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Abstract. Quantum key distribution bears the promise to set
new standards in secure communication. However, on the
way from the theoretical principles to the practical implemen-
tation we find many obstacles that need to be taken care of. In
this article I show how to obtain a key with a realistic setup
such that the security of this key can be proven for an im-
portant restricted class of eavesdropping attacks, namely the
individual attacks.

PACS: 03.67.Dd; 03.67.-a; 42.79.Sz

Quantum key distribution (QKD), often refered to as quan-
tum cryptography, promises to show a way to provable secure
communication. For an introduction and an overview to dif-
ferent protocols see for example [1, 2]. In an idealized setting,
it allows us to establish a secret key between two distant par-
ties who do not need to share any secret beforehand. This
secret key can be used as a one-time pad, or Vernam cipher, to
allow secure communication given that the key is secret and
that all keys of the same length are equally probable. The dif-
ference from today’s cryptographic schemes lies in the fact
that in this scenario the security can be proven, rather than
having to rely on computational difficulty of inverse opera-
tions, such as factorising, which are needed to break a code.

When we start to implement a QKD scheme experimen-
tally, however, we are faced with several problems. One is
that the idealized setting for QKD involves a public channel
which is assumed to be faithful, meaning that an eavesdrop-
per can listen to the conversation relayed by that channel, but
cannot change the signals exchanged on that channel. We find
that in an experimental setting it is rather a problem to im-
plement such a channel. Other problems involve the signal
preparation, the design of a quantum channel to transport the
signals, and the state detection scheme. Unlike an eavesdrop-
per, sender and receiver are quite limited by current technol-
ogy. It is therefore important to investigate the influence on
the security of the final key for all deviations made from the
ideal protocol. These deviations are unavoidable, and a posi-
tive proof of security has to take account of the technological
restrictions of todays realizations.

In this article I describe some of the constraints for secure
key distribution as far as quantum optical implementations
are concerned. It turns out that many experiments performed
today are actually provable insecure in principle, although an
eavesdropper still faces tough problems to break the code.
On the other hand, under some restrictions it is possible to
give a positive proof of security for experiments using today’s
technology. In Sect. 1 I outline the Bennett–Brassard protocol
(BB84) in an idealized setting. This protocol is used through-
out this paper. Section 2 introduces measures to quantify the
eavesdropper’s knowledge. In Sect. 3 I summarize tools of
classical computer science needed in an adaption to noisy
channels. The following section clarifies what we mean by
‘proving security of QKD’. The technological restraints are
taken account of in Sect. 5 leading to the main results of this
paper regarding realistic experiments.

1 Bennett–Brassard protocol (BB84)

The goal of the Bennett–Brassard Protocol [3] is to establish
a random secret key between two parties, which are conven-
tionally called Alice and Bob. To reach this goal, Alice sends
a sequence of signals, each chosen at random from a set of
four signal states. These signal states comprise two sets of
orthogonal states such that the overlap probability between
signals from different sets is 1/2. An example are single
photons with the first set of signals given by horizontal and
vertical linear polarization, while the second set is given by
right and left hand circular polarization. The receiver, Bob,
uses at random one of two measurement apparatus on the in-
coming signals. The first is a polarizer which distinguishes
vertical and horizontal linear polarization, the second distin-
guishes right and left circular polarization. It is clear that
a signal photon prepared in a linear polarization will give
a deterministic measurement result when measured with the
corresponding linear polarization analyzer, and the same is
true for circular polarized photons measured with the circular
polarization analyzer. The other combinations, for example of
linear polarized photons measured with the circular polariza-
tion analyzer, give random measurement results.
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It is an essential ingredient of quantum key distribution
that Alice and Bob can identify a set of highly correlated
events within all events generated by randomly selected sig-
nals and measurements. This assures their advantage over an
eavesdropper Eve. In the BB84 protocol this selection works
using a public channel. We assume for the moment that this
channel transmits signals between Alice and Bob faithfully,
that is, the signals are not affected by errors and they can-
not be changed by the eavesdropper. Then Alice and Bob can
exchange information about the signal set from which each
individual signal was drawn (linear or circular polarized),
and about the measurement apparatus used. They retain only
those events where the signal polarization matches the meas-
urement apparatus. If we now translate the signals within each
set as zeros and ones, for example by calling horizontal linear
and right circular polarization ‘zero’ and vertical linear and
left circular polarization ‘one’, then we obtain what is called
thesifted key.

In an ideal environment and in absence of an eavesdrop-
per, this sifted key is shared by Alice and Bob, that is, Alice’s
and Bob’s version of the key coincide completely. On the
other hand, as soon as an eavesdropper interacts with the
signals and draws some information about them, it becomes
inevitable that, on average, some error rate is introduces into
the sifted key. By comparing one part of the key, this error rate
becomes observable within the statistical uncertainty. If no er-
rors are observed, then we can assume the remaining part of
the sifted key to be secure and we can use it as a one-time pad
for cryptography.

2 Quantifying Eve’s knowledge

Before we head into details concerning implementations of
QKD we introduce some measures of Eve’s knowledge on a
key. These measures compare Eve’s a priori and a posteriori
probability distributionsp(x) and p(x|m) for the keyx ∈ X
of lengthn. The variablem∈ M denotes Eve’s accumulated
knowledge, which occurs with total probabilityq(m), includ-
ing the communication over the public channel and her meas-
urement results on the signals. If we compare the expected
difference of the Shannon entropy for both distributions, then
we obtain the Shannon information

IS= −
∑
x∈X

p(x) log2 p(x)

+
∑
m∈M

q(m)
∑
x∈X

p(x|m) log2 p(x|m) . (1)

For an equally distributed key,p(x)= 2−n , we find

IS= n+
∑
m∈M

q(m)
∑
x∈X

p(x|m) log2 p(x|m) . (2)

In that case we obtainIS= 0 iff p(x|m)= 2−n, which means
that Eve did not obtain any information on the key. On the
other hand, complete knowledge of the key is characterized
by IS= n.

Another measure is the expected collision probability of
the a posteriori probabilityp(x|m). It is defined by

pc=
∑
m∈M

q(m)
∑
x∈X

p2(x|m) . (3)

The equally distributed a priori probability distribution gives

a collision probability ofp
a priori
c = 2−n, which is the lowest

obtainable value. If Eve does not know anything about the
key, thenpc= 2−n, whereas complete knowledge is charac-
terized bypc= 1.

It is instructive to study the trade-off between the amount
of information Eve can gain on the signals in relation to the
disturbance she causes in the form of the observable error
rate in the sifted key. The simplest example of an eavesdrop-
ping strategy is the intercept–resend strategy in one of the
signal bases. One implementation is as follows: Eve mea-
sures all signals in the horizontal/vertical polarization basis
and forwards a single photon to Bob which corresponds to her
measurement results. It is easy to check that this will cause
an error fraction ofe= 0.25 in the sifted key and gives her
a Shannon information ofIS= n/2 on the sifted key. Now,
Eve can perform this attack on a fractionp of the signals
only. Then the error fraction goes ase= 0.25p and the in-
formation asIS= n p/2. In an experiment we expect to find
error ratese= 0.01. With the described attack this means that
Eve could have gained an amount of Shannon information of
IS= 1

2
0.01
0.25 = 0.02. This value is too high to use the sifted key

directly as a secret key. Even more, by a better choice of the
eavesdropping basis [4] or by using more sophisticated meas-
urements [5] Eve could get even more information on the key.
This motivates the use of the tools presented in the following
section to extract a key from the sifted key on which Eve has
negligible amount of information.

3 Classical tools for realistic environment

In a realistic environment we encounter several problems.
The first one is the problem of the public channel. The major
point, however, is that in a realistic setup noise in the system
is basically unavoidable, and there is no way to tell noise from
eavesdropping activity apart. We have seen that Eve can be in
possession of non-negligible information about the key even
for small error rates in the range of1%–3%, which are typi-
cal for present day setups. This problem can be overcome by
the technique ofprivacy amplificationwhich allows us to ex-
tract a shorter key from the partially compromised sifted key
such that Eve’s information on the new key is negligible. But
before we can apply this technique, we need to reconcile Al-
ice’s and Bob’s versions of the sifted key by performing error
correction.

3.1 Implementing a public channel

The usual example for a public channel is a radio transmitter,
but that implementation is rather impractical, and, with some
substantial effort, even this channel can be tampered with. At
present, we know only one reliable way to implement a pub-
lic channel. This methods is that ofauthentication[6]. The
idea is to use any classical channel between Alice and Bob
such that both parties keep a record of what has been sent
and received on that channel. At the end of the protocol, they
map their respective records of the communication with a se-
cret function into a short sequence, called the message ‘tag’.
They exchange this tag so that both parties can compare their
own tag with that of the other partner. The security relies on
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the secrecy of the mapping into the tag, and the stability of
tags. The last point means that it is highly unlikely that Eve
could construct the correct tag to a message she altered, if she
knows only the tag for the correct message. This statement
can be made more precise [6, 7], but that is beyond the scope
of this paper.

The important consequence of this implementation of a
public channel is that Alice and Bob now have to share some
secret before they can start QKD. Nevertheless, we are able
to show that it is possible to create a long secret key out of a
short secret key. In other words, we expand a secret key rather
than create one.

3.2 Privacy amplification

We cannot use the sifted key directly for secure communi-
cation if it is affected even by a small error rate of about
1%–3%. However, the tool ofgeneralized privacy amplifica-
tion allows us to cut Eve’s knowledge from the key at the
cost of the key length. To convince ourselves that this might
be possible let us have a look at the following example: as-
sume that Eve knows each bit of the key with probabilityp1=
1/2(1+ ε). Hereε= 0 indicates that Eve does not have a clue
about the value of the bit. Now let us define a new key by tak-
ing the parity bit of two subsequent bits, thereby halving the
length of the key. We find that Eve will know each bit of the
new key with probabilityp2= 1/2(1+ε2). With other words,
for small ε, Eve knows much less about the new shorter key
than on the old one.

As shown in [8], one does not need necessarily to half the
key length. There are more subtle methods to map the ori-
ginal sifted key into a new shorter key. A precondition for
this to work is that Alice and Bob share the same key. We
have to perform error correction before we can apply privacy
amplification.

By what fraction do we need to shorten the key? As long
as Eve does interact with each signal separately (individual
attack, see below) the answer is clear. It depends on Eve’s
knowledge on the key measured in the collision probability. If
we shorten the key by the fraction

τ1= 1+ 1

n
log2 pc (4)

and then by additionalnS bits so that we obtain a new key of
lengthnfin = (1− τ1)n−ns then the Shannon information in
Eve’s hand on the key is bounded byIS≤ 2−ns

ln 2 .

3.3 Error correction

We need to correct the key prior to privacy amplification. Of
course, error correction codes are a well-studied field in com-
puter science. However, the situation here is a non-standard
one for two reasons. First, error correction works with redun-
dant information, for example in form of giving parity bits for
subsets of the key. Obviously, we cannot exchange arbitrary
amounts of such information over the public channel since all
such information will become available to Eve. Second, the
transmission over the public channel can be made error-free,
thereby allowing for specialized codes.

Table 1. Performance of the bi-directional error reconciliation protocol by
Brassard and Salvail. The values are taken from that paper. Heree is the
observed error rate, whilef is the ratio of actually needed redundant bits
to the corresponding number of the Shannon limit. (I used the bounds for
I(4) provided in the reference.)

e f

0.01 1.16
0.05 1.16
0.1 1.22
0.15 1.35

To avoid the flow of side information to Eve due to ex-
change of parity bits over the public channel, we can encode
these parity bits with secret bits shared by Alice and Bob. We
then need to check at the end that we actually gain more se-
cure bits than we put in in authentication and error correction.
Alternative equivalent methods are possible [9].

From the work of Shannon [10] in classical information
theory we know that error correction codes exist which can
correct a key affected by error ratee in the limit of long keys
such that (a) the number of redundant bitsNrec is given by

Nrec= n
[
elog2 e+ (1−e) log2(1−e)

]
, (5)

and (b) the errors are corrected with unit probability. It is not
possible to use fewer redundant bits. I will refer to this situ-
ation as the Shannon limit of error correction. The theorem
by Shannon states the existence of such codes in the limit of
long keys, but it does not construct such codes. It is there-
fore important to investigate what kind of codes are known
and practically available for the implementation in connection
with quantum key distribution. It turns out that it is rather hard
to find error correction codes that use uni-directional commu-
nication only, that is, Alice sends information to Bob while
Bob is passive. On the other hand, we do know one effective
error correction code which uses bi-directional classical com-
munication [11] where Alice and Bob exchange information
both ways. This protocol works close to the Shannon limit, as
can be seen from Table 1.

4 Proving security

It is the goal of the security analysis to state a protocol which
extracts a final key from the sifted key such that (a) the Shan-
non information of Eve, or some other similar quantity, on
that key can be bounded to be exponentially small, (b) the
key can be proven to be shared between Alice and Bob with
the exception of some exponentially small probability. Expo-
nentially small here means that any specified bound on the
relevant quantity can be matched without changing the ratio
of the length of the sifted and the final key in the limit of long
keys.

We are still far from being able to present a protocol that
guarantees security of the final key without making physical
assumptions about the setup. For example, we will assume
that Eve cannot interfere with Alice’s and Bob’s apparatus,
for example by looking into their apparatus to measure the
signal setting or the detection setting.

Other assumptions can be made to restrict the eavesdrop-
ping ability of Eve. The study of security of QKD started
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considering only individual attacks. Here Eve interacts with
each signal independently. This strategy can always be de-
scribed as follows: Eve attaches to each signal an auxiliary
system and both systems interact with each other. Then Eve
stores the auxiliary system until she learns the full public
discussion on the public channel. Then she decides which
measurement to perform on the auxiliary system and mea-
sures each auxiliary system individually. The next scenario is
that of acollective attack[12] which differs from that of the
individual attack in that Eve can perform coherent measure-
ments on the auxiliary systems. For that she needs the ability
to manipulate those systems coherently. The most general
scenario [13, 14] is that of coherent attacks. Here we drop the
assumption that the auxiliary systems attached to the signals
are independent of each other and of the previously sent sig-
nals. Instead, those systems can depend on the whole history
of previously sent signals.

In the limit of long keys each security protocol is now
characterized by the ratio between the length of the final and
the sifted key. For implementations we are interested in the
ratio between the length of the final key per signal sent by Al-
ice, shortly denoted by secret bits per time slot. This ratio can
be calculated for the coherent attack following a security an-
alysis by Mayers [13]. It should be noted that these results are
valid for single photon signals and for the Shannon limit of
error correction while using uni-directional protocols only. It
would be desirable to extend these results to cope with realis-
tic signals and to work with bi-directional protocols.

It turns out that it is rather hard to perform the security an-
alysis to accommodate realistic experiments in the scenario of
coherent attacks. Therefore I will restrict the following results
to the scenario of individual attacks. The advantage is that
now elements of the realistic implementation, for example
use of coherent states as signal states, and bi-directional error
correction protocols, can be handled. These results can there-
fore be used to explore the ground for the generalization to
coherent attacks. Results in the scenario of individual attacks
will bound those in the scenario of coherent attacks. Even
apart from that, the study of individual attacks is justified
in its own right. In contrast to classical encryption methods,
quantum key distribution needs to be secure only against tech-
nology available today and at the place of the transmission. If
tomorrow we will have tools available to perform unlimited
coherent interactions and storage of quantum systems, then
this does not help to eavesdrop on today’s transmissions of
quantum signals in QKD.

5 Adaption to realistic experiments

In this section I will show how we can obtain a key secure
against individual attacks. I will be interested in the limit of
long keys only and therefore concentrate only on the ratio be-
tween secure bits and number of time slots used to generate
it. After a brief review of the ideal case using single photons
I present the extension to arbitrary signal states in the four
BB84 polarization states.

The common ground is that the total gain of secure bits is
given by

Ngain= nsif [1− τ1(e)]

−nsif f
[
elog2 e+ (1−e) log2(1−e)

]
, (6)

with the first term describing the length of the final key after
privacy amplification while the second term counts the cost of
error correction taking into account the factorf (see Table 1)
to accommodate the fact that even the bi-directional error
correction protocol does not operate at the Shannon limit de-
scribed byf = 1.

The quantity we need to know is the value ofτ1 as a func-
tion of the observed error rate. There are certain subtleties
in the calculation of the observed error rate coming from the
fact that Eve is not restricted to send single photon states only
to Bob. However, the possibility to send multi-photon states
can be can be excluded by taking into account the (unavoid-
able) events that the polarization analyzer will show photons
in bothoutput modes, leading to a photon detection in two de-
tectors. We are not allowed to discard these events. Instead,
we should randomly assign one or the other outcome. There-
fore the number of double clicks will lead to an additional
error rate of half of the double click rate.

5.1 Single-photon signal states

For single-photon states the value ofτ1 has been calculated in
[15]. It is given via the collision probability per single signal
p(1)c = p1/n

c ),

p(1)c (e)≤
{

1
2+2e−2e2 for e≤ 1/2

1 for 1/2≤ e
. (7)

by

τ1(e)≤
{

log2

(
1+4e−4e2

)
for e≤ 1/2

1 for 1/2≤ e
. (8)

The resulting gain of secure bits per time slot is given by
Ngain/(2nsif), taking into account that half of the signals do
not contribute to the sifted key. This assumes a loss-free quan-
tum channel and ideal detectors. Therefore this curve (Fig. 1)
represents an upper bound on the rate QKD can deliver.
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5.2 Multi-photon signal states

To deal with multi-photon signals we use the observation that
in a physical realization we can think of the signal states to
be a mixture of Fock states in the four BB84 polarization
modes. This is due to the fact that Eve does not have a phase
reference for the pulses, therefore she sees a state averaged
over all optical phases. This average leads to a density matrix
which equals the non-averaged density matrix on the diagonal
elements (in the Fock basis) while all off-diagonal elements
vanish. In some setups such as the “plug and play” setup [16]
Eve will have a phase reference available. However, using a
phase randomizer for the signal states, we can return to the
phase-averaged situation.

As a consequence of this observation, we can think of
the signals to contain 0,1,2, . . . photons in total following a
classical probability distribution. Eve can perform a quantum-
nondemolition measurement on the total photon number and
therefore knows the photon number of each signal. Whenever
she finds a multi-photon signal she can extract one photon
from the signal such that the remaining signal and the ex-
tracted photon retain their original polarization. [17] This can
be done using Jaynes–Cummings Hamiltonians. Since Eve
can store the extracted photon until she learns the polarization
basis in which the signal was prepared in (linear or circu-
lar), she will always recover the full information of signals
encoded in multi-photon signals.

In the presence of loss in the quantum channel only a
small fraction of signals will be successfully detected by Bob.
This allows Eve to perform a powerful eavesdropping attack.
She replaces the lossy quantum channel by a perfect chan-
nel. Then she attacks the multi-photon signals which allow
her to get the complete signal information while at the same
time Bob will successfully and error-free receive a bit as
well. Eve might block all single-photon signals completely,
or she might eavesdrop on a fraction on them using the op-
timal single-photon eavesdropping attack. This way, Eve can
make sure that Bob finds precisely the number of successful
detections (with or without error) he expects.

We can take care of this strategy, as the following cal-
culation shows. It is important to observe that these results
are rigorous, they are not only tailored to protect against the
above attack but they give a security proof against all attacks
within the scenario of individual attacks. If we can bound
the number of multi-photon signalsm which might contribute
to then received signals, then we can bound Eve’s collision
probability by

pc≤
(
p(1)c

)n−m
. (9)

since the collision probability for one multi-photon signal is
given by p(multi)

c = 1. In the limit of large keys we can use the
expected number of contributing multi-photon signals as the
boundm. The resulting expression forτ1 is given by

τ
(m)
1 (e(1))= 1+ n−m

n
log2 p(1)c (e

(1)) . (10)

Heree(1) is not the observed error rate. As a matter of fact, we
have to assume that all observed errors are due only to eaves-
dropping on single-photon signals. The corresponding error
rate drawn on those signals then is derived from the observed

error ratee ase(1) ≤ e n/(n−m). It is important to point out
that n is the length of the sifted key and not the number of
signals sent by Alice to establish the sifted key. We therefore
expectm to depend onn and of the number of signals sent by
Alice.

5.3 Evaluation for experiments

To obtain a secure key in an experiment we establish a sifted
key of lengthn using a total of 2nT signals sent by Alice.
(The factor 2 takes care of those bits being discarded since Al-
ice’s signal did not match the basis of Bob’s measurement.)
The rate of errors inn is found to bee. In the limit of large
keys (n→∞), we would like to know how long the result-
ing secure key could be. To calculate this, we need the source
characteristics given as the probability to send no photon, one
photon, or more than one photonS0, S1, Sm respectively. The
expected number of multi-photon signals used to establish the
sifted key is given bym= SmnT, which should satisfym< n
to allow secure communication [17, 18]. With that the number
of secure bits extracted is given by

nfin

nT
= n

nT

×
{
−n−m

n
log2

[
1

2
+2e

n

n−m
−2

(
e

n

n−m

)2
]

× f(e)
[
elog2 e+ (1−e) log2(1−e)

]}
. (11)

The observables in the experiment areSm,nT,n,ewhile f(e)
is a characteristic of the used error correction protocol. There-
fore, with m= SmnT, we can calculate directly the expected
final length of a key for a given setup.

5.4 Prediction of secure key bit rates

To design a QKD experiment it is important to know the key
rates we can expect to obtain. It is relatively easy to model
the expected values ofSm,nT,n,e for a given setup. The sig-
nal source determinesSm and we can evaluate, for example,
the corresponding value for weak laser pulses. If we know
the dark count rate of Bob’s detection unit, the detection effi-
ciency, the loss in the quantum channel and in Bob’s detection
unit, and the intrinsic error rate due to misalignment etc., then
we can predictn/nT ande. These three numbers allow us to
predictnfin/nT according to (11). In the example of weak co-
herent pulses the resulting fraction of secure bits is a function
of the strength of the weak coherent pulse, i.e. the average
photon number per signal. It turns out that there is an optimal
photon number to choose which is, typically, in the order of
the total transmission factor of the system (including channel
loss, loss in Bob’s detector and detection efficiency).

It is now interesting to predict this optimal key creation
rate as a function of the distance for realistic parameters. For
these parameters I have chosen two sets of numbers drawn
from publication by British Telecom. The first data come
from an experiment performed by Marand and Townsend [19]
in the second telecommunication window at1.3µm. The re-
ported values are a detection efficiencyηB = 0.11, a dark-
count ratedB = 10−5 while the fiber shows a loss ofα =
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Fig. 2. Simulation of gain rate of secure bits per time slot as function of the
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0.38 dB/km and the detection unit shows a loss ofc= 5 dB.
The alignment error is given bye= 0.8% of the signals. The
second experiment performed by Townsend [20] at0.8µm
is characterized byηB = 0.5, dB = 5×10−8, α= 2.5 dB/km,
and a loss in Bob’s detection unit ofc= 8 dB.

With these data I explore the optimal achievable secure
key creation rate for four scenarios. The actual experiments
were not performed at these rates. The first scenario uses
weak coherent pulses at1.3µm (WCP 1.3), the second uses
weak coherent pulses at0.8µm (WCP 0.8). The other two
scenarios do not use weak coherent pulses as sources but they
use a downconversion source with a gated output of the sig-
nal mode conditioned on the detection of a photon in the
idler mode. The gating detector is modeled using the detector
from the above experiments. The third scenario uses down-
conversion with the signal and the idler mode at1.3µm. The
last scenario uses non-degenerate downconversion such that
the idler mode at0.8µm is used to make use of the better
detector, while the signal mode uses the lower absorption
at 1.3µm.

The simulation of these scenarios is shown in Fig. 2. We
note that in all four cases there is a maximum distance for
which secure communication is possible. The weak coherent
schemes do not reach as far as the downconversion schemes.
The rate per signal is for small distances by order of mag-
nitudes higher for the WCP case than in the PDC case. For
quite small distances, the0.8-µm scheme gives a better rate
than the1.3-µm scheme. However, here we have to be care-
ful with the interpretation. The four curves represent the rate
of secure bits per transmitted signal. To obtain the real rate of
secure bits per second we need to multiply these values with
the repetition rate of the experiment. Here it turns out that
the 0.8-µm scheme has been driven faster than the1.3-µm
scheme giving the0.8µm the leading edge up to distances
higher than obvious from the graph. It is therefore important
to keep an eye on the achievable repetition rate of the setup.

6 Conclusion

In this article I have analyzed the security of quantum key
distribution under the restriction that the eavesdropper is re-
stricted to individual attacks. As the analysis of the examples
shows, this already restricts the range up to which QKD can
be performed. This confirms that the restriction of individual
attacks is a useful tool to explore the possibilities of QKD for
realistic setups. For the future one can hopefully merge this
approach with that of Mayers to be able to drop this restric-
tion of Eve. Even then, however, we have not succeeded with
the total proof of security of QKD with practical setups. This
is due to other assumptions made on the way: we assume that
Bob sends the right polarizations as signal states, and that the
polarization is the only difference between the signals. Ad-
ditionally, we assume that Eve cannot penetrate Alice’s and
Bob’s setup to read off settings of phase-shifters etc. which
would likewise reveal the whole key to her. In practice, one
needs to protect the setup against these intrusive attacks in
a convincing way. Hopefully, we will be able to drop these
assumptions in the future.
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nanne, Mila Dǔsek, Onďrej Haderka, Martin Hendrych, Hitoshi Inamori,
Anders Karlsson, Dominic Mayers, Tal Mor, Eugene Polzik, Louis Sal-
vail, Christian Schori, Jens-Lykke Sørensen, and Paul Townsend for all the
discussions during the long-standing research into the security of practical
quantum cryptography.

References

1. S.J.D. Phoenix, P.D. Townsend: Contemp. Phys.36, 165 (1995)
2. D. Bruß, N. Lütkenhaus: quant-ph/9901061
3. C.H. Bennett, G. Brassard: In Proceedings of IEEE International Con-

ference on Computers, Systems, and Signal Processing (Bangalore,
India, IEEE New York 1984) pp. 175–179

4. B. Huttner, A.K. Ekert: J. Mod. Opt.41, 2455 (1994)
5. C.A. Fuchs, N. Gisin, R.B. Griffiths, C.-S. Niu, A. Peres: Phys. Rev. A

56, 1163 (1997)
6. M.N. Wegman, J.L. Carter: J. Comp. Syst. Sci.22, 265 (1981)
7. J.L. Carter, M.N. Wegman: J. Comp. Syst. Sci.18, 143 (1979)
8. C.H. Bennett, G. Brassard, C. Crépeau, U.M. Maurer: IEEE Trans. Inf.
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