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Abstract. An approximate closed-form expression is derived
for the average wall-reaching rate kW or time τW = k−1

W of
laser-tagged molecules diluted in an inert carrier gas migrat-
ing to the wall of a long cylinder where they are removed with
sticking coefficient ηW. The exact equation for the sticky wall
problem requires a trial-and-error solution of a transcendental
relation with Bessel–functions. With the aid of the Fermi–
Amaldi albedo theory, an explicit “compromise” relation is
derived which approximates the exact diffusion curve of kW
versus ηW rather well. The result is applied to obtain curves
of kW versus ηW at different gas mix pressures for UF6 diluted
in N2.

PACS: 02; 34; 68.45

In many laser-induced reaction and condensation chang-
ing processes, one needs to know the average rate kW or
travel time τW = k−1

W at which newly laser-created molecular
species A in a gas, migrate to and are captured on the wall
inside a long tube. The molecules A are assumed to be dis-
persed through an inert gas (e.g. A = SF6 in He) and may
be laser-excited (e.g. A = SF6

∗) by a laser beam that passes
through a cylindrical irradiation cell containing the gas mix-
ture; or the molecules A may be new non-volatile reaction
products from a laser-induced gas-phase reaction; or A may
represent a molecule such as QF6 which is mixed in with
a carrier gas B (e.g. He, N2, Ar, Xe, etc.) that is suddenly in-
jected into and passed through a (cooled) tube, whose wall
can react with QF6 or is at a low temperature on which QF6
can condense out. After admission into the tube, the QF6

(∗)

diffuses to the tube walls where it is absorbed, condensed,
de-excited or undergoes a chemical surface reaction.

At the wall, it is assumed that some molecules A are
scattered back into the gas and some are captured or annihi-
lated due to adsorption, condensation, deexcitation or a wall-
catalyzed chemical reaction. We shall assume that a fraction
ηW of all molecules A striking the wall will be annihilated
or retained by it, and 1 −ηW are bounced back into the gas.

This problem has been analyzed before [1], but its solution re-
quires trial and error steps of a transcendental equation with
Bessel functions. In this paper we derive a convenient closed-
form solution based partly on Fermi–Amaldi’s albedo theory
and partly on an analytic approximation.

If ηW �= 0, the molecular concentration NA(r, t) of A
(cm−3) must drop with time and a time-varying radial profile
NA(r, t) will be set up with the highest value NA(r = 0) = Nc
at the center of the tube. To find the average migration time,
we study the fate of an imaginary tagged group of molecules
A created at instant t = 0 in a time interval δ(t), even though
the production of A may be continuous. The initial concentra-
tion of molecules A at t = 0 will be assumed to be either a line
source (at r = 0), or be uniformly distributed in the tube. If
ηW �= 0, densities Nc(t) and NA(r, t) will drop with time till
all molecules A are captured or annihilated on the wall.

1 Exact solution

The differential equation that describes the change of concen-
tration NA(r, t) as a function of spatial position r and time t is
given by [2]:

DAB∇2 NA(r, t)−uABΣaAB NA(r, t)+ SA(r, t) =
∂NA(r, t)/∂t . (1)

For a cylindrical tube of length L much larger than the radius
R, (1) simplifies to:

DAB
{
∂2 NA(r, t)/∂r2 + r−1∂NA(r, t)/∂r

}−
uABΣaAB NA(r, t)+ SA(r, t) = ∂NA(r, t)/∂t . (2)

Here: DAB, diffusion coefficient for molecules A diffusing
through a medium of (primarily) molecules B (cm2/s); uAB,
mean encounter velocity of molecules A relative to molecules
B in the gas (cm/s); ΣaAB, removal coefficient (by chemical
reaction or deexcitation) for molecules A in the gas phase
(not on walls) due to collisions with molecules B (cm−1);
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r, radial distance from the tube axis (cm); NA, NB, density
of molecules A and B, respectively, (cm−3); SA(r, t), pro-
duction rate of molecules A in the gas phase, (molecules A
cm−3 s−1).

From the kinetic theory of gases one has that [3, 4]:

DAB = uAB/(3NBσAB)

= 3.60T 3/2(K)/{M1/2
AB (amu)σAB(Å2)pB(Torr)}(cm2/s) ;

(3)

uAB = {(8/π)(kT/MAB)}1/2

= 1.457 ×104T 1/2(K)M−1/2
AB (amu)(cm/s) ; (4)

ΣaAB = σaAB NB = PaσAB NB(cm−1) ; (5)

MAB = MA MB/(MA + MB)(amu) . (6)

In (3)–(6): T is the gas temperature (K); pB ≈ ptot is
the gas pressure of B (Torr); MA and MB are the masses
of molecules A and B (amu = atomic mass units); and σaAB
is the reaction/attachment/deexcitation cross-section (cm2)
in the gas for molecules A encountering molecules B. This
cross-section can be written as the product PaσAB, where σAB
is the average encounter cross-section (cm2) for molecules
A colliding with molecules B, and Pa is the probability for
molecules A to attach/deexcite/react with molecules B in
gas-phase encounters. The density NX of molecules X in a gas
can be expressed in terms of pressure and temperature by the
gas law:

NX = 0.953 ×1019 pX(Torr)T−1(K) (molecules X cm−3) .
(7)

Assuming first that ΣaAB = 0, we solve (2) for the case
that molecules A are created at t = 0, and the initial distribu-
tion is: (a) a line source, i.e. all A are at r = 0 at t = 0; or (b)
all molecules A are uniformly distributed at constant density
between r = 0 and r = R at t = 0.

1.1 Line source

For case (a), one can write for the source term SA(r, t) =
Noδ(r)δ(t), where δ(x) is the delta function with

∫
δ(x)dx = 1

and δ(x) = 0 for x �= 0. The solution of (2) is then (with
ΣaAB = 0):

NA(r, t) = NoJo(µr/R) exp(−µ2 R−2 DABt)

(molecules A cm−3) , (8)

where µ is to be determined, and Jo(x) is the Bessel function
of order zero. To find µ we consider the boundary conditions
at the wall. At the wall r = R of the cylindrical tube, one
has, according to diffusion theory, that the outgoing current of
molecules j+ crossing 1 cm2/s equals, to first order [2]

j+ = uA[NA/4 −1/2(DAB/uA)∂NA/∂r]r=R , (9a)

while the incoming current j− is:

j− = uA[NA/4 +1/2(DAB/uA)∂NA/∂r]r=R . (9b)

Here uA is the mean random velocity of molecules A in the
gas relative to a stationary wall:

uA = {(8/π)(kT/MA)}1/2

= 1.457 ×104T 1/2(K)M−1/2
A (amu) (cm/s) , (10)

which is the same as (4) except MA is substituted for MAB. If
one assumes that a fraction ηW sticks to the wall, and (1−ηW)
returns into the gas after striking the wall, one has:

j− = (1 −ηW) j+ , (11)

or, using (9) and (11):

[NA +2(DAB/uA)∂NA/∂r]r=R =
(1 −ηW)[NA −2(DAB/uA)∂NA/∂r]r=R . (12)

The derivative of the Bessel function Jo(µr/R) is given
by [5]:

dJo(µr/R)/dr = (−µ/R)J1(µr/R) , (13)

in which J1(x) is the Bessel function of first-order. When (8)
and (13) are substituted into (12), the desired solution for µ
can be found from the transcendental equation:

hJo(µ) = µJ1(µ) → h = µJ1(µ)/Jo(µ)

= f(µ) → µ = f inv(h) , (14)

where f inv(h) is the inverse function of f(µ) = h plotted in
Fig. 1, and h equals:

h = 1/2R(uA/DAB)ηW/(2 −ηW)

= 1.5(R/λc)ηW/(2 −ηW)

= 1430(MAB/MA)1/2 pBσAB RT−1ηW/(2 −ηW)

(Torr, Å2, cm, K) . (15)

Here (3) and (4) were used and the mean-free-path for colli-
sions λc is defined here as:

λc = 3DAB/uA = (MA/MAB)1/2(NBσAB)−1

= (MA/MAB)1/2T(K)/[953pB(Torr)σAB(Å2)] (cm) . (16)

Thus, after calculating the constant h from (15), one can
obtain µ from (14) by trial and error, or from Fig. 1. The
dimensionless physical constant h represents a group of trans-
port and geometry parameters which determine the value of
µ = µ(h). We shall need µ = µ(h) below, since we want to
determine kW = kW(µ) = kW(h) directly as a function of h.

The net loss rate of molecules A striking the wall is, from
(9a) and (9b):

jnet = j− − j+ = DAB(∂NA/∂r)r=R . (17)

Then the loss rate of molecules A across surface area 2πRL
surrounding volume πR2 L is:

kWL

R∫
0

{NA(r)2πr}dr = −2πRL DAB(∂NA/∂r)r=R ,

or
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Fig. 1. Plot of relation between µ and h

kW = −RDAB(∂NA/∂r)r=R

/
 R∫

0

{NA(r)r}dr


 (s−1) . (18)

Here kW is the fraction of molecules A lost per second from
volume πR2L, which equals the average rate for a molecule
A in the tube to be captured by the wall. Now NA(r, t) was
given by (8), and since for the Bessel function Jo(x) one has
the relations [5]

dJo(x)/dx = −J1(x) , (19a)

and
x∫

0

Jo(x)dx = xJ1(x) , (19b)

one finds from (8), (18) and (19) that the wall reach and cap-
ture rate equals:

kW = DAB(µ/R)2(s−1 per molecule A) . (20)

As expected, kW is precisely equal to the decay coefficient
of the exponential time-dependent part of (8), if the bulk ab-
sorption ΣaAB = 0. The results (14), (15) and (20) are essen-
tially the same as obtained previously by Margottin-Maclou
et al. [1].

At moderate pressures ptot ≥ 1 Torr, one finds that h � 1,
for the case that ηW > 0.1. One then has from (14):

Jo(µ) = (µ/h)J1(µ) ≈ 0 , (21)

which yields µ = 2.405. Using this value of µ as reference,
one can rewrite (20) in the form:

kW = (2.405)2(µ/2.405)2DAB/R2

= [29.3T 3/2/(R2 pBσAB M1/2
AB )]F(ηW) (s−1) , (22)

or for the average migration time τW for molecule A to reach
the wall:
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τW = k−1
W = (R/2.405)2/{DAB F(ηW)}

= R2 pBσAB M1/2
AB /{29.3T 3/2F(ηW)}(s) . (23)

Here we used (3) and we define:

F(ηW) = (µ/2.405)2 = { f inv(h)/2.405}2

= { f inv(ηW)/2.405}2 , (24)

whose value ranges between 0 and 1, that is 0 ≤ F(ηW) ≤ 1.
For ηW > 0.1, F(ηW) ≈ 1 in (23). For ηW < 0.1, µ and thus
F(ηW) can be obtained from (14) or Fig. 1.

Returning to (2), if ΣaAB �= 0, the solution of NA(r, t) with
SA = δ(t)δ(r) is:

NA(r, t) = NoJo(µr/R) exp{−(kW +uABΣaAB)t}
(molecules A cm−3) , (25)

where µ is given by (14), kW by (20), uAB by (4), and ΣaAB
by (5). Thus if ΣaAB �= 0, there is an additional gas-phase loss
factor fa for molecules A, given by:

fa = exp(−uABΣaABt) . (26)

For example, if molecules A are laser-excited species A∗ that
lose their excitation upon striking the wall, additional excita-
tion losses from collisions with B’s are accounted for by the
factor fa.

1.2 Constant volume source

In most practical cases, the original density distribution No of
molecules A at t = 0 is not a line source Noδ(r), but is closer
to being a constant between r = 0 and r = R at t = 0. That is,
case (b) applies and the source term SA is given by:

SA(r, t) = Noδ(t)H(R− r) = Noδ(t)H(1 − x) . (27)

Here

x = r/R , (28)

and the Heaviside unit step function H(y) is defined by

H(y) = 1 for y ≥ 0, and H(y) = 0 for y < 0 . (29)

The solution of (2) with source term (27) and boundary con-
dition NA = 0 for x ≥ 1, can be obtained by expanding the
constant No as a Fourier series of Bessel functions Jo(µnx):

No = No

∞∑
n=1

{anJo(µnx)} , (30)

with

an = 2/{µnJ1(µn)} , (31)

where the µn are values for “zeros” of the oscillating func-
tion Jo(µn) = 0. Table 1 lists the first 40 values of µn and
coefficients an [5].

Table 1. Bessel-function Fourier expansion coefficients

n µn J1(µn) an n µn J1(µn) an

1 2.4048 +0.5191 +1.6021 21 65.1900 +0.09882 +0.3105
2 5.5201 −0.3403 −1.0647 22 68.3315 −0.09652 −0.3032
3 8.6537 +0.2751 +0.8513 23 71.4730 +0.09438 +0.2965
4 11.7915 −0.2325 −0.7295 24 74.6145 −0.09237 −0.2902
5 14.9309 +0.2065 +0.6487 25 77.7560 +0.09049 +0.2842
6 18.0711 −0.1877 −0.5896 26 80.8976 −0.08871 −0.2787
7 21.2116 +0.1733 +0.5441 27 84.0391 +0.08704 +0.2734
8 24.3525 −0.1617 −0.5079 28 87.1806 −0.08545 −0.2685
9 27.4935 +0.1552 +0.4780 29 90.3222 +0.08396 +0.2638

10 30.6346 −0.1442 −0.4527 30 93.4637 −0.08253 −0.2593
11 33.7758 +0.1373 +0.4313 31 96.6053 +0.08118 +0.2550
12 36.9171 −0.1313 −0.4126 32 99.7468 −0.07989 −0.2510
13 40.0584 +0.1261 +0.3959 33 102.8884 +0.07866 +0.2471
14 43.1998 −0.1214 −0.3814 34 106.0299 −0.07749 −0.2434
15 46.3412 +0.1172 +0.3682 35 109.1715 +0.07636 +0.2399
16 49.4826 −0.1134 −0.3564 36 112.3131 −0.07529 −0.2365
17 52.6241 +0.1100 +0.4355 37 115.4546 +0.07426 +0.2333
18 55.7655 −0.1068 −0.3358 38 118.5962 −0.07327 −0.2302
19 58.9070 +0.1040 +0.3265 39 121.7377 +0.07232 +0.2272
20 62.0485 −0.1013 −0.3182 40 124.8793 −0.07140 −0.2243

The solution NA(r, t) with SA = Noδ(t)H(R − r), and as-
suming F(ηW) = 1, is, then

NA(r, t)/No =
∞∑

n=1

[an Jo(µnr/R)

× exp{−(DABµ2
n/R2 +uABΣaAB)t}],

for 1 < ηW < 0.1 , (32)

while the wall attachment rate per molecule A according to
(18) is now:

kW = (DAB/R2)

[∑
n

{µnan J1(µn) exp(−µ2
n R−2 DABt)}

]/
[∑

n

{µ−1
n an J1(µn) exp(−µ2

n R−2 DABt)}
]

(s−1),

for 0.1 < ηW < 1 . (33)

It must be emphasized that (32) and (33) are based on the as-
sumption that NA(r = R, t) ≈ 0 at the wall (r = R) and that
the wall sticking probability ηW > ∼ 0.1 as discussed before.

If the wall sticking probability ηW < 0.1, the value of
NA(r, t) is finite at r = R. In this case one can define an ex-
trapolated radius Re (with Re > R) at which the analytic con-
tinuation of the function NA(r, t) goes to 0 and thereby also
all Bessel functions Jo(µnr/Re). Imposing boundary condi-
tion (12) again on NA(r, t), assuming now that all Jo(µnr/Re)
vanish at r = Re, one obtains:

h =
[∑

n

{gµnan J1(gµn) exp(−g2µ2
n R−2 DABt)}

]/
[∑

n

{an Jo(gµn) exp(−g2µ2
n R−2 DABt)}

]
, (34)

where h again equals the physical constant given by (15), the
µn and an are still given by the values listed in Table 1, and
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the parameter g is defined by:

g = R/Re (0 < g < 1) . (35)

Then kW equals:

kW = g2(DAB/R2)

[∑
n

{µnan J1(gµn)

× exp(−g2µ2
n R−2 DABt)}

]/
[∑

n

{µ−1
n an J1(gµn) exp(−g2µ2

n R−2 DABt)}
]

(s−1), for 0 < ηW < 0.1 . (36)

An inspection of (34) shows that g must depend on t, if
there is to be a unique solution of g in terms of h. That is, in
principle, by inverting (34) using a computer, one can obtain:

g = g(h, t) . (37)

Since the tube radius R is a constant and h is a constant,
only the extrapolated radius Re can vary with time, that is
Re = Re(t). At time t = 0, one has g = go as determined by
the equation:

h =
[∑

n

{goµnan J1(goµn)}
]/[∑

n

{an Jo(goµn)}
]

(at t = 0) . (38)

Solving for g = g(t) from (34) would be rather cumber-
some. Fortunately, inspection of the terms exp(−g2µ2

n R−2

DABt) in (34) and (36) shows that after the original injec-
tion of a batch charge of No molecules/cm3 at t = 0, most
higher-order terms in the Bessel function series (32) dampen
out quickly within a fraction of the time constant τW given
by (23) with F(ηW) = 1. For example, the first three time
decay terms with n = 1, n = 2, and n = 3, are exp(−t/τW),
exp(−5.25t/τW), and exp(−12.95t/τW). Thus, all terms ex-
cept n = 1 in the Bessel series expansion can be neglected
when t > 0.2τW. Unless one must know the transient changes
of NA(r, t) during the time interval 0 < t < 0.2τW, one can
use (22) obtained for case (a) to calculate diffusional loss
rates for case (b) without great error. In summary, after a brief
transient period ∆t ∼ 0.2τW the constant density NA(r) = No
at time t = 0 changes into a Bessel function distribution
NA(r) = Nc Jo(µ

∗r/R). Here µ∗ = f inv(h) is the solution of
µ from (14).

2 Approximate closed-form solution

Instead of solving (14) with the use of Fig. 1, a convenient ap-
proximate solution can be obtained with Amaldi and Fermi’s
albedo theory according to which the linear extrapolation
length de = Re − R is approximately [6]:

de = (2/3)λc(2 −ηW)/ηW

= (2DAB/uA)(2 −ηW)/ηW = R/h (39)

where h was given by (15). Then:

g = R/Re = R/(R+de) = (1 +h−1)−1

= [1 +2DABR−1u−1
A (2 −ηW)/ηW]−1

= [1 + (2/3)(λc/R)(2 −ηW)/ηW]−1 (40)

in which (3) and (4) were used. The rate kW is then:

kW = (gµ1/R)2 DAB

= (µ1/R)2 DAB/[1 + (2/3)(λc/R)(2 −ηW)/ηW]2

=[29.3T 3/2/(R2 pBσABM1/2
AB )]/

[1 +{7 ×10−4(MA/MAB)1/2T/

(pBσAB R)}(2 −ηW)/ηW]2

(s−1) (albedo approximation) , (41)

where µ1 = 2.4048. Comparing (41) with (22), note that for
the albedo approximation:

F(ηW) = g2 = (1 +h−1)−2 (albedo approximation) . (42)

For small µ, one finds from (14) that:

h = µJ1(µ)/Jo(µ) ≈ 0.50µ2 (diffusion theory, small µ) ,
(43)

since for small µ, one can approximate [7]:

Jo(µ) ≈ ((1/2)µ)0/Γ(1) = 1 (for small µ) , (44)

J1(µ) ≈ ((1/2)µ)/Γ(2) = 1/2µ (for small µ) , (45)

where Γ(x) is the gamma function. Thus, according to (43):

µ ≈ (2h)1/2 (diffusion theory, small µ and h) . (46)

Then, from (24):

F(ηW) = (µ/2.405)2 ≈ 2h/(2.405)2

= 0.346h (diffusion theory, small µ and h) . (47)

In the albedo approximation, on the other hand, it is apparent
from (42) that:

F(ηW) = g2 = (1 +h−1)−2 ≈ h2, for h � 1
(albedo approximation, small h) , (48)

and

F(ηW) = g2 = (1 +h−1)−2 ≈ {1 + (0.500h)−1}−1, for h � 1
(albedo approx, large h) . (49)

Comparing (48) and (47), it is clear that as h → 0, F(ηW)
tends to 0 more rapidly in the albedo approximation than in
diffusion theory. For h � 1 (i.e. high gas pressures), both the-
ories correctly give F(ηW) → 1, according to (14), (24) and
(42). Considering that the albedo approximation is better at
higher values of h, while diffusion theory is better for low h,
a compromise between diffusion and albedo equations can be
obtained using the expression:

F(ηW) = F(h) ≈ {1 + (0.346h)−1}−1

(diffusion/albedo compromise approximation) . (50)
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Fig. 2. Comparison of exact and approximate functions F(h)

Equation (50) becomes equal to the diffusion relation (47)
for h � 1, while for larger values of h, it is close to (49)
except that the coefficient 0.346 replaces the value 0.500.
This causes F(ηW) = F(h) to be overestimated by 2.8% at
h = 1 and underestimated by 6% at h = 10, when compared
with the albedo (42). It correctly yields F(ηW) = F(h) = 1
as h → ∞, and is easier to use than calculations involving
inverse determinations of µ from (14) or Fig. 1. Figure 2 com-
pares plots of the albedo approximation (42), the compromise
approximation (50), and the exact diffusion relation for F(h)
given by (24). Clearly (50) is a fairly good fit for the exact
diffusion-theory curve. Using (50) in (22) gives, finally:

kW = (2.405)2(DAB/R2)F(ηW)

≈ (2.405)2(DAB/R2){1 + (0.346h)−1}−1

= [29.3T 3/2/(R2 pBσAB M1/2
AB )][1

+{2.02 ×10−3(MA/MAB)1/2T/

(pBσAB R)}(2 −ηW)/ηW]−1 (s−1)

(diffusion/albedocompromise approximation) . (51)

Here we inserted expressions (3) and (15) into the last part of
(51). Equation (51) is a very useful result that provides an ex-
plicit expression for kW or τW = k−1

W for molecular migration
from a line or uniform source of molecules in a long tube.

A plot of (51), with kW as a function of ηW, is shown in
Fig. 3 for the diffusion of nitrogen-diluted UF6 molecules in
a long tube with R = 1 cm at T = 250 K and various gas pres-
sures pB ≈ ptot. The only physical parameter that is usually
not known precisely is the sticking coefficient ηW. If a surface
adsorption, condensation, or reaction is under consideration,
this parameter is determined by surface physics and may vary
with time depending on the nature of the wall material and
wall-deposit build-up.

Note that for small values of pB and/or ηW, the rate kW in
(51) reduces to:

kW = 1/2ηWuA/R = 7285ηW(T/MA)1/2/R (s−1),

if ηW pB � ∼ (MA/MAB)1/2T/(250σAB R) , (52)

while for ηW pB � ∼ (MA/MAB)1/2T/(250σAB R):

kW = (2.405)2DAB/R2 = (1/3)(2.405)2uAλc/R2

= 29.3T 3/2/(pB R2σABM1/2
AB ) (s−1) . (53)

3 Laminar flow

So far, it was tacitly assumed that the state of the gas in the
tube is stagnant, as in a batch process. If the gas flows through
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Fig. 3. Wall capture rates for gaseous UF6 molecules in long cylindrical tube

a tube under laminar flow conditions in a continuous flow-
through process, and if at the entrance (at z = 0), NA(r, z)
is assumed to have a constant value No for 0 < r < R, this
density distribution will change downstream into a Bessel-
function distribution Jo(µr/R), just like in a batch operation.
One can still use all previous expressions by substituting

t = z/U , (54)

where z is the gas travel distance along the tube axis,
and U is the macroscopic bulk flow velocity (cm/s) along
the tube axis. With (54), all time-dependent expressions
NA(r, t) and kW(t) change to NA(r, z) and kW(z). As in the
batch case, NA(r, z = 0) = No changes into a radial Bessel-
function distribution NA(r) = Nc Jo(µ

∗r/R) during travel
time ∆ttransient ≈ 0.2 τW, corresponding to a travel distance
∆ztransient = 0.2 UτW. Without a Bessel-function radial gradi-
ent, and a constant uniform density NA(r) = No at time t = 0
or z = 0, the initial rate kW at t = 0 is:

kW(t = 0) = (1/2)ηWuA/R

= 7285ηWT 1/2(K)/[R(cm)M1/2
A (amu)] (s−1),

for NA(r) = No = constant , (55)

since the molecular current j+ impinging on the wall
equals j+ = (1/4)uANo, and a fraction ηW of wall-striking
molecules stick to the wall. This result, as it should be,
is the same as (52) for the general case in the limit that
ηW pB � ∼ (MA/MAB)1/2T/(250σAB R), except ηW pB is un-
restricted. Note, finally, that according to (25), the drop in
concentration Nc(z) = NA(r = 0, z) along the tube axis is:

Nc(z) = No exp{−(kW +uABΣaAB)(z/U)} , (56)

where kW and uAB are given by (22) or (51) and (4).

4 Turbulent subsonic flow

If the gas mix flows through the tube under subsonic turbulent
conditions instead of in a laminar fashion, one can no longer
assume steady migration as assumed so far, since convective
eddy currents and vortices are created in the gas that trans-
port molecules “A” in bulk from the center of the tube to the
walls at macroscopic speeds rather than by diffusion. Turbu-
lence sets in generally when the Reynolds number exceeds
2100, that is:

Re = 2URD−1
BB ≥ 2100 (turbulent flow) . (57)
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Here R is the tube radius (cm), U is the bulk flow velocity
(cm/s), while DBB (cm2/s) is the diffusion coefficient of
the gas (assumed to be mostly B molecules), as before. If
the scale of turbulence is sufficiently large (Re >∼ 10 000),
one can assume a radially constant concentration NA(r, z) =
No(z). Then the average wall-capture rate kW per molecule
per second for molecules A in the tube is the same as given
by (55):

kW = (1/2)ηWuA/R

= 7285ηWT 1/2(K)/[R (cm) M1/2
A (amu)] (s−1)

(turbulent flow) , (58)

with no restrictions on ηW or pB. Though constant radially,
the density of tagged molecules A will drop with travel dis-
tance z in accordance with (56). A comparison of (58) with
(51) using typical values for T , R, pb, MA, and MAB, shows
that turbulent flow increases wall deactivation/loss rates ten-
to a hundred-fold, unless ηW � 10−3.
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