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Abstract. We investigate the effect of beam coherence on
four-wave mixing via reflection gratings in photorefractive
media. For the case of phase conjugation, the results of our
theoretical analysis indicate that partial coherence always
leads to a drop of signal gain and phase conjugate reflectiv-
ity in non-depleted cases. In general, the mutual coherence
of the signal beam and the pump beam can be enhanced due
to the process of wave mixing. The mutual coherence of the
phase conjugate beam and one of the pump beams depends
on the beam intensity ratio as well as the optical path differ-
ence. This is distinctly different from the four-wave mixing
case with a transmission grating.

PACS: 42.65.Hw

Wave mixing in photorefractive (PR) crystals is a fundamen-
tal nonlinear optical process which is responsible for many
applications, such as signal processing, optical communi-
cations, optical networks, optical computing, etc. [1]. For
reasons of mathematical simplicity, theoretical study in this
area has been focused on wave mixing with monochromatic
waves, or waves with full coherence. However, for some ap-
plications, such as double phase conjugation [2–4], achro-
matic volume holography [5], or optical phase conjugation
through turbulent media (i.e. sea water or the atmosphere) [6],
the effect of beam coherence becomes important in the coup-
ling process if the coherence of the beams is limited either by
the intrinsic properties of the light source (e.g. beams from
two different lasers) or due to the propagation delay (e.g. the
path difference between the beams is difficult or impossible to
equalize). Thus, knowledge of the state of coherence during
and after coupling is essential in these applications.
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Two-wave mixing (TWM) in PR crystals with partially
coherent waves has been studied by previous researchers [7–
11]. Cronin-Golomb et al. [7, 8] studied the effect of par-
tial spatiotemporal (3-dimensional) coherence in photorefrac-
tive two-wave mixing theoretically and experimentally. They
found that the spatial coherence could be improved for am-
plified and deteriorated for deamplified waves. Bogodaev
et al. studied two-wave mixing with partially spatiotempo-
ral (1-dimensional) coherent waves in transmission grating
cases [9]. Yi et al. studied two-wave mixing with partially
spatiotemporal (1-dimensional) coherent waves with con-
tradirectional beams [10, 11]. They also studied TWM with
partial coherent waves in high-speed media [12]. According
to these studies, the coherence of the beams can be improved
due to the wave mixing.

There are four gratings recorded in the photorefractive
material in the four-wave mixing (FWM) scheme, viz. trans-
mission grating, reflection grating and two 2k gratings. Usu-
ally, only one-grating is taken into account when it is dom-
inant. This is the so-called one-grating approximation. FWM
is responsible for many modes of phase conjugation (PC),
including stimulated photorefractive scattering (SPS), self-
pumped phase conjugation (SPPC), and mutually pumped
phase conjugation (MPPC) [2–4]. The non-requirement for
coherence of the two pump beams in FWM means it has
great potential in many applications, e.g. optical interconnect-
ing, laser phase locking, and laser beam cleaning [13–17].
However, in some configurations, it was found experimen-
tally that the performance of FWM is very sensitive to the
degree of mutual coherence of the two pump beams [18].
The effect of beam coherence in MPPC was studied theor-
etically and experimentally without taking into account the
coupling and propagation of mutual coherence and it was
found that the performance of the phase conjugator can be de-
creased or enhanced depending on the contribution of the re-
flection gratings [19, 20]. FWM with partially spatiotemporal
(1-dimensional) coherent waves via transmission grating ap-
proximation (TGA) was recently studied by Krolikowski [21]
and our group [22] by taking into account the coupling and
propagation of the mutual coherence. It was found that the
mutual coherence of the signal and pump beam could be en-
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hanced or decreased depending on the coupling constant and
the signal–pump beam ratio [21, 22]. For the case of phase
conjugation, the PC beam and the pump beam remain in full
coherence during the propagation [22].

In fact, when the two pump beams are partially coherent,
reflection (and/or 2k) gratings must be taken into account. In
the case of transmission grating interaction, the optical path
difference between the interfering waves of the four waves
remains approximately the same as the four waves propa-
gate through the photorefractive medium, especially when the
incident angles of the four waves are small. Only one free
variable is adequate to describe the second-order statistical
properties of the four beams, which include the intensities
and the normalized mutual coherence. But this is not the case
when the reflection grating is present. In the case of reflection
grating interaction, the optical path differences between the
four interfering waves change significantly as the four waves
propagate through the PR medium. We need at least two vari-
ables to describe the second-order statistical properties of the
four beams [23]. Another important issue in reflection grat-
ing approximation (RGA) is that the boundary conditions on
the second-order statistical properties, i.e. mutual coherence,
are not easily obtained. In this paper, we propose a theoretical
model to analyze the effect of beam coherence on nonlinear
optical FWM and the formation of index gratings in PR me-
dia by taking into account the propagation and coupling of the
mutual coherence via RGA in cases where there is no pump
depletion. We limit our consideration to reflection grating ap-
proximation only. Since here we investigate FWM with one-
dimensional spatiotemporal coherent beams, the contribution
of the 2k gratings can be regarded as part of the reflection
grating contribution.

1 Theory

Referring to Fig. 1, we consider the process of optical four-
wave mixing with RGA in a nonlinear medium. Assuming
that all the partially coherent waves have the same central fre-
quencyω0, all the waves are polarized perpendicular to the
plane and the waves form two pairs of counter-propagating
beams withk3 = −k2 , k4 = −k1; the coupled wave equations
for the slowly varying amplitudesAj (z, t) in a purely diffu-
sive photorefractive medium can be written as
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whereγ is the intensity coupling constant,ν is the group
velocity, andI0(z) = I1(z)+ I2(z)+ I3(z)+ I4(z) is the total

Fig. 1. Four-wavemixing in a photorefractive medium via reflection grat-
ing approximation. The gratings are formed by beam pair(A1, A3) and/or
(A2, A4). We designateA1 as the signal beam,A2 and A3 are the pump
beams, andA4 is the phase conjugate beam

intensity at positionz. Q(z, t) is a measure of the index grat-
ing. In purely diffusive photorefractive media (e.g. BaTiO3,
SBN or KNSBN without an applied field), the dynamic index
grating is described by the following relaxation equation

τp
∂Q(z, t)

∂t
+ Q(z, t) = A1(z, t)A∗

3(z, t)+ A2(z, t)A∗
4(z, t)

whereτp is the total relaxation time constant of the reflec-
tion grating. If we assume that the temporal behavior of each
wave’s complex amplitude is a stationary random process
with a coherence timeδω−1 which is substantially less than
the relaxation time of the material (i.e.δωτp � 1) [24], then
we can replace the dynamic grating amplitudeQ(z, t) with its
ensemble averageQ(z, t) = 〈Q(z, t)〉 = 〈A1(z, t)A∗

3(z, t)+
A2(z, t)A∗

4(z, t)〉 [11].
For convenience in our later discussion, we now briefly

give some notation and definitions for the statistical prop-
erties of the four optical waves.Γmn(z, τ) = 〈Am(z, t1)
A∗

n(z, t2)〉] represents the self-coherence functions(m = n)
and mutual coherence functions(m 	= n) of the four waves.
τ is a time delay,τ = t1 − t2. With these definitions, one can
easily obtain:Q(z, t) = Γ13(z, 0)+Γ24(z, 0). Being indepen-
dent of time,Q(z, t) in the above equations can be written as
Q(z). Note thatQ(z) is the sum of the two mutual coherence
functions of the four beams at positionz. Using (1)–(4) and
the above definitions, we obtain a set of differential equations
describing the coupling and propagation of the self-coherence
and the mutual coherence functions during the four-wave
mixing process,
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Here we only keep the six equations that have contri-
butions to the FWM with reflection gratings approxima-
tion. From the above set of differential (5)–(10), we find
that Γ11(z, τ)−Γ33(z, τ) = const. andΓ22(z, τ)−Γ44(z, τ) =
const. That means that the set of coupled equations is con-
sistent with the conservation of energy. Note that solving
(5)–(10) is a two-point boundary-value problem. If the com-
plete boundary conditions are available, the self-coherence
and mutual coherence in the set of (5)–(10) can be solved.
Unfortunately, we can only obtain the self-coherence of the
four waves and the mutual coherent functions before the
four waves enter the medium. A complete knowledge of the
mutual coherence of the four waves at the two boundaries
is often not available. In non-depleted pump approximation
with A4(L, t) = 0, if we assume the statistical properties of
the pump beams are not affected by the wave mixing, then
complete information about the boundary conditions can be
obtained. Assuming that all four beams are derived from the
same source (i.e. the same laser) and the spectral distribution
of the source wave is Gaussian, the normalized modulus of
the self- coherence function can be written,

Γs(τ) = exp

[
−
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π∆ντ

2
√

ln 2

)2
]

(11)

where∆ν is the bandwidth, andτ is the time delay. Assum-
ing the two pump beams have the same intensities and the
intensity ratio of the pump beam to the signal beam isβ, the
boundary conditions atz = 0 and atz = L for the four waves
are

Γ11(0, τ) = Γs(τ),

Γ22(0, τ) = Γ33(L, τ) = βΓs(τ),

Γ13(0, τ) = √
βΓs(τ +∆t),

Γ44(L, τ) = 0,

Γ24(L, τ) = 0,

where∆t is the time delay between the signal waveA1 and
the pump waveA3 at z = 0. At the inputz = 0, Γ13(0, τ) de-
termines the initial mutual coherence function of the signal
beam and pump beam. In the above, we assumeI4(L, t) = 0.

2 Numerical results and discussions

After we obtain the complete boundary conditions, we can
use the relaxation method to solve the set of differential equa-
tions (5)–(10) numerically [25]. We first assume an arbitrary

Fig. 2. Beam intensities in the photorefractive medium.Solid lines: fully
coherentwaves;dashed lines: partially coherentwaves. I1 = l2 = l3 = 1,

l4 = 0, n = 2.3, L = 1 cm, γ = −5 cm−1,∆ν = 1.8×109 Hz

reflection index grating and an arbitrary mutual coherence.
Then we calculate the distribution of the gratings, the intensi-
ties of the four beams and the mutual coherence of the beams
using the set of coupled equations (5)–(10). We then com-
pare the calculated results with the initial assumptions and the
boundary conditions. If the error is unacceptable, we can con-
tinue the calculations until we get satisfactory results. In our
calculations, we set an error of 10−5. We find the results are
always convergent in the non-depleted pump cases. The cal-
culated results are shown in Figs. 2–7. Figure 2 shows the
variation of the beam intensity in the PR medium. In the cal-

Fig. 3. Illustration of the optical path difference between the signal beam
and the pump beam.L1 and L3 are the optical paths of the signal
and pump beams.∆d = 0 at z = 0 means the position ofL1 = L3 is at
z = 0; ∆d < 0(∆d > 0) at z= 0 means the position ofL1 = L3 is at z > 0
(z < 0)
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Fig. 4. Dependence of the signal gain and the phase conjugate reflectivity
on the optical path difference.a Signal gain.b Phase conjugate reflectivity;
β is the pump–signal ratio. The other parameters are the same as in Fig. 2

culation, we useL = 1 cm,n = 2.3, ∆ν = 1.8×109 Hz and
γ = −5 cm−1. The intensities of the four beams areI1 = I2 =
I3 = 1, I4 = 0. The optical path difference between the pump
beam(A3) and the signal beam(A1) at z = 0 is chosen to
be zero (see Fig. 3a). The solid lines are for monochromatic
waves, dashed lines are for partially coherent waves. We note
that with a non-depleted pump approximation, partial coher-
ence can lead to a drop of signal gain and phase conjugate
reflectivity. For convenience, we define the optical path differ-
ence of the signal beam and the pump beam as∆d = L1 − L3,
whereL3 is the optical path of the pump beamI3, andL1 is
the optical path of the signal beamI1 shown in Fig. 3. Both
L1 andL3 are measured from the output end of the laser. Fig-
ure 3a shows∆d = 0 atz = 0, meaningL1 = L3 at z = 0; b
shows∆d < 0 at z = 0, meaningL1 = L3 at z > 0; c shows
∆d > 0 at z = 0, meaningL1 = L3 at z < 0. In the follow-
ing, when we mention the optical path difference between
the signal beam and the pump beam, we mean the optical
path difference atz = 0. For convenience in our later discus-
sion, when we mention the mutual coherence of the signal
beam and the pump beam, we mean the mutual coherence
of beamsA1 and A3; when we mention the mutual coher-
ence of the PC beam and the pump beam, we meanA4 and
A2, because in RGA only these two make contributions to the
wave mixing. Figure 4a,b shows the signal gain and phase
conjugate reflectivity as functions of the optical path differ-
ence between the signal beam(A1) and the pump beam(A3)

at the signal wave entrance boundary(z = 0) at various beam
ratiosβ. In this plot, the parameters areL = l cm, n = 2.3,
∆ν = 1.8×109 Hz, γ = −5 cm−1. Note that increasing the
beam ratio(β) can lead to an increase of the signal gain and
the phase conjugate reflectivity. We also note that the max-
imum signal gain and phase conjugate reflectivity occur when
the optical path difference is negative (i.e. the zero optical
path difference occurs in the PR medium, case Fig. 3b.

The normalized mutual coherence of the signal beam and
pump beam atz = L is shown in Fig. 5a as a function of the
optical path difference (as defined in Fig. 3). By comparing
with the case ofγ = 0, we find that wave coupling can en-
hance the normalized mutual coherence of the signal beam
and the pump beam. We also note that the normalized mu-
tual coherence increases with the beam intensity ratio until
it reaches saturation. Note that the curves forβ = 100 and
β = 104 overlap. This is similar to the results obtained previ-
ously in TWM with partial coherent beams [10, 11].

The normalized mutual coherence of the PC beam and
the pump beam atz = 0 as a function of the optical path
difference under various conditions is shown in Fig. 5b. We

Fig. 5. a Dependence of the normalized mutual coherence of the signal
beam and the pump beam on the optical path difference with respect to the
signal entrance plane(z= 0). b Dependence of the normalized mutual co-
herence of the phase conjugate beam and the pump beam on the optical path
difference with respect toz = 0
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Fig. 6. a Index gratings recorded in the photorefractive medium under vari-
ous conditions. Note that when∆d < 0 (i.e. ∆d < 0 = −4) the amplitude
of the grating in the rear part is much higher than that in the front part.
When∆d > 0 (i.e.∆d = 4) the amplitude of the grating in the rear part is
comparable to that in the front part.b ∆d = −4, the equivalent grating is
located atz = za > L/2; note that the optical path difference betweenI2
and I4 at z= 0 is larger thannL. c ∆d = 4, the amplitude of the front grat-
ing is comparable to that in the rear part, the equivalent grating is located
at z= zb ∼ L/2; Note that the optical path difference betweenI2 and l4 at
z = 0 is about (or less than)nL

find that when∆d > −4 cm, increasing the beam ratio[β =
I3(L)/I1(0)] will lead to a decrease in the normalized mutual
coherence. We note that the normalized mutual coherence
Γ24(0) is an increasing function of the optical path differ-
ence of the signal beam and the pump beam. In other words,
a higher normalized mutual coherence can be obtained when
∆d > 0, which corresponds to the case when a zero optical
path difference occurs in front of the signal entrance plane
(z = 0) (see Fig. 3c). This can be explained from the distri-
bution of the grating strength in the medium under different
conditions (see Fig. 6a). If the optical path difference be-
tween the signal beam and the pump beam is negative (e.g.
∆d = −4 cm, the case in Fig. 3b), the grating amplitude is
stronger at the rear(z = L) of the medium. The intensity of

the phase conjugate beam is the sum of the diffracted beams
from various parts of the grating in the medium. Thus, in this
case, the PC beams mainly gain from the rear gratings, viz.
the amount of the diffracted intensity from the rear gratings
is predominant. We can consider that the PC beam gains its
energy from the pump beam(A2) via a grating recorded at
position L/2 < z = za, as illustrated in Fig. 6b. The equiva-
lent optical path difference between the PC beam(A4) and
the pump beam(A2) at z = 0 is larger thannL, whereL is
the thickness of the PR material, andn is the refractive in-
dex of the material. Now, on the other hand, if the optical
path difference between the signal beam and the pump beam
is positive (e.g.∆d = 4 cm, the case Fig. 3c), the amplitude
of the grating recorded in the front is comparable to (or larger
than) that recorded in the rear. Thus, the amount of the inten-
sity of the PC beam diffracted from the front portion of the
grating is comparable to (or larger than) that diffracted from
the rear portion of the grating. Thus, we can consider that the
PC beam gains its energy from the pump beam via a grat-
ing recorded atz = zb, as illustrated in Fig. 6c. Note that in
this case the equivalent optical path difference atz = 0 is ap-
proximately 2nzb which is reduced compared with the former
case. Therefore, a positive optical path difference between the
signal beam and the pump beam leads to an increase in the
normalized mutual coherence of the PC beam and the pump
beam. When the grating amplitude is stronger nearz = 0,
the normalized mutual coherenceΓ24n(z = 0) can be substan-
tially enhanced [see Fig. 5b, whereγ = 5, the front part of
the grating is stronger than the rear part, but note that the en-
ergy is coupled from the signal beam to the pump beam(A3)].
However from Fig. 4b we note that a larger optical path differ-
ence between the signal beam and the pump beam also leads
to a decrease in the phase conjugate reflectivity. It is very
clear that the normalized mutual coherence of the PC beam
and the pump beam is no longer unity in Fig. 5b. It is very dif-
ferent to the case of TGA where the PC beam and the pump
beam remain fully coherent during the propagation [22]. This
difference is also due to the contradirectional propagation of
the pump beamA2 and the phase conjugate beamA4.

Fig. 7. Distribution and propagation of the normalized mutual coherence of
the signal beam and the pump beam under various conditions. The pump–
signal ratio is 1.∆d is the optical path difference between the signal and the
pump beam atz = 0. Note that the normalized mutual coherence atz = L
is enhanced
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Fig. 8. Distribution and propagation of the normalized mutual coherence of
the PC beam and the pump bean under various conditions. The optical path
difference (∆d) at z = 0 is zero

Figure 7 shows the normalized mutual coherence function
Γ13n(z) of the signal beam and the pump beam as a func-
tion of z for various path differences between the signal and
the pump beams with and without coupling. The parame-
ters are the same as in Fig. 2;I1 = I2 = I3 = 1, I4 = 0.0,
γ = −5 cm−1, the solid (broken) lines indicate mutual coher-
ence without (with) coupling. Note that when the optical path
difference is zero atz = 0, wave mixing leads to a decrease
in the mutual coherence of the signal beam and the pump
beam at the front boundary(z = 0) and an increase in the mu-
tual coherence at the rear boundary(z= L). When the optical
path difference atz = 0 is negative(∆d = −4 cm), the mu-
tual coherence at the rear boundary is higher than that at the
front boundary. When the optical path difference atz = 0 is
positive(∆d = 4 cm), the mutual coherenceΓ13 can be kept
nearly constant during the propagation. From this plot we can
clearly see that wave mixing can enhance the normalized mu-
tual coherence of the signal beam and the pump beam at the
rear boundary.

The normalized mutual coherence of the phase conjugate
beam and the pump beamΓ24n as a function ofz is shown in
Fig. 8. In this plot, we assume the optical path difference be-
tween the signal beam and the pump beam atz = 0 is zero.
Other parameters are the same as in Fig. 2. We note that
increasing the pump–signal beam ratio can decrease the nor-
malized mutual coherence of the phase conjugate beam and
the pump beam at the front boundary(z = 0). However from
Fig. 4b, we note that increasing pump–signal beam ratio can
increase the phase conjugate reflectivity.

3 Conclusion

In summary, we studied the effect of partial coherence on
FWM via a reflection grating approximation (RGA). We find
that partial coherence always leads to a drop in the signal gain

and phase conjugate reflectivity using non-depleted pump ap-
proximation. Wave mixing can enhance the coherence of the
signal beam and the pump beam. Higher coherence of the PC
beam(A4) and the pump beam(A2) can be obtained when the
optical path difference between the signal beam(A1) and the
pump beam(A3) at the signal entrance boundary is positive.
This always leads to a drop in the phase conjugate reflectiv-
ity. The normalized mutual coherence of the PC beam and
the pump beam is no longer unity, which is different to the
TGA case. Increasing the pump–signal ratio can enhance the
PC reflectivity, but decrease the normalized mutual coherence
of the PC beam and the pump beam. Four-wave mixing with
partially coherent waves is a very complicated phenomenon.
Undoubtedly, FWM with partially coherent waves through
TGA and RGA can shed some light on how mutual coher-
ence evolves and propagates in the four-wave mixing process
and how it affects the wave mixing. The effect of partial co-
herence on four-wave mixing taking into account the propa-
gation and coupling of the mutual coherence when all the
gratings are present is the subject of a future publication.
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