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Abstract. A collision of two-component Bose-Einstein con-
densates in the presence of Raman coupling is proposed
and studied by numerical simulations. Raman transitions are
found to be able to reduce collision-produced irregular excita-
tions by forming a time-averaged attractive optical potential.
Raman transitions also support a kind of dark soliton pair
in two-component Bose-Einstein condensates. Soliton pairs
and their remnant single solitons are shown to be control-
lable by adjusting the initial relative phase between the two
colliding condensates or the two-photon detuning of Raman
transitions.

PACS: 03.75.Fi; 32.80.Pj

The realization of high-density Bose–Einstein condensates [1]
invokes the study of nonlinear dynamics of matter waves
and inventions of various optical techniques to manipulate
Bose–Einstein condensates as well as constructions of vari-
ous matter-wave interferometers for precision measurements.
Usually, one would like to reduce irregular excitations and
preserve the coherent property of high-density Bose–Einstein
condensates as much as possible in many manipulating pro-
cesses. However, due to the interactions between atoms, the
strong repulsive interactions between Bose–Einstein conden-
sates often lead to irregular excitations, especially in collision
processes. Inventing a convenient optical technique, which
can reduce irregular excitations as well as exert effective con-
trol over the Bose–Einstein condensates, is very important.

Raman coupling is a very successful experimental tech-
nique for manipulating ultra-cold atomic gas between dif-
ferent internal and external states, because it has the merit
of avoiding spontaneous emission loss of atoms in transi-
tion processes. For example, recently several experiments
have successfully employed Raman coupling in manipulating
Bose–Einstein condensates [2].

Here, by proposing a Raman coupling scheme of atomic
Bose–Einstein condensates, we show that Raman coupling
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can also be used to reduce irregular excitations produced in
a collision process of two Bose–Einstein condensates. Instead
of irregular excitations, the Raman coupling produces a new
type of coherent texture, namely, dark soliton pairs in the
collision process. Additionally, we also find that these dark
soliton pairs and their remnant dark solitons are very sensitive
to the initial relative phase between Bose–Einstein conden-
sates and the two-photon detuning of Raman transitions.

The paper is organized as follows: In Sect. 1, we introduce
the proposed collision process of two Bose–Einstein conden-
sates in the presence of Raman coupling and the two coupled
Gross-Pitaevskii equations for the description of this collision
process. In Sect. 2, first we make some simplifications, then
we show numerical simulations of the collision process, ana-
lyze the function of Raman coupling in the collision process,
and discuss the physical origin and some special properties of
dark soliton pairs. In Sect. 3, we draw conclusions as well as
point out some potential applications of the proposed colli-
sion process.

1 Theoretical model

First, we introduce the model in detail by using a schematic,
shown in Fig. 1. The black frame in Fig. 1a represents a trans-
verse confining potential V0(x, y) for two atomic Bose–
Einstein condensates 1 and 2 in the abstractively. This poten-
tial can be formed, for example, by a blue-detuned hollow
laser beam propagating along the z-axis, which has already
been demonstrated to be very effective in a recent experi-
ment [3]. Additionally, there are two red-detuned Gaussian
laser beams 1 and 2 propagating along x-axis. The intensi-
ties of two laser beams are uniform in the x- and y-directions,
but of a Gaussian shape in the z-direction, as indicated by
the gray levels. Their frequencies are ω1 and ω2 respectively,
as shown in Fig. 1b. As for the condensates, we assume that
atoms have three internal states, |g1〉, |g2〉 and |e〉. Thus the
two laser beams couple them together and form two Rabi
transitions, as shown in Fig. 1b. Because of the negative de-
tuning (∆ < 0) and nonuniform intensities of the two laser
beams, they can form two z-axial confining potentials for con-
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Fig. 1. a Collision and Raman coupling scheme of two atomic Bose–
Einstein condensates. b Atomic internal energy levels of Bose–Einstein
condensates and light coupling. |g1〉, |g2〉 denote two ground states and
|e〉 denotes an excited state, energy eigenvalues of which are 0, hωg and
hωe respectively. The laser beams 1 and 2, with frequencies ω1 and ω2
respectively, couple these states together, forming so-called ‘Λ’ configura-
tion Raman transitions. Ω1 and Ω2 are corresponding single-photon Rabi
frequencies. The intermediate detuning and two-photon detuning of Ra-
man transitions are ∆ = ω1 −ωe and δ = ω1 −ω2 −ωg respectively. Direct
transitions between |g1〉 and |g2〉 are electric-dipole forbidden

densates 1 and 2, which are assumed to be initially distributed
in states |g1〉 and |g2〉, respectively. Additionally, we assume
that laser beams 1 and 2 are initially separated by a distance
and moving at velocities v1 and v2, respectively, in opposite
directions. Thus the two condensates are trapped by the two
laser beams and moving at velocities the same as those of the
laser beams in opposite directions. While the two laser beams
overlap, the condensates in the overlap region are transferred
between states |g1〉 and |g2〉 due to the occurrence of Raman
transitions. As the two condensates come very close to one
another, they collide and interfere with each other.

Next, we derive the equation for the description of this
model. As shown in Fig. 1b, because atoms have three in-
ternal states, first we generally consider a condensate con-
sisting of three components. To avoid spontaneous emission
in a Raman-transition process, we assume that the interme-
diate detuning ∆ of laser beams 1 and 2 is much larger
than other characteristic frequencies, such as the natural
line width of the atomic transitions and the two-photon
detuning δ. As a result, the evolution of the |e〉-state com-
ponent adiabatically follows the |g1〉- and |g2〉-state com-
ponents, i.e., Ψe = − (

Ω1e−iω1tΨg1 +Ω2e−iω2tΨg2
)
/ (2∆),

where Ψe,Ψg1 and Ψg2 are the macroscopic wave functions
of the three-component Bose–Einstein condensate in states
|e〉, |g1〉 and |g2〉 respectively. Then, at zero temperature
and under a rotating-wave approximation, the light-coupled
|g1〉- and |g2〉-state components can be described by the fol-
lowing coupled Gross-Pitaevskii equations:

ih
∂Ψg1

∂t
= − h2

2m
∇2Ψg1 + V0(x, y)Ψg1 + Vg1(z, t)Ψg1

+U0|Ψg1|2Ψg1 +U0|Ψg2|2Ψg1 +hR(z, t)Ψg2 , (1)

ih
∂Ψg2

∂t
= − h2

2m
∇2Ψg2 +hωgΨg2 + V0(x, y)Ψg2

+ Vg2(z, t)Ψg2 +U0|Ψg2|2Ψg2 +U0|Ψg1|2Ψg2

+hR∗(z, t)ei(ω2−ω1)tΨg1 , (2)

where m is the atomic mass. U0 describes the atomic in-
teraction strength, which is related to the s-wave scatter-
ing length asc by U0 = 4πh2asc/m. Here we assume that
asc > 0, and it is same for all collisions between atoms in the
same or different internal states. V0(x, y) denotes the trans-
verse confining potential, which is common for both |g1〉-
and |g2〉-state components. Vg1(z, t) = h|Ω1(r, t)|2/(4∆)

and Vg2(z, t) = h|Ω2(r, t)|2/(4∆) are two localized opti-
cal potentials produced by laser beams 1 and 2, respec-
tively. Note that here we assume that the potential Vg1
(or Vg2) can only trap the |g1〉-state (or |g2〉-state) com-
ponent even when the two components mix together in
the collision process. 1 R(z, t) = Ω∗

1 (r, t)Ω2(r, t)/(4∆) is
the effective Rabi frequency of two-photon transitions. Be-
cause the laser beams 1 and 2 are in Gaussian shape and
moving along z-axis, their corresponding Rabi frequen-
cies can be written as Ω1(r, t) = Ω10e−(z−z01−v1t)2/a2

1 e−ik1·r

and Ω2(r, t) = Ω20e−(z−z02−v2t)2/a2
2 e−ik2·r, where Ω10 and

Ω20 are maximum magnitudes of the two Rabi frequen-
cies, z01 and z02 are initial center positions, a1 and a2 are
half widths, and k1 and k2 are wavevectors of the two
laser beams, respectively. Additionally, we assume that the
wavevectors k1 and k2 are approximately equal, then the
two-photon Rabi frequency can be written as R(z, t) =
Ω10Ω20e−(z−z01−v1t)2/a2

1−(z−z02−v2t)2/a2
2/(4∆). It is evident that

when and only when the two potentials Vg1(z, t) and Vg2(z, t)
overlap with each other does the effective two-photon Rabi
frequency becomes finite. Thus the description of the Bose–
Einstein condensate has now been reduced from three com-
ponents to two components.

2 Numerical simulation

For simplicity and to give more importance to the analy-
sis of the affect of Raman transitions on the collision, we
need to make some simplifications. We assume the transverse
confining potential V0(x, y) to be so tight and the z-axial
confining potentials Vg1(z, t) and Vg2(z, t) to be so loose
that in the description of the transverse modes of the Bose–
Einstein condensate we can neglect the affect of Vg1(z, t) and
Vg2(z, t) as well as interactions between atoms. We assume
that in the description of the longitudinal modes the longi-
tudinal dimension of the condensate is much larger than the
healing length. We assume that the transverse dimensions
of the condensate are very small and the time scale for ad-
justment of the transverse profile of the condensate to the
equilibrium form appropriate for the instantaneous number
of atoms per unit length is small compared with the time for

1 In experiments, we think there are two methods to realize a trapping of
two components respectively by two laser beams. One method is to assume
that the energy difference of the two internal ground states hωg 	 h∆. Thus
one laser beam is only effective for one of the components and has little
effect on the other component, due to the detuning of the single-photon
transition of the other component being very large. The other way is to as-
sume that the internal states are some proper magnetic sublevels and laser
beams are polarized. For example, two ground states |g1〉 and |g2〉 are |+1〉
and |−1〉, respectively; the excited state |e〉 is |0〉; and the polarizations of
two laser beams are σ+ and σ−, respectively. Thus the σ+-polarized (or
σ−-polarized) laser beam can only couple two states |−1〉 and |0〉 (or |+1〉
and |0〉). As a result, the potential, produced by one laser beam, can only
trap one component.
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an excited pulse to pass a given point. This is a low-density
approximation, in fact, similar to that used in [4]. Thus, by
letting Ψg1(r, t) = fg1(z, t)gg1(x, y)e−iµ1t/h and Ψg2(r, t) =
fg2(z, t)gg2(x, y)e−iµ2t/h and through a deduction similar to
that in [4], we can obtain simplified one-dimensional Gross-
Pitaevskii equations:

ih
∂ fg1

∂t
= − h2

2m

∂2 fg1

∂z2
+ Vg1(z, t) fg1 +U

′
0| fg1|2 fg1

+U
′′
0 | fg2|2 fg1 +hR(z, t)e−i(µ2−µ1)t/h fg2 (3)

ih
∂ fg2

∂t
= − h2

2m

∂2 fg2

∂z2
+hωg fg2 + Vg2(z, t) fg2 +U

′
0| fg2|2 fg2

+U
′′
0 | fg1|2 fg2 +hR∗(z, t)ei(ω2−ω1)t+i(µ2−µ1)t/h fg1,

(4)

where gg1 and gg2 are the normalized transverse modes of
the two components, µ1 and µ2 are the chemical potentials
of gg1 and gg2 respectively, fg1 and fg2 are the longitudi-
nal wave functions, U

′
0 = U0

∫ |gg1(x, y)|4dxdy and U
′′
0 =

U0
∫ |gg1(x, y)gg2(x, y)|2dxdy.
As an initial condition for the collision process, we as-

sume that the two-component Bose–Einstein condensate is

Fig. 2a–d. Contour plots of time evolution of the condensate wave functions | fg1| and | fg2| in two collision processes. a | fg1| and b | fg2| in the collision
with Raman coupling. c | fg1| and d | fg2| in the collision without Raman coupling. In these collisions, the initial phases of fg1 and fg2 are π/4 and 0 respec-
tively, and the detuning δ = 0. Dash-dotted lines denote the boundaries of the corresponding axial optical potential, Vg1(z, t) or Vg2(z, t). These boundaries
correspond to the boundaries of Gaussian laser beams at the 1/e of maximum intensities. Between t = 0.05τ and 0.15τ , there are four zigzag density dip
traces in Fig. 2a and b. These traces indicate the oscillations of four dark solitons inside the condensates

initially separated into two condensates, i.e., Ψg1(r, t)|t=0 and
Ψg2(r, t)|t=0, which are trapped in the ground states of the
two moving potentials, Vg1(z, t) and Vg2(z, t), respectively.
For simplicity, we assume that the two potentials have the
same shapes, depths and speeds (but in opposite directions);
thus the transverse and longitudinal modes of the two initial
ground-state Bose–Einstein condensates are the same shape,
and the condensates have same numbers of atoms and the
same chemical potentials.

We use the split operator method to solve the above
time-dependent Gross-Pitaevskii equations, 3 and 4. First, we
show a typical collision process in the presence of Raman
coupling in Figs. 2a,b and 3. For comparison, in Fig. 2c
and d, we also show another collision in which two con-
densates the same as the above are trapped by two po-
tentials similar to Vg1(z, t) and Vg2(z, t), but there are no
Raman transitions between them. The elimination of Ra-
man transitions is possible so long as the two laser beams
couple the two ground states |g1〉 and |g2〉 with differ-
ent excited states instead of one common excited state.
The parameter values used in the numerical simulation are
Ω2

10/(4∆) = Ω2
20/(4∆) = Ω10Ω20/(4∆) = −6000/τ, v1 =

−v2 = 9a1/τ , a2 = a1, U
′
0 = U

′′
0 = 2000h/τ , z01 = −z02 =

−a1, and the chemical potentials of initial ground-state Bose–
Einstein condensates are both µ0 = −3.99 ×103h/τ , where
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a1 and τ = 2ma2
1/h are considered as the unit length and the

unit time respectively. In choosing these parameter values, we
have referred to some experimental results [1, 3, 5]. We think
these values are within reasonable range of those experimen-
tal results. Here we use fairly large values of the chemical
potentials, so that the repulsive interactions within and be-
tween two condensates are very strong, to produce nonlinear
excitations.

In the collision without Raman transitions, the two con-
densates obstruct their passing through each other because
of repulsive interactions between atoms, as shown in Fig. 2c
and d. After the collision, we can see that small parts of
condensates radiate out of the axial optical potentials; the
remnant Bose–Einstein condensates oscillate violently in the
potentials. The violent oscillations appear to be very irreg-
ular. In contrast, Figs.2 a,b and 3 show that while Raman
transitions exist the radiation becomes very weak; the vio-
lent oscillations of remnant Bose–Einstein condensates are
much reduced. This indicates that the repulsive interaction
between two Bose–Einstein condensates is greatly counter-
acted by an attractive optical potential produced by Raman
transitions. We can understand the formation of this potential
in the following way: Because Raman transitions can transfer
each condensate between two components, fg1 and fg2 cir-

a b c

fed

Fig. 3a–f. Generation of dark soliton pairs in the collision with Raman coupling and remnant single solitons. Thin solid lines denote | fg1/ f0|, thick solid lines
denote | fg2/ f0| and dashed lines denote |4R∆/(Ω10Ω20)|. f0 is the maximum of | fg1|t=0 and | fg2|t=0. There are four dark solitons in each figure of a,
b and c. Arrow A marks one soliton pair, and arrow B marks another soliton pair. The values of t denote the time of the subfigures sampled from the collision
process shown in Fig. 2a and b

cularly, each condensate interacts alternatively with the two
axial optical potentials Vg1 and Vg2. As a result, the light-
shifted energy of each condensate, produced by the two laser
beams, becomes a temporal combination of Vg1 and Vg2, and
each condensate feels a vibrating optical potential locating at
the collision center z = 0. According to the overlap form of
Vg1 and Vg2, the vibrating potential is on average attractive.
Thus this time-averaged attractive potential counteracts the
repulsive interaction between the two condensates, so it be-
comes much easier for them to pass through each other. We
therefore observe the oscillation amplitudes of the conden-
sates, produced by the repulsive interaction, to become much
small. But between t = 0.05τ and 0.15τ , we can still observe
that the volume of each condensate oscillates slightly in the
collision process due to the vibration of the attractive optical
potential. In the collision process, we also observe that dark
solitons are generated, as shown in Fig. 3. Formations of dark
solitons are due to the interference of collision condensates.
Although the two condensates are initially distributed in two
different internal states, Raman transitions can transfer parts
of them from one of the internal states to the other in the col-
lision process. Consequently, when the transferred part of one
condensate overlaps with the part of the other condensate in
the same internal state, interference fringes are produced. Due
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to the nonlinear effect of condensates, interference fringes
evolve into dark solitons. It is evident that this process is simi-
lar to that in [6].

However, solitons produced in this collision process in the
presence of Raman coupling are quite different from those
single solitons described in [4, 5, 7]. One of the important
differences is that these solitons always appear in pairs. As
shown in Fig. 3a-d, in the collision process, every soliton
in one component of the condensates always has a corres-
ponding soliton in the other component at the same spa-
tial position. Another important difference is that the dens-
ity difference between the two components does not lead
to a speed difference between two solitons in a pair. As
shown in Fig. 3a and b, sometimes the two components have
quite different local densities at the location of a soliton pair;
however, solitons in the pair always move synchronously
in the condensates. The reason for the synchronous motion
of the two solitons in a pair is that Raman transitions as-
sociate the two components tightly and consequently lock
their phases together. As we can see in Fig. 4, the phases
of two components are almost completely the same in the
region of strong Raman transitions, which are indicated by
the magnitudes of the normalized two-photon Rabi frequency
|4R∆/(Ω10Ω20)|. Dark solitons are phase kinks in essence,
so there is no doubt that solitons, with similar spatial phases,

Fig. 4a–f. Phase evolution of the condensate wave functions in the collision with Raman coupling. The solid lines in a–c denote the phase of fg1, the solid
lines in d–f denote the phase of fg2/ fg1, and the dashed lines denote |4R∆/(Ω10Ω20)|. Arrow A marks the position of one soliton pair, and arrow B
marks the position of the other dark soliton pair. The values of t denote the time of the subfigures sampled from the collision process shown in Fig. 2a
and b

in a pair move synchronously. Additionally, the cross-phase
modulation between dark solitons in a pair also leads to a re-
pulsive effect between them and tends to separate them. It
is evident that this repulsive effect is also counteracted by
Raman transitions, which produce an equivalently attractive
effect between solitons in the pair by locking their phases to-
gether. Even after a collision of two soliton pairs, A and B,
solitons in each pair can still preserve their waveforms and
trajectories well, as shown in Figs. 3b,c and 2a,b respec-
tively. This illustrates that collisions between soliton pairs
are elastic collisions, which is usually considered as an im-
portant common characteristic of all kinds of solitons. The
synchronous motion of solitons in the pair also indicates that
the propagation speed of the soliton pair is determined by the
total local density of the two components instead of each sin-
gle component. We can find this property from Fig. 2a,b. The
propagation speed of the soliton pair, in the region z < 0, at
time t = 0.078τ is larger than that at time t = 0.047τ , be-
cause the total density of the two components is increased
in the overlap region. Some similarities between a soliton
pair and a single soliton can also be seen. For example,
the propagation speed, the width and the density contrast of
a soliton pair also depend on the value of its phase kink,
which is also varied by the local density gradient. We can find
these properties by careful observation of Figs. 2a,b, 3 and 4.
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Because the density of the condensates varies in a parabola-
like form in space, we find that its phase kink flips in the
boundary region of the condensates; simultaneously, its speed
flips too, and as a result, the soliton pair oscillates inside the
condensates.

The two components of the condensates begin to separate
very apparently after t = 0.15τ , because of the separation of
the two axial optical potentials, as shown in Fig. 2a,b. Simul-
taneously, Raman transitions become weaker and weaker be-
cause of the decrease in the overlap of the two laser beams, as
shown in Fig. 3d–f. As a result, soliton pairs become unstable
and are to be separated in this process. Critically depending
on the local evolution of the two components, some solitons
disappear and some remain and propagate into the separated
one-component condensates, as shown in Figs. 2a,b and 3e,f.
Because of the disappearance of the cross-phase modulation
in each one-component condensate, the oscillation behaviors
of the remnant single solitons are different from those of the
soliton pairs. Especially the oscillation periods of the remnant
single solitons appear to be quite different from those of the
previous soliton pairs.

The generation of dark soliton pairs is controllable. Usu-
ally, the relative phase between two condensates in different
internal states is meaningless because of the orthogonality of
the internal states. However, here Raman transitions can form
a circulation of atoms between the two internal states; the

Fig. 5a–d. Contour plots of the time evolution of the condensate wave functions | fg1| and | fg2| in two collision processes. a | fg1| and b | fg2| in one collision.
In this collision, the initial phases of fg1 and fg2 are π/2 and 0 respectively, and the detuning δ = 0. c | fg1| and d | fg2| in the other collision. In this collision,
the initial phases of both fg1 and fg2 are 0, and the detuning δ = 100/τ . Dash-dotted lines denote the boundaries of the corresponding axial optical potential,
Vg1(z, t) or Vg2(z, t). These boundaries correspond to the boundaries of Gaussian laser beams at 1/e of the maximum intensities

relative phases between the two condensates are related and
therefore becomes very important. Because the formation of
dark soliton pairs is due to the interference of colliding con-
densates, we can also control the generation of soliton pairs as
well as remnant single solitons by adjusting the initial relative
phase between two colliding condensates or the two-photon
detuning of Raman transitions, as shown in Fig. 5.

In the above, we have discussed the collision of two
Bose–Einstein condensates under the one-dimensional ap-
proximation. However, will a three-dimensional collision
be completely different from the one-dimensional colli-
sion? Some difference must exist. For example, in a three-
dimensional process, dark soliton pairs might be distorted
by transverse perturbations and evolve into vortices, because
similar behaviors of single dark solitons have been found [5].
However, in the above analysis, we have already found that
the function of Raman coupling in the collision process is,
in fact, to lock the phases of the two components of the
condensates by forming strong atom circulation between the
two internal states, and as a result, solitons appear in pairs.
As for vortices, they are phase singular points, so they are
quite similar to dark solitons in essence. We think that Ra-
man coupling can also lock the phases of two components
of the condensates in a three-dimensional case, and vortex
pairs might therefore be formed. Certainly, a more affirma-
tive answer should be obtained from a numerical simulation
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of a three-dimensional collision, which will be done in future
work.

3 Conclusion

In conclusion, we have proposed a new Raman coupling
scheme for Bose–Einstein condensates and analyzed the in-
fluence of Raman transitions on the collision and excitation of
two-component Bose–Einstein condensates. We have found
that Raman transitions can reduce collision-produced irregu-
lar excitations by forming a time-averaged attractive poten-
tial. Raman transitions also support a new kind of dark soli-
ton, i.e., dark soliton pairs in two-component Bose–Einstein
condensates, by locking the phases of the two components.
We have also shown the control of soliton pairs and their
remnant single solitons by adjusting the initial relative phase
between the two colliding condensates and the two-photon
detuning of Raman transitions. The dynamical sensitivity of
the dark soliton pairs and remnant solitons to these parame-
ters indicates that the proposed collision can be used in the
measurement of relative phase between different high-density
Bose–Einstein condensates. Currently, constructions of var-
ious interferometers with matter waves for high-precision
measurements are being considered. We think that this pro-
posal might provide a useful method in this field.
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