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Abstract. Two types of nonlinear couplers exhibit identi-
cal coupling behaviors if their corresponding characteristic
parameters and linear mismatches are of equal values but
opposite signs. Complete power transfer can be attained in
a nonlinear coupler when their characteristic parameters, lin-
ear mismatch and the input power satisfy an equation. For
a mismatch asymmetrical nonlinear coupler, only one input
power can lead to the complete power transfer. It leads to
some new applications of the nonlinear coupler. The condi-
tions for the stable and unstable equilibrium of the coupler
are presented, they depend on the nonlinear asymmetry and
linear mismatch. The impact of the nonlinear asymmetry on
the switching characteristics is discussed. For a slight asym-
metry or mismatch nonlinear coupler, the switching power
can be shifted by means of varying the nonlinear symmetry
or the linear mismatch while the switching features remain
nearly unchanged. The impact of the mismatch on the oper-
ation of the coupler can be counteracted by the asymmetry of
the nonlinearity. When the nonlinear asymmetry is high, the
nonlinear coupler exhibits good limiting characteristics but
not switching characteristics.

PACS: 42.65.Wi; 42.81.Qb; 42.82.Et

The nonlinear directional coupler has been investigated ex-
tensively owing to its potential applications in all-optical
signal processing since its operation characteristics were
first discussed by Jensen [1–22]. Many applications [1–
7] have been proposed by means of its power-dependent
transmission characteristics. Self-switching in the nonlinear
fiber coupler and nonlinear waveguide directional coupler
have been demonstrated experimentally [8–10]. The theor-
etical studies on the nonlinear coupler reported so far have
included: symmetrical nonlinear coupler composed of two
identical nonlinear waveguides with or without nonlinear
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saturation [11–14], asymmetrical nonlinear couplers com-
posed of two waveguides with different nonlinear coefficient
or different propagating constants [15–18]. The nonlinear
coupler composed of one self-focusing waveguide and one
self-defocusing waveguide [19] was also examined. By em-
ploying the phase portrait, the effect of the linear and non-
linear mismatch on the coupling behavior has also been
examined, where only the nonlinear coupler composed of
the two self-focusing cores was discussed [16]. Trillo and
Wabnitz examined the nonlinear nonreciprocity caused by
the linear mismatch [15], where the solutions for the single-
input asymmetrical mismatch were presented in a general
form, but they are difficult to use. Although a complete
power transfer has been observed numerically in the coupler
consisting of one linear core and one nonlinear core [17],
the general conditions for the complete power transfer in
a coupler with arbitrary mismatch and asymmetry remain
unknown. By taking advantage of the pitchfork behavior
near the unstable equilibrium of the coupler, many useful
and interesting applications of the symmetry-match nonlinear
coupler have been presented [2, 13], but the general condi-
tions for the unstable equilibrium have not been presented.
Daino et al. [20, 21] were the first to investigate the nonlin-
ear coupling behavior by utilizing the phase portrait. They
introduced three first-order equations to describe the non-
linear coupling and a 3-dimensional portrait is employed.
In fact, a conservative nonlinear coupling system is a 2-
dimensional differential system. The coefficients of these two
differential equations are variable and are dependent on the
initial inputs of the coupler. Consequently, each nonlinear
coupling system actually includes an infinite 2-dimensional
differential subsystem. To discover the general characteris-
tics, a larger number of simulations are needed. We found
that there is only one or a pair of trajectories in the portrait
where the two conservation qualities of the coupling system
are given. It makes the analysis of the nonlinear simpler. The
knowledge of the stable and unstable equilibrium facilitates
understanding of the general characteristics of the coupler
by means of fewer simulations. Atai et al. [16] tried to ob-
tain the input conditions associated with the equilibrium but
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their results were incorrect. Here the input conditions for the
equilibrium are presented.

In this paper, the coupling behavior in the nonlinear cou-
pler composed of two cores with arbitrary linear and nonlin-
ear mismatch is investigated analytically. The coupler com-
posed of two self-focusing cores with Pc1 > 0, Pc2 > 0 and
δ exhibits behavior identical to the coupler composed of
two self-defocusing cores with P′

c1 = −Pc1, P′
c2 = −Pc2 and

δ′ = −δ. The coupler composed of one self-focusing core and
one defocusing-core with Pc1 > 0, Pc2 < 0 and δ also exhibits
the same coupling behaviors as the coupler with P′

c1 = −Pc1,
P′

c2 = −Pc2 and δ′ = −δ when they are both excited from
either waveguide 1 or 2. Analytical solutions expressed in
terms of elliptical functions for the nonlinear coupler are pre-
sented. Utilizing the analytical solutions and the portraits, we
also show that the coupler is at an equilibrium state when the
module of the elliptical function is 1. Complete transfer of
power in the mismatched asymmetrical nonlinear coupler is
obtained when the characteristics parameters Pc1, Pc2, δ and
the input power Pt satisfy a special condition. Except for the
linear matched symmetrical nonlinear coupler, there is only
one input power that can lead to the complete power transfer.
This feature suggested a band-pass power-filter and electro-
optical switch with an ultralow switching-voltage. Nonre-
ciprocity in the coupler caused by the nonlinear asymmetry is
also observed. For a slight mismatch or asymmetry coupler,
the switching power of the coupler can be shifted by varying
the asymmetry or the mismatch while the switching features
remain nearly unchanged, and the operating characteristics
are more sensitive to the linear mismatch compared with the
nonlinear asymmetry. When the nonlinear asymmetry is high,
the coupler is more suitable for application as a limiter but not
for a switching.

1 Theory

The coupled equations for the slowly varying mode ampli-
tudes a1 and a2 of the two single-mode waveguides can be
expressed as [1, 11, 12]

− j
dai

dz
= βiai +Ca3−i +γi|ai|2ai, (1)

where i =1,2. a1 and a2 indicate the complex amplitudes of
the modes in waveguides 1 and 2, respectively. C and γi
(i =1,2) stand for the linear coupling coefficient and the non-
linear self-coupling coefficient, respectively, as defined as (2)
and (3) in [11]. The nonlinear self-coupling coefficient γi is
dependent on both the Kerr coefficient n2 of the material and
the effective core area of the waveguide [23]. To analyze (1),
we make the following substitutions:

ai =√
Pc Ai exp ( jz(β1 +β2)/2 + jφi(z)), (2)

where Pc is a normalized constant. Ai and φi (i =1,2) are
the real functions of z. φ1 and φ2, which are induced by the
nonlinear coupling, are the nonlinear phases of beams propa-
gating in waveguides 1 and 2, respectively.

Substituting (2) into (1), the differential equation for the
power propagating in waveguide can be obtained:(

dPi

dZ

)2

= P1 P2 −
(
Γ − δP1 − Pc

Pc1
P2

1 − Pc

Pc2
P2

2

)2

, (3)

where Pci = C/4γi (i =1,2) are the characteristics parame-
ters [1] for waveguides 1 and 2. δ = (β1+β2)

2C is the linear mis-
match between the two waveguides. Z = 2Cz is the normal-
ized longitudinal coordinate z. P1 = A2

1(Z) and P2 = A2
2(Z)

are the normalized optical powers in waveguides 1 and 2, re-
spectively. Pt = P1 + P2 is the total input power. Γ is another
conservation quantity of the nonlinear coupling systems and
can be determined by the initial inputs.

Γ =√
P10 P20 cos ϕ0 + δP10 + Pc

Pc1
P2

10 − Pc

Pc2
P2

20, (4)

where Pi0 = Pi(0), i =1,2. ϕ0 is the initial phase difference.
It is apparent that power evolution is dependent on the

characteristic parameters Pc1, Pc2, the linear mismatch δ and
the initial inputs. According to (3) and (4), the nonlinear
coupler with characteristic parameters Pc1, Pc2 and δ ex-
cited by two beams with phase difference ϕ0 obeys the same
power-evolution equations as the coupler with P′

c1 = −Pc1,
P′

c2 = −Pc2 and δ′ = −δ excited by two beams with phase
difference ϕ′

0 = ϕ0 +π. Therefore, the coupler composed of
two self-defocusing cores exhibits the same characteristics as
the corresponding coupler composed of two self-defocusing
cores.

In the case of single-input excitation, assuming P20 = 0
and P10 = Pt , then we have Γ = δPt + Pc

Pc1
P2

t , and (3) can be
reduced to(

dP2

dZ

)2

= P1 P2 − P2
2 (η− ξP2)

2. (5)

where η = δ+2 Pc
Pc1

Pt and ξ = Pc
Pc1

+ Pc
Pc2

.
According to (5), the nonlinear coupler composed of one

self-focusing core and one self-defocusing core with Pc1 > 0,
Pc2 < 0 and δ also obeys the same power-evolution equa-
tions as the coupler with P′

c1 = −Pc1 < 0, P′
c2 = −Pc2 > 0

and δ′ = −δ when both are excited from either waveguide
1 or 2 . Thus, the coupling behavior of the nonlinear cou-
pler excited from the self-defocusing core can be obtained
directly from the corresponding coupler excited from the self-
focusing core. Therefore, we only need to discuss two cases:
the coupler composed of two self-focusing cores and, the cou-
pler composed of one self-focusing and one self-defocusing
core excited from the self-focusing core.

1.1 ξ = 0, namely Pc1 = −Pc2

The coupler consists of one self-focusing core and one self-
defocusing core. The power evolution along the coupler can
be obtained by solving (5) and the results are:

P2(Z) = Pt

1 +η2
sin2

(√
1 +η2

2
Z

)
(6a)

P1(Z) = Pt − Pt

1 +η2
sin2

(√
1 +η2

2
Z

)
. (6b)

The nonlinear coupler operates as a linear coupler with an
additional mismatch proportional to the input power, as pre-
dicted in [15].
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1.2 ξ �= 0

(5) can be rewritten as

(
dP2

dZ ′

)2

= −P2

(
P3

2 − 2η

ξ
P2

2 + 1 +η2

ξ2
P2 − Pt

ξ2

)
, (7)

where Z ′ = |ξ|Z .
Equation (7) integrates as an elliptical integral. In order to

calculate the integral of (7), it is necessary to solve the follow-
ing cubic equation:

P3
2 − 2η

ξ
P2

2 + 1 +η2

ξ2
P2 − Pt

ξ2
= 0. (8)

Let h = 3−η2

9ξ2 and g = 1
54ξ3 (2η3 +18η−27ξPt). There are two

cases to be considered: (i) (8) has three real roots when h3 +
g2 ≤ 0. (ii) (8) has one real root and two conjugate complex
roots when h3 + g2 > 0.

1.2.1 h3 + g2 ≤ 0. When h3 + g2 ≤ 0, we have h ≤ 0,
consequently η ≥ √

3 or η ≥ −√
3. When h �= 0, (8) has three

real roots y1 > y2 > y3, and the roots are
yn = 2

√−h cos
(

θ+2(4−n)π
3

)
+ 2η

3ξ
, (n = 1.2.3) where θ =

cos−1 (−g/
√−h3) and h < 0. The solution to (7) can be writ-

ten as the following [22]:

P2 = y1y3sn2(RξZ, k)

(y1 − y3)+ y3sn2(RξZ, k)
, (9a)

k2 = (y1 − y2)y3

(y1 − y3)y2
, (9b)

where R =
√

(y1−y3)y2
2 and P2 ≤ y3.

For h = 0, we have h = 0 and g = 0. This leads to η = √
3

and Pt = 8
√

3/9ξ or η = −√
3 and Pt = −8

√
3/9ξ . Now the

three real roots of (8) are y1 = y2 = y3 = 2η/3ξ . Equation (7)
can be reduced to(

dP2

dZ ′

)2

= −P2

(
P2 − 2η

3ξ

)3

. (10)

By solving (10), we have

P2 = 3Pt
Z2

4(3 + Z2)
. (11)

Apparently, the powers in the two waveguides do not inter-
change periodically. The power in waveguide 2, namely P2,
increases with the increase of the coupling length. P2 ap-
proaches 3Pt/4 when Z → ∞. Obviously, (11) can not be di-
rectly derived from (9). Considering the case of y1 → y2 and
y1 → y3, according to (9) and the definition of elliptic func-
tion we have the approximations R → 0 and sn(RξZ) → RξZ
then Eq.(9) reduces to P2 = y1

y2 y3 Z ′2
4+y2 y3 Z ′2 . Let y1 = y2 = y3 =

2η/3ξ , P2 reduces to (11). Therefore, is continuous according
to variable in the neighborhood of |Pt | = 8

√
3/9ξ .

1.2.2 h3 + g2 > 0. In this case (8) has one real root y1 and
two complex roots, and the real root is y1 = u +v+2η/3ξ ,

where u = (−g +√h3 + g2)
1
3 and v = (−g −√h3 + g2)

1
3 .

The solution for (7) can be written as [22]:

P2 = y1q
2 − cn(RξZ, k)

R2 +q + (R2 −q)cn(RξZ, k)
, (12a)

k2 = 1

2
− 2q + y1(y1 −2η/ξ)

4R2
, (12b)

where q = (y1−2η/ξ)2+3(u−v)2

4 , R4 = q(q +2y1(y1 −η/ξ)).
According to (12), we have P2 ≤ y1, P2 = y1 and when

cn(RξZ, k) = −1. We also have y1 = Pt when η = Ptξ and
η < 2. Thus, complete power transfer can be attained when
η = Ptξ < 2. In this case we have y1 = Pt = η/ξ , R2 = q,

q = 1
ξ2 + P2

t and k2 = ξ2 P2
t

4(1+ξ2 P2
t )

, and thus (12) is reduced to

P2 = Pt

2
(1 − cn(RξZ, k)), (13)

It is apparent that complete transfer of power can be obtained.
The conditions for the complete power transfer can be rewrit-
ten as

δ = Pt(
Pc

Pc2
− Pc

Pc1
) and δ+2

Pc

Pc1
Pt < 2. (14)

When linear mismatch and input power satisfy the above
conditions, the two waveguides become phase-matched
through the power-induced refractive index change. Com-
plete straight-through state and bar state can be obtained. The
following observations can be seen from (14):

(i) For the case of the matched and symmetric coupler,
which includes the coupler composed of two self-
focusing cores and the coupler composed of two self-
defocusing cores, complete power transfer can be ob-
tained when Pt < Pc1/Pc as expected from previous
results.

(ii) For both linear mismatched symmetrical coupler and
the linear mismatched asymmetric coupler, no complete
power transfer can be attained.

(iii) For linear mismatched asymmetrical, only one value of
Pt can satisfy (14), that is, the complete power transfer
can be obtained for only one input power. Thus, the cou-
pler exhibits the band-pass power-filter characteristics.

(iv) Complete power transfer can also be obtained in the cou-
pler composed of one linear waveguide and one nonlin-
ear waveguide. Let us assume waveguide 1 is nonlinear
and waveguide 2 is linear, namely Pc2 → ∞. Whether
the coupler is excited from the linear waveguide or the
nonlinear waveguide, when δ = −Pt and Pt < 2 where
Pt is normalized to Pc1, complete power transfer can be
obtained. Apparently, only when the propagating con-
stant of the linear waveguide is larger than that of the
self-focusing waveguide, can complete power transfer be
attained.

According to (9b) and (12b), we have k = 1 only when the
following equation is satisfied

g +
√

−h3 = 0. (15)



420

In this case we have θ = 0 and thus y2 = y3. Equation (9)
reduces to

P2 = y1 y3(1 − sec h2(RξZ))

y1 − y3 sec h2(RξZ)
. (16)

When Z → ∞, we have P2 = y3 = 2η/3ξ +√−h.
In the following section, we will show that (15) is also

the condition of the unstable equilibrium of the coupler. Many
interesting applications of the matched symmetrical nonlin-
ear coupler have been presented taking the pitchfork behavior
near the unstable equilibrium.

2 Numerical results

2.1 Spatial instabilities and its condition

The phase-space portrait is useful for obtaining a bet-
ter understanding of the coupling behavior and facilitat-
ing exploitation of the application of the nonlinear cou-
pler especially when the analytical solution is impossible
or cumbersome. In order to investigate the power evo-
lution, (1) can be expressed in terms of real variables
S1 = (|a1|2 − |a2|2)/Pc = P1 − P2, S2 = (a1a∗

2 + a∗
1a2)/Pc,

S3 = (ia∗
1a2 − ia1a∗

2)/Pc, and the equations become [16, 20,
21]

dS1

dZ
= S3, (17a)

dS2

dZ
= −(δ+ Pc Pt

Pc1
− Pc Pt

Pc2
+ ξS1)S3, (17b)

dS3

dZ
= −S1 + (δ+ Pc Pt

Pc1
− Pc Pt

Pc2
+ ξS1)S2. (17c)

For a conservative coupled system, (17) is a two-dimensional
differential system since S2

1 + S2
2 + S2

3 = P2
t . Therefore, a two-

dimensional phase portrait, not a three-dimensional portrait
should be adopted. By using (17a) and (17b) to eliminate S2,
(17c) becomes

dS3

dZ
=− S1 +

(
δ+ Pc Pt

Pc1
− Pc Pt

Pc2
+ ξS1

)
[

T −
(

δ+ Pc Pt

Pc1
− Pc Pt

Pc2

)
S2 − ξ

2
S2

1

]
, (18)

where T is a constant which can be determined by the initial
inputs, and

T = S2(0)+
(
δ+ Pc Pt

Pc1
− Pc Pt

Pc2

)
S1(0)− ξ

2
S2

1(0). (19)

Now, the power coupling behavior in the nonlinear coupler
can be described by the two first-order coupled differen-
tial equations, namely (17a) and (18). Obviously, (18) is
a variable coefficient differential equation, and the coeffi-
cients are dependent on the initial inputs Pt and T . For a set
of given values of Pt and T , (17a) and (18) defined a 2-
dimensional differential subsystem. Therefore, a nonlinear

coupling system described by (17a) and (18) includes infi-
nite 2-dimensional differential subsystems. Each subsystem
has an unique phase portrait. Therefore, to get the general
characteristics of a nonlinear coupler, a great number of por-
traits are needed. Fortunately, there is only one or a pair of
trajectories in the portrait of each subsystem featured by Pt
and T . Figure 1 shows the portraits of two subsystems of the
nonlinear coupling system with δ = −0.3 and a = 1.2. Fig-
ure 1a corresponds to the coupling subsystem with Pt = 1.4
and T = 1.334, and Fig. 1b corresponds to the coupling sub-
system with Pt = 1.6 and T = 1.334. Obviously, these two
subsystems are different since (18) is also a function of Pt .
For a given set of Pt and T , initial inputs S1(0) and S3(0)
can be chosen by (19) and the equality S2

1 + S2
2 + S2

3 = P2
t .

Clearly, the choices of the initial inputs are infinite, however,
there is only one or a pair of trajectories as shown in Fig. 1.
It makes the analysis of the nonlinear coupler by means of
a portrait simpler.

For a symmetrical nonlinear coupler (i.e. Pc1 = Pc2), the
coefficients of (18) are only dependent on T . Each given
value of T defines a subsystem. Figure 2 shows the por-
trait of a subsystem featured by T = 0.88 of the nonlinear
coupled system with δ = −0.3 and a = 1. Each trajectory
corresponds to a special Pt in Fig. 2 since there is only
one or a pair of trajectories in the portrait for each set of
values of Pt and T . As can be seen from Fig. 2, the nonlin-
ear coupler has two operating modes: mode 1 and mode 2.
For mode 1, complete power transfer is permitted, whereas
for mode 2 most of the input power remains in the ex-
cited core. A separatrix trajectory divides the trajectories
corresponding to mode 1 from the trajectories corresponding
to mode 2.

In the portrait, a point (S1,S3) where the phase velocity
is zero, namely dS1,3

dZ = 0, is named a fixed point and repre-
sents a system in equilibrium. Obviously, point A in Fig. 2
is a fixed point; it is a hyperbolic point which represents
an unstable equilibrium state. It implies that the nonlinear

Fig. 1. Portraits of two subsystems of the nonlinear coupling system with
δ = −0.3 and Pc1/Pc2 = 1.2
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Fig. 2. Portrait of a T = 0.88 subsystem of the nonlinear coupled system
with δ = −0.3 and Pc1 = Pc2

coupler is subject to spatial instabilities for the correspond-
ing Pt and T . The fixed point can show us the structure of
the phase flow in its neighborhood and together they often
give us a good indication of the nature of the flow in the
phase space. Without the knowledge of the fixed points, it is
not convenient to investigate the coupling characteristics by
means of the portrait. Fortunately, the fixed point is related
to the input conditions and it can be obtained by the following
equations

dS1

dZ
= 0 and

d2S1

dZ2
= 0. (20a)

Similarly,

dP2

dZ
= 0 and

d2 P2

dZ2
= 0. (20b)

By using (20b), the input conditions corresponding fixed
point can be obtained. For the case of the single-input nonlin-
ear coupler, by using (7) and (20b) we have

X3 +3hX +2g = 0 (21a)

X2 +h = 0 (21b)

where P2 = X +2η/3ξ , h = 3−η2

9ξ2 and g = 1
54ξ3 (2η3 +18η−

27ξPt). Equation (21) include two one-dimensional equa-
tions. By solving (21), we have

g +
√

−h3 = 0 when X = −√−h, (22a)

g −
√

−h3 = 0 when X = √−h, (22b)

(22b) should be discarded. In the case of g −√−h3 = 0, we
have P2 ≤ 2η/3ξ −2

√−h, but we have P2 = 2η/3ξ +2
√−h

when X = √−h. Obviously, the conditions for the equilib-
rium are just the conditions for the module of the elliptical
functions to equal 1 (see (15)). It also implies that there is no
stable equilibrium in the single-input nonlinear coupler. In the
case of matched symmetrical nonlinear, the equilibrium con-
ditions, namely (15) or (22a) reduce to Pt = 1 as predicted
in [2].

2.2 Influence of the asymmetry and linear mismatch on the
switching characteristics

In practice, a linear matched and nonlinear symmetrical cou-
pler is difficult to fabricate, hence it is useful to discuss the
influence of the mismatch and asymmetry on the operating
characteristics. Figure 3 shows the influence of the nonlin-
ear asymmetry on the switching characteristics of the linear
matched coupler with single-input excitation.

As shown in Fig. 3, the switching power increases with
the increase of the nonlinear asymmetry. With the increase of
the nonlinear asymmetry, the switching characteristic curves
rise slightly whereas the extinction ratio decreases.

Figure 4 shows the influence of the linear mismatch δ
on the switching characteristics of the symmetrical couplers
with single-input excitation. It is obvious that the switch-
ing power increases with the decrease of the linear mismatch
while the switching characteristic remains nearly unchanged.
Both Figs. 3 and 4 show that slight linear mismatch and

Fig. 3. The influence of the nonlinear asymmetry on the switching char-
acteristic curves, where all the power is launched into waveguide 1. The
normalized coupling length 2Cz = π and the linear mismatch δ = 0

Fig. 4. The influence of the linear mismatch on the switching characteristic
curves, where all the power is launched into waveguide 1. The normalized
coupling length Z = π and Pc1 = Pc2
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Fig. 5. Some typical switching characteristics of nonlinear couplers, where
all the power is launched into waveguide 1 and the normalized coupling
length 2Cz = π

nonlinear asymmetry will not markedly degrade the switch-
ing characteristics, and that the impact of the linear mis-
match is interchangeable with that of the nonlinear asym-
metry. The comparison between Figs. 3 and 4 also shows
that appropriate choice of the linear mismatch and nonlin-
ear asymmetry may lead to the characteristics of the lin-
ear matched symmetrical nonlinear coupler. Figure 5 shows
the switching characteristics for three couplers with single-
input excitation.

It is apparent that the two couplers with different linear
mismatch and nonlinear asymmetry can result in the same
switching characteristics as shown as the dotted line and the
dashed line. Although both the linear mismatch and the non-
linear asymmetry cause the incomplete or deteriorated power
switching, the switching characteristics of an ideal nonlin-
ear coupler are possible to obtain by a proper combination of
a linear mismatch and a nonlinear asymmetry.

2.3 The influence of the asymmetry on the limiting
characteristics

The nonlinear coupler composed one self-focusing core and
one self-defocusing core can be used as an optical limiter.
Figure 6 shows the straight-through output power of a cou-
pler composed of one focusing core and one defocusing core
as a function of the input power in the case of single-input
excitation.

It can be seen from Fig. 6 that the output power in-
creases linearly with the increase of the input power when
Pt ≤ 0.22Pc, whereas it remains nearly unchanged when
0.22Pc < Pt ≤ 0.4Pc. It means that the coupler composed of
one focusing core and one defocusing core with single-input
exhibits limiting characteristics. It is different from the limit-
ing characteristics of the cascaded nonlinear couplers, where
the output power is 0 when the input power is less than the
characteristic power [5].

It can also be seen that the limiting level increases with the
decrease of the nonlinear asymmetry while the limiting char-
acteristic remains unchanged. The limiting characteristics are
sensitive to the linear mismatch.

Fig. 6. Limiting characteristics of the coupler composed of one self-
focusing core and one self-defocusing core. The normalized coupling length
Z = 2π and the linear mismatch δ = 0

2.4 Nonreciprocity in the nonlinear coupler caused by the
asymmetry

Nonreciprocity caused by the linear mismatch has been ob-
served by Trillo and Wabnitz in a symmetrical nonlinear cou-
pler [15]. There is nearly no power coupling between the
two waveguides when the power is initially launched into the
slow waveguide, whereas for some power there is nearly com-
plete power transfer between the two waveguides when the
power is initially into the fast waveguide. Here we will exam-
ine the influence of the nonlinear asymmetry on the coupling
behavior. Figure 7 shows the evolution of the output power
along the coupler. It is obvious that most of the power can
be transferred from one waveguide to another one when it
is excited from the core with low nonlinear coupling coeffi-
cient, whereas only a small part of power can be transferred
from one to another when it is excited from the core with
high nonlinear coupling coefficient except for the very low

Fig. 7a,b. The straight-through output power (normalized to Pc1) evolution
along the coupler, where Pc2 = 2Pc1 and δ = 0. a Power is initially launched
into waveguide 1. b Power is launched into waveguide 2
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Fig. 8. The straight-through output power evolution along the coupler when
δ = Pt [(Pc1/Pc2)−1] and Pc1 = 0.5Pc2, the coupler was excited from either
core 1 or 2

input power. Additionally, the coupling periodicity is nearly
independent of the input power when the power is initially
launched into the core with weak nonlinear coefficient. For
both the two input cases there are no nonperiodic curves in
Fig. 7 since in this case the modules of the elliptical function
can not be 1.

However, when (14) is satisfied, the linear mismatched
nonlinear asymmetrical coupler exhibits the reciprocity. Fig-
ure 8 shows the power evolution along the mismatch asym-
metrical coupler. It can be seen that the coupler exhibits the
reciprocity when δ = Pt(

Pc
Pc2

− Pc
Pc1

). If δ + 2 Pc
Pc1

Pt < 2, the
complete power transfer can be obtained as shown as the
curves 1 and 2.

2.5 Band-pass power-filter

Band-pass power-filter has been observed in the coupler com-
posed of one nonlinear core and one linear core when the
nonlinear core is excited [17]. In fact, according to (14) the
band-pass power-filter can be realized in a coupler com-
posed of two self-defocusing cores, two self-focusing cores
or one self-focusing core and one self-defocusing core. Fig-
ure 9 shows the input–output characteristic curves of a mis-
match asymmetrical nonlinear coupler when all the power is
launched into waveguide 1. It is apparent that most of the
power transfers from one waveguide to another in the neigh-
borhood of Pt = 0.5, whereas when the input is somewhat
lower or higher than Pt = 0.5, most of the power remains in
the input waveguide as shown as Fig. 9a. When the linear mis-
match changes to 1.04, most of the power will remain in the
input waveguide as shown in Fig. 9b. Comparison of Figs. 9a
and 9b shows that the variations of the mismatch δ of 0.04 can
switch the power between the two waveguide when the beam
with power Pt = 0.5 is launched into waveguide 1 of the non-
linear coupler. The mismatch can be produced by means of
voltages. It implies that it is possible for the electro-optical
switch with ultralow switching-voltage.

2.6 Limiter

In Sect. 1, we have shown that the impact of the linear mis-
match and the nonlinear asymmetry is not obvious, and the

Fig. 9a,b. Input-output characteristics for a nonlinear coupler. The normal-
ized coupling length Z = 2π and Pc2 = 3.1Pc1. a The linear mismatch
δ = 1. b δ = 1.04

coupler exhibits good switching characteristics when the mis-
match and the asymmetry are small. However, the nonlinear
coupler does not exhibit the switching characteristics, but
the limiting characteristics, when the nonlinear asymmetry is
high. Figure 10 shows the limiting characteristics of the high
nonlinear asymmetry coupler. Obviously, the high nonlinear
asymmetry coupler can be used as an optical limiter not for
switching.

3 Conclusion

The nonlinear coupler with arbitrary linear and nonlinear mis-
match is examined. Analytical solutions for the single-input

Fig. 10. Limiting characteristics for the high nonlinear asymmetry coupler,
where all the power is launched into waveguide 1
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asymmetrical mismatch nonlinear coupler are presented in
a simple form. Based on these solutions, the general con-
ditions for complete power in a coupler are also presented
analytically. Based on this feature the coupler can be used
as a power filter (see Fig. 9). In addition, we also show that
the electro-optical switch with ultralow switching-voltage is
possible. The equations for solving the conditions associated
with the equilibrium state are suggested. Without solving dif-
ferential equations, the input conditions associated with the
stable and unstable equilibrium are also present in the case
of single-input cases. We also show that there is only one or
a pair of trajectories in the portrait when the two constants
of the nonlinear system are given. It makes the analysis of
the nonlinear coupler by means of the portrait simpler. In-
terestingly, the high asymmetrical coupler can be used as an
all-optical limiter but not as a switch.
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