2, respectively. Figure 7 indicates
that the height of the overall peak I1ac

†
b(ω) takes negative and

positive values for positive and negative values of the relative
frequency 4(ω−ωa −ωb +ωc)/γ+, respectively.

The spectral function (29) represents the excitation spec-
trum arising from the linear superposition of the excited state
|4〉 and the state describing the two-photon Raman process
where a laser photon b is absorbed while a laser photon c is
emitted simultaneously by the excited state |3〉 of the atom.
The four terms on the rhs of (29) are similar in form with
the corresponding ones in (26). The maximum intensity of
the overall peak at the frequency ω = ωa +ωb −ωc is derived
from (29) in the form

Iφbc (ωa +ωb −ωc) = 2

g2
bc

(
γb

λb
+ γc

λa
− γb

λb
− γc

λa
− γaγbSab

γ34λab

)

= −2γaγb

g2
bcγ34λab

Sab, (39)

where the function Sab is determined by (31). The first four
terms on the rhs of (39) indicate that at the frequency ω =

Fig. 7. Three-photon interference spectra describing the physical process
where two laser photons a and b are absorbed while a laser photon c is emit-
ted simultaneously by the ground state |1〉 of the atom. The relative intensity
(γa/λa)I1ac†b(ω) in units of λa/γa is plotted versus the relative frequency
4(ω−ωa −ωb +ωc)/γ+ for γa/λa = γb/λb = γc/λa, na = nb and for differ-
ent values of the relative detuning na = 0, 0.5, 1, 1.5 and 2, respectively

Fig. 8. Interference spectra describing the state of the operator Φbc(t), which
arises from the linear superposition of the excited state |4〉 and the state
describing the two-photon Raman process where a laser photon b is ab-
sorbed while a laser photon c is emitted simultaneously by the excited state
|3〉 of the atom. The relative intensity γ4 Iφbc(ω) in units of 1/γ4 computed
from (29) is plotted versus the relative frequency (ω−ωa −ωb +ωc)/γ4 for
γa = γb = γc, ∆a = ∆b = ∆c, γa/γ4 = 0.5 and for different values of the
ratio γ4/γ3 = 0.6, 1, 1.5, 2, 3, 4 and 5, respectively

ωa +ωb −ωc the contributions to the height of the peaks de-
scribing the excitations induced by the laser fields b and c are
cancelled out completely by those excitations induced by the
combined field of the three laser fields, while the remaining
last term denotes the height of the peak arising from the cross
terms corresponding to the strengths of the laser fields a and b.

When the three laser fields are tuned at resonance with the
corresponding transitions, namely when ∆a = ∆b = ∆c = 0,
then (39) is reduced to

Iφbc (ωa +ωb −ωc) = −2γaγb

g2
bc

(
1

γ3
+ 1

γ4

)
, (40)

which implies that the height of the peak at the frequency
ω = ωa +ωb −ωc takes always negative values indicating
that the process of stimulating emission will occur at the
corresponding frequency. The behaviour of the spectral func-
tion (29) is illustrated in Fig. 8, where the relative intensity
γ4 Iφbc(ω) is plotted in units of 1/γ4 versus the relative
frequency (ω −ωa − ωb + ωc)/γ4 for ∆a = ∆b = ∆c = 0,
γa = γb = γc, γa/γ4 = 0.5 and for different values of γ4/γ3 =
0.6, 1, 1.5, 3, 4 and 5, respectively. Figure 8 is similar to
Fig. 3 and implies that the relative intensity Iφbc(ω) at the
frequency ω = ωa +ωb −ωc takes negative values which are
higher in absolute units the higher the values of the ratio
γ4/γ3.

6 Antisymmetric three-photon state

We introduce the antisymmetric three-photon operator Ψabc(t)
as

Ψabc(t) = [gcα1 exp i(ωa +ωb −ωc)t − gaα2 exp(iωbt)]/gac,
(41)
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which satisfies Fermi–Dirac statistics and g2
ac = g2

a + g2
c .

Using the Hamiltonian (1), we derive the equation of mo-
tion for the Green function Ψ(ω) = 〈〈Ψabc(t); Ψabc

†(t ′)〉〉 in
the form

Ψ(ω) =
(

g2
a

d2b
+ g2

c

dc
†

ab

)
/2πg2

ac

− igagc

2gac

(
1

d2b
− 1

dc
†

ab

)
〈〈α3 exp(iωbct); Ψabc

†(t ′)〉〉

− igagb

gacd2b
〈〈α4; Ψabc

†(t ′)〉〉 . (42)

At two-photon resonance, where ω21 = ωa −ωc and d2b =
dc
†

ab, the second term on the rhs of (42) vanishes and then
considering the equation of motion of the Green function
〈〈α4; Ψabc

†(t ′)〉〉 with respect to the time argument t ′ we ob-
tain

Ψ(ω) = 1

2πd2b
+ g2

ag2
b

4g2
acd2

2b

G4,4(ω) (43)

where the expression for the Green function G4,4(ω) is
determined by (15) for d2b = dc

†
ab = ω−ωa −ωb +ωc. In

the absence of the laser field b, i.e. when gb = 0, the last
term on the rhs of (43) vanishes and the result for Ψac(t) =
[gcα1 exp i(ωa −ωc)t − gaα2]/gac is given by

〈〈Ψac(t); Ψac
†(t ′)〉〉 = 1

2π(ω−ωa +ωc)
(44)

which is a stationary state. The expression (44) describes
the well-known coherent nonabsorbing state for a three-level
atom in the “Λ” configuration [23–25, 34].

Substituting (22) into the last term on the rhs of (43) when
the low intensity limit is applicable, we obtain

Ψ(ω) = 1

2π(ω−ωa −ωb +ωc)
+ 2γaγb

2πλbγac(γ+ −γ−)

×
[

(µ+ +2iν+)/γ+
ω−ωa −ωb +ωc +2iγ+/4

− (µ− +2iν−)/γ−
ω−ωa −ωb +ωc + iγ−/4

]
. (45)

In deriving (45) we have retained only the last term on the rhs
of (22), because the contributions arising from the first two
terms of (22) to the final expressions of the intensities of the
peaks in question are negligible. Taking the imaginary part
of (45) we get

IΨ (ω) = δ (ω−ωa −ωb +ωc)+ 8γaγb

λbγac(γ+ −γ−)

×
[(

1

γ 2+

)
µ+γ 2+/16 − (ω−ωa −ωb +ωc)ν+γ+/2

(ω−ωa −ωb +ωc)2 +γ 2+/16

−
(

1

γ 2−

)
µ−γ 2−/16 − (ω−ωa −ωb +ωc)ν−γ−/2

(ω−ωa −ωb +ωc)2 +γ 2−/16

]
,

(46)

where IΨ (ω) = −2π Im Ψ(ω). The first term on the rhs
of (46) describes a delta-function distribution representing
the stationary part of the state at ω = ωa +ωb −ωc while the

Fig. 9. Interference spectra describing the antisymmetric three-photon state
Ψabc(t). The relative intensity γa IΨ (ω) in units of 1/γa computed from
(46) is plotted versus the relative frequency (ω−ωa −ωb +ωc)/γ+ for
γa/λa = γb/λb = γc/λa, na = nb and for different values of the relative de-
tunings na = 0, 0.25, 0.5, 0.6 and 0.75, respectively

second term describes the spectral function of the state of
question when gb �= 0 and consists of the superposition of two
asymmetric Lorentzian lines which are peaked at the gener-
ated frequency ω = ωa +ωb −ωc and have different spectral
widths of the order γ+/4 and γ−/4, respectively. The overall
height of the peak at the generated frequency ω = ωa +ωb −
ωc is determined from (46) and is equal to

IΨ (ωa +ωb −ωc) = 2

[
ν

(
λa

γa
+ λb

γb
+ γcλb

γaγb

)
− λa

γaγc

]
. (47)

For values of ∆a = ∆b = ∆c = 0 as well as for nanb < 1/4,
(47) implies that the height IΨ (ωa +ωb −ωc) of the peak at
the frequency ω = ωa +ωb −ωc takes positive values indi-
cating that the physical process of absorption takes place.
For values of ∆a �= 0, ∆b �= 0 and for nanb ≥ 1/4, the height
of the peak takes negative values indicating that stimulated
emission (amplification) is likely to occur at ω = ωa +ωb −
ωc.

The behaviour of the spectral function (46) is illustrated
in Fig. 9 where the relative intensity γa IΨ (ω) in units of
1/γa is plotted versus the relative frequency (ω−ωa −ωb +
ωc)/γ+ for γa/λa = γb/λb = γc/λa, na = nb and for different
values of the detuning na = 0, 0.25, 0.5, 0.6 and 0.75, respec-
tively. In this case the spectral widths γ+ and γ− are equal
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to γ+ = 0.763γa/λa and γ− = 5.24γa/λa and the lifetimes of
the states in question are of the order of 4/γ+ = 5.24λa/γa
and 4/γ− = 0.763λa/γa which are long in comparison to the
short radiative lifetimes 2/γ3 and 2/γ4 of the atomic states |3〉
and |4〉, respectively. It is shown in Fig. 9 that for na = 0 the
spectral function is a symmetric Lorenztian line with positive
height while for na > 0, the spectral functions describe asym-
metric Lorentzian lines where the height of the peaks takes
positive and negative values for negative and positive values
of the relative frequency (ω−ωa −ωb +ωc)/γ+, respectively.
Figure 9 indicates that the negative values of the height of
the peaks are higher in absolute units than the corresponding
positive ones, the higher the values of the relative detunings
na = nb. Considering that γa � γ3 and γa � γ4 and that the
heights of the peaks in Fig. 9 are measured in units of 1/γa
where 1/γa � γ3 and 1/γa � γ4 are applicable, the physical
process of induced absorption and stimulated emission de-
scribed in Fig. 9 for different values of na are of fundamental
importance since they are substantial in magnitude.

7 Summary and discussion

We have calculated the three-photon interference spectra for
a single electron in the excited state |4〉 of the four-level atom
depicted in Fig. 1. Using the Green function formalism [33]
we have derived the following expressions describing the
three-photon interference spectra: (i) for a single electron in
the excited state |4〉 determined by (15); (ii) for the physi-
cal process where a laser photon b is absorbed by the sec-
ond ground state |2〉 of the atom given by (16); (iii) for the
physical process where two laser photons a and b are ab-
sorbed while a laser photon c is emitted simultaneously by the
ground state |1〉 of the atom described by (17); and (iv) for the
electron state Φabc(t) arising from the symmetric linear super-
position of the electron state |4〉 and the two-photon Raman
process where a laser photon b is absorbed while a laser pho-
ton c is emitted simultaneously by the excited state |3〉 of the
atom determined by (18). An observation of the rhs of (8)–
(10) indicates that the three-photon Green function defined
by G1ac

†
b(ω) causes the interference into the spectra for the

three-level atom in the “V” configuration and is due to the
presence of both the ground state |1〉 and of the laser field a.
In the low-intensity limit of all three laser fields and when
the two laser fields a and c are at two-photon resonance, then
(15)–(18) are reduced to (22)–(25), respectively. At this limit,
the Green function defined by (24) is due to the combined
field of the three laser fields and, therefore, the interference
into the spectra previously discussed is entirely induced by
the presence of the combined field of the three laser fields.
The spectral functions determined by (26)–(29) describe the
physical processes in question and they have been derived
from (22)–(25), respectively.

When the three laser fields are at resonance with the cor-
responding transitions and when γa = γb = γc, the spectral
function (26) is illustrated in Figs. 2 and 3. The height of the
peak at the generated frequency ω = ωa +ωb −ωc takes nega-
tive values as shown in Fig. 2 for γ3 = γ4 and for γa/γ4 =
0.125, 0.2 and 0.5, as well as in Fig. 3 for γa/γ4 = 0.5 and
different values of γ4/γ3 = 0.6, 1, 1.5, 3, 4 and 5. It is indi-
cated in Fig. 3 that for a given value of γa/γ4 the higher the
value of the ratio γ4/γ3 the higher is the negative value in

absolute units of the relative intensity indicating that LAWI
occurs at the generated frequency ω = ωa +ωb −ωc. This be-
haviour is analogous to that predicted in [32] for the spectra
of an electron in the excited state |3〉 at the one-photon fre-
quency ω = ωa. The height of the peak at ω = ωa +ωb −ωc
as a function of na = ∆a/γ3 is shown in Fig. 4, while Fig. 5
indicates the variation of the height of the peak as a function
of n = ∆/γ4 for ∆a = ∆, ∆b = ∆ and for different values of
the ratio γ4/γ3. It is shown that at finite values of the detun-
ings and for special values of γ4/γ3, the height of the peak
I4(ωa +ωb −ωc) may take zero or even positive values, which
are very small and, hence, without any practical use.

The spectral functions (27) and (28) are induced entirely
by the combined field of the three laser fields and they differ
only in the expressions for their numerators arising from con-
tributions of the laser field a and from the laser fields b and c,
respectively. They are illustrated in Figs. 6 and 7 for γa/λa =
γb/λb = γc/λa and for different values of na and for na = nb,
respectively. It is shown in Figs. 6 and 7 that the spectral func-
tions (27) and (28) for na = 0 and for na = nb = 0, respec-
tively, are represented by symmetric Lorentzian lines where
the height of the peaks takes positive values describing in-
duced absorption processes. When na �= 0 and nb �= 0, the
height of the peaks takes negative and positive values for pos-
itive and negative values of the relative frequency (ω−ωa −
ωb +ωc)/γ+, respectively, implying that induced absorption
and stimulated emission takes place for negative and positive
values of the relative frequency (ω−ωa −ωb +ωc)/γ+, re-
spectively. The positive and negative values in absolute units
of the height of the peaks are higher, the higher the values
of the detuning na and na = nb. Since γa/λa = γb/λb = γc/λa
and na = nb, the heights of the peaks in Fig. 7, which arise
from contributions of the laser fields b and c, are larger by
a factor of two than those in Fig. 6 that arise from contribu-
tions only from the laser field a.

The spectral function (29) is illustrated in Fig. 8 for ∆a =
∆b = ∆c = 0, γa = γb = γc, γa/γ4 = 0.5 and for different
values of γ4/γ3. It is shown in Fig. 8 that the height of the
peaks takes negative values which are higher in absolute units
the higher the values of the ratio γ4/γ3. Figure 8 is similar
to Fig. 3 but the negative heights of the peaks in Fig. 8 are
smaller in absolute units than those in Fig. 3 since from (34)
and (40), we have γ4 I4(ω−ωa −ωb +ωc) = −2(1 +γ4/γ3)
and γ4 IΦbc(ωa +ωb −ωc) = −γ4/γ3, respectively. The nega-
tive values of the intensities in Fig. 8 imply that LAWI is
likely to occur at the generated frequency ω = ωa +ωb −ωc.

The excitation spectra for the antisymmetric three-photon
state Ψabc(t) defined by (41) have been calculated in Sect. 6.
In the absence of the laser field b and the excited state |4〉, the
two-photon state Ψac(t) is a stationary state given by (44) and
is the well-known coherent nonabsorbing state for a three-
level atom in the “Λ” configuration [23–25, 34]. The spec-
tral function for the three-photon state Ψabc(t) is determined
by (46), the first term of which represents the coherent part
that is a delta-function distribution, while the last term con-
sists of two asymmetric Lorentzian lines that are induced by
the combined field of the three laser fields and peak at the
same frequency ω = ωa +ωb −ωc but have different spectral
widths of the order γ+/4 and γ−/4, respectively. The over-
all height of the peak at the generated frequency ω = ωa +
ωb −ωc is given by (47) and is a function of the expressions
γa, γb and γc as well as of the detunings na and nb. The be-
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haviour of the spectral function (46) is illustrated in Fig. 9
for na = nb = 0 and for na �= 0 and nb �= 0, respectively. It
is shown in Fig. 9 that for na = nb = 0 the spectral line is
a symmetric one while for na �= 0 and nb �= 0 but na = nb, the
asymmetry of the spectral lines favours LAWI at the three-
photon generated frequency ω = ωa +ωb −ωc.

In conclusion, it has been demonstrated that the combined
field of the three laser fields, which occurs at low intensi-
ties of all three laser fields, generates three-photon excitations
having characteristic spectral widths that are much less than
the natural linewidths of the excited states of the atom. The
linewidths γ+ and γ− defined by (21) are induced by the com-
bined field of the three laser fields and they are functions
of the expressions γa, γb and γc as well as of the detun-
ings na and nb. The lifetime of these excitations are much
longer than those of the excited states of the atoms, namely
1/γ± � 1/γ3 and 1/γ± � 1/γ4. We hope that these results
will motivate and prove useful in experimental endeavours,
especially in nonlinear optics and cold atom technology by
using excitations which have linewidths much less than the
natural linewidths of the excited states of the atoms [28–30].
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