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Abstract. Surface relief gratings (SRGs) are a widely ob-
served phenomenon in holographic experiments with pho-
toaddressable polymers. This article proposes a model which
is able to explain the observed effects in cw experiments. It is
based on forces in an electrical field which are caused by the
inhomogeneous spatial distribution of the refractive index and
the permittivity in the illuminated sample.

PACS: 78.66.Qn; 77.22.Ch

Photoaddressable polymers, which are described in a lot of
articles not only due to their possible application as data
storage media [1, 2], are azobenzene side-chain polymers in
which the side chains are able to interact with a polarized
light field. This interaction leads to a reorientation of the side
chains perpendicular to the polarization of the light field and
consequently to an increasing order parameter in the illu-
minated areas. Thus the refractive index of the material in
aligned areas of the sample is different from that in dark
areas. Though these substances are well investigated, some
phenomena such as the appearance of surface relief grat-
ings (SRGs) are not completely understood. In 1995 two
groups [3, 4] reported on SRGs in holographic experiments
with cw lasers, and in 1999 Ramanujam [5] found SRGs in
pulsed experiments with azobenzene copolymers. Even in
oxide materials SRGs were found due to the coupling of the
piezoelectric constant with a space charge field as reported
by Pankrath [6]. The gradient force model set up by Tripa-
thy et al. [7], the mean field theory by Hvilsted et al. [8],
other theories that consider free volume changes and pres-
sure gradients [9, 10], and optically controlled anisotropic
models [11] only partially explain the observed effects. Any
theory which claims to explain the observed effects has to
take the strong dependence on the light polarization into ac-
count. A complete discussion of all of the proposed models
is given by Viswanathan et al. [12], who favor the gradi-
ent force model. However, we developed a more general
approach.
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In most of the described experiments holographic grat-
ings such as intensity gratings or phase gratings are applied.
Holographic intensity gratings arise from two parallel polar-
ized writing beams when they are superimposed. The light
intensity varies spatially from regions of complete darkness
to maximum intensity, as depicted in Fig. 1. However, when
we superimpose writing beams which are perpendicularly po-
larized, we observe holographic phase gratings. When ver-
tically and horizontally polarized beams are superimposed,
the polarization of the light changes from a +45◦ angle with
respect to the x2-axis through elliptical to −45◦ angle with
respect to the x2-axis and backwards to the +45◦ direction
as shown in Fig. 2. In this paper a model is proposed which
describes SRGs in photoaddressable polymers caused by in-
tensity and phase gratings. The idea behind the theory for the
cw-generated SRGs is similar to that for SRGs generated by
a pulse laser, as published previously [13] and is based on the
fact that the permittivity of the sample is modulated due to the
periodic alignment of the polymer side-chains. In contrast to
the gradient force model, which takes electrical polarization
effects to be responsible for SRGs, we assume that gradients
of permittivity result in a force density if an electrical field
is applied. This force density causes the modulations of the
surface.

Fig. 1. Light intensity distribution in the x1 direction in an intensity grating.
Λ is the grating parameter
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Fig. 2. Polarization state in the x1 direction in a phase grating formed
through one vertically and one horizontally polarized writing beam. Λ is the
grating period

1 SRGs in intensity gratings

We begin our calculation at the time when the incident
holographic intensity grating has generated a refractive in-
dex modulation of maximum value in the sample, the lat-
ter being in temporal equilibrium. In fact it was observed
that a refractive index modulation often precedes the gener-
ation of SRGs [9, 14, 15]. Zilker et al. reported light-induced
refractive-index variations of about ∆n = 0.1 [16], but higher
values seem to be achievable. Further, we suppose that there
is no permanent polarization in the sample. That can be as-
sumed because, although the dipole-moment carrying side
chains are aligned parallel, their free ends point randomly in
opposite directions.

The permittivity can be calculated using the formula

n = √
εµ, (1)

in which ε is the permittivity and µ the magnetic permeabil-
ity. In the investigated polymers the magnetic permeability
can be set to µ = 1. The modulated refractive index n and
permittivity ε are shown together with the light intensity in ar-
bitrary units in Fig. 3. The permittivity varies by about 20%
when the refractive index is modulated by ∆n = 0.1.

If we generalize (1) for anisotropic, diamagnetic media,
we obtain

ε̃ = ñ ñ , (2)

where ε̃ and ñ represent the corresponding tensors. In holo-
graphic gratings the refractive index and the permittivity are
to the first order modulated along the grating vector (x1-axis),
while they are constant along the x2- and x3-axes. That allows
us to give the permittivity tensor the following form:(

ε1(x1) 0 0
0 ε2(x1) 0
0 0 ε3(x1)

)
. (3)

In contrast to the light intensity the polarization of the in-
cident light is constant over the whole illuminated area when
intensity gratings are applied. Due to that fact we are able to
simplify our calculations, since all components of the electric
field vector except one vanish. Without loss of generality, we
assume furthermore that the light is polarized in the x2 direc-
tion and the electrical field vector is only dependent on the
x1-axis.

The general electric force density, which is exerted by
electromagnetic fields on matter, is when neglecting the mag-

Fig. 3. Refractive index n and the dielectric constant ε formed by an inten-
sity grating in the x1 direction

netic term [17]

fα = 1

2
(DE,α − ED,α), (4)

where the comma in the index denotes the partial derivative
with respect to the corresponding coordinate. The electric dis-
placement is calculated as

D = ε0̃εE (5)

and, in particular,

D = ε0


0

ε2(x1)E2(x1)

0

 . (6)

We insert this result into (4) and obtain, when we apply the
product rule, a force density along the x1-axis given by

f1 = −1

2
ε0 E2

2(x1)
∂

∂x1
ε2(x1). (7)

When the incident light is polarized along the x1-axis, we get

f1 = −1

2
ε0 E2

1(x1)
∂

∂x1
ε1(x1); (8)

the components f2 and f3 of the force density vanish in both
cases. We approximate the permittivity ε1 or ε2 respectively
with a sinusoidal function

ε1,2(x1) = ε′
0 +∆ε1,2 sin

(
2π

Λ
x1

)
, (9)

with a constant share ε′
0, which is modulated with an ampli-

tude of ∆ε1,2 and periodicity given by the grating parameter
Λ. The incident light field of the intensity grating is a stand-
ing wave. Therefore the components E1 or E2 of the electric
field vector can be set to

E1,2 = E ′
1,2 sin ωt sin

π

Λ
x1, (10)
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Fig. 4. x1 component of force under a periodical modulation of the inci-
dent light. The material is pulled out of areas with high gradients of the
permittivity (arrows denote the force direction)

where ω is the angular velocity of the writing beam, E ′
1,2 the

amplitudes of the light field and Λ the grating parameter.
Figure 4 shows the sinusoidal intensity distribution caused

by the grating, which corresponds to the factors E2
1 and E2

2 in
(7) or (8), respectively. The amplitude of the resulting force
density in the x1 direction is calculated by inserting (10) and
(9) in (7) and is depicted in Fig. 4 in arbitrary units. The
force density does not depend on the direction of the incident
electric field vector; in the first half-period of the intensity
modulation it points towards the negative x1-direction, and
in the second half towards the positive x1-direction (arrows
in Fig. 4). We discover a periodically time-dependent force
density with magnitude and direction dependent on the x1
coordinate, which pulls the material out of areas with high
gradients of permittivity. To explain gain effects [16], which
occur when the writing beams are switched off, we assume
that the SRGs are formed under the electrical field of the
reading beam. Due to our general set-up the described force
density has first-order magnitude.

The trans-cis cycles of the azo-groups seem still to be ne-
cessary not only for aligning the side chains but also to soften
the material as recently shown by Neher et al. [18].

2 SRGs in phase gratings

The theory developed for intensity gratings can be in princi-
ple applied to phase gratings. Therefore we want to outline
some arguments. The polarization-induced anisotropic orien-
tation of the side chains leads to an inhomogeneous distri-
bution of the refractive index and the permittivity along the
grating vector. These variables vary with the same periodicity
as the polarization of the phase grating and the SRG, respec-
tively. Thus a periodical force density is generated.

The fact that the largest SRGs occur under circularly po-
larized beams, as reported by [10], can be easily explained by
the strong modulation of the permittivity under this geometry.
Although the principle of calculation is similar, the vary-
ing light polarization of the incident phase grating and the
non-vanishing components of the electric field vector pre-
vent some of the simplifications made above. Nevertheless
it is easy to recognize that our model is able to explain the
observed SRGs so far in a qualitative way. A theoretical cal-

culation of SRGs generated by phase gratings has to consider
the described tensor property of the permittivity and the vary-
ing polarization of the light field.

3 Conclusions

The model is able to explain the structures which are ob-
served in the experiments with azobenzenes. It predicts that
generally internal stress appears in samples with a varying
refractive index if an electric field is applied. Whether it is
important that the field is an oscillating light field or whether
a static electrical field will show similar effects has to be clar-
ified in further experiments. Nevertheless it has to be pointed
out that a varying refractive index exists in the sample when
we start our consideration. Whether this variation is caused by
a holographic grating or whether it is caused by other sources
plays no role for the resulting force density. Although the
principle of generating SRGs under cw conditions is similar
to the theory for SRGs written with pulsed lasers [13], there
are still some essential differences. Under pulse conditions
the modulation of the refractive index and the permittivity is
caused by local thermal heating as a result of intensity grat-
ings. Due to the constant temperature distribution when phase
gratings were applies, we observed no SRGs in our pulsed
experiments [13]. The softening of the material is achieved
thermally, and trans-cis cycles of the side chains, and there-
fore chromophore reorientation, play a negligible role [13].
Indeed we found pulse-generated SRGs in materials without
any azo-functionality.
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