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Abstract. We derive the life time and loss rate for a trappedefficiently to the lossy currents in the metallic trap com-
atom that is coupled to fluctuating fields in the vicinity of ponents [9]. Yet with the advent of laser cooling, tem-
a room-temperature metallic arat dielectric surface. Our peratures of a few micro-Kelvin can be reached which are
results indicate a clear predominance of near-field effectslearly below the components’temperatures, i.e. the particle—
over ordinary blackbody radiation. We develop a theoreticatomponent coupling now leads to heating, and the trap
framework for both charged ions and neutral atoms with anground state acquires a finite life time. Similar considera-
without spin. Loss processes that are due to a transition to @ions may also be put forward for ultracold neutral atoms

untrapped internal state are included. trapped in miniaturized traps though the couplings are dif-
ferent: for paramagnetic atoms, for example, they involve
PACS: 03.75.-b; 32.80.Lg; 03.67.-a; 05.40.-a fluctuating magnetic rather than electric fields close to the

trap components.

In this paper we derive the life time and loss rate for
a trapped particle that is coupled to fluctuating fields in the
Particle traps enjoy great popularity for the preparation andicinity of a room-temperature metallic afwt dielectric sur-
manipulation of coherent matter waves. Prominent applicaace. The theory will be developed for both charged and neu-
tions are the preparation of non-classical-states of motion dfal particles with and without spin, and loss processes that
a single ion [1], the realization of quantum gates in quasiare due to a transition to an untrapped internal state will be
one-dimensional ion traps [2], the transfer of atoms througincluded. A detailed derivation of previously published re-
atomic wave guides [3—6], and the preparation of quantumsults [15] will also be given.
degenerate gases in electromagnetic solid-state hybrid surface An essential ingredient of the theory are cross-correlation
traps [7,8]. In all these applications, in order to truly benefunctions for thermal electric and magnetic fields in a finite
fit from the quantum mechanical effects, coherence of thgeometry. These functions may be simplified for our purposes
matter waves anfr their internal degrees of freedom must because the relevant field fluctuation frequencies are much
be maintained as long as possible. Yet, with the physicdbwer than the inverse time for light propagation from the
components, which provide the trapping potential being helérapped particle to the surface and back. It is hence justi-
at room temperatures, the maintenance of coherence seefiesl to calculate the fields in the quasi-static limit, neglecting
highly non-trivial as the temperature gradient between conmretardation effects. Differently stated, the particle is subject
ponents and trap center may well excd€BlK /m. A careful  to near-field radiation leaking out of the macroscopic trap
study of the particles’ coupling to the trap physical compo-components. An important consequence is that the near-field
nents, and the ensuing heating of the particles is thereforftuctuations are much stronger than those of the well-known
highly desirable. blackbody radiation. This implies larger than expected heat-

In the past, the heating of single particles in smalling rates, as recently pointed out by Pendry [16].
traps has been studied by a number of authors [9-14]. As The paper is organized as follows: in Sect. 1, the model
these studies were mostly performed in the wake of the rds presented in terms of a master equation. We identify the
cent achievements in ion trapping and cooling, the focuselevant heating and loss rates. Section 2 is devoted to trapped
in these investigations was on charged particles and theion heating. We give the electric field fluctuations above a flat
coupling to the surrounding metallic surfaces. In fact, bemetallic surface. In Sect. 3, heating and loss of a neutral par-
fore the advent of laser cooling, this coupling providedticle with a magnetic moment is studied. The final Sect. 4
the dominant cooling mechanism for an ion cloud, saygives a summary and outlook. The appendixes contain tech-
as the low-frequency radiation of the ions couples quitenical material that is used in the main text.
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1 The model: master equation and transition rates that is written in (A.2) of Appendix A.1 for a general coup-
ling. For the Hamiltonian (1), we get the following relaxation

We present here our model for the particle trap and its envidynamics [17]

ronment (see Fig. 1, left part). The model is sufficiently sim-

ple to allow for analytical calculations of the relevant heating. Y+ o 1

and loss rates, but also reflects a typical experimental geo retax = (b'bo+ pbb — 20pbT)

etry. We consider a single particle bound in a harmonic trap Y= et t oy

potential whose center is located at a distanfr®m an infi- 2 (bb p+pbbl —2b pb) ) 2)

nite flat surface. We consider that this distance is much larger
than the size of the particle’s center-of-mass wave function. lin this equation, the transition ratgs = y(r; ) are pro-
this regime, the overlap with the surface is negligible, and th@ortional to the spectral densi§ of the force fluctuations
coupling to the surface is mediated via electromagnetic fieldsaken at the trap vibration frequens.
We also focus for simplicity on a single degree of freedom in
the harmonic well. a2 ,
The heating of the particle is described by the transition/(r; w) = i Z nin SL(r; ), )
rate I'y_,1 from the trap ground stat®) to the first excited i
state|1) (see Fig. 1, central part). In Sect. 1.1, such a ‘heating
rate’ is Qetermined from a master equation ]‘or the particle’gwheresg(r; w) is defined by
motion in terms of harmonic-oscillator matrix elements, on
the one hand, and the spectral density of a fluctuating force oo
field, on the other. i 4
As a second application, we investigate loss processe® (I; @) = /dT(Fi(f,tH) Fi(r.n)eer. (4)
in magnetic or optical traps where only a subset of internal %
states is trapped (see Fig. 1, right part). This model describes

magnetic traps, for example, where only low-field-seeking  From the master equation (2), it is easy to obtain rate
Zeeman sublevels can be trapped. A loss process occurs Whgguations for the populations of the trap levels. For the

a fluctuating field induces a flip) — | f) of the particle’s  ground state populatiomg = (0]p|0), we get
internal state. We assume that the particle is then rapidly ex-

pelled and lost from the trap. The relevant loss rBte ¢ is
given in Sect. 1.2 in terms of internal matrix elements for the. oy = — I 5)
particle’s magnetic moment, on the one hand, and the mag2°0'relax= ~V=L00T ¥V+P11-

netic field fluctuation spectrum, on the other. - )
Note that the transitions towards higher (lower) trap levels

occur with a rate equal tp_ (to y,). In particular, the quan-
1.1 Heating tity y_ gives the depletion rate of the ground state population.
The heating rate we are interested in thus equals

As mentioned before, we focus on the heating of a single de-

gree of freedom for the trap vibration. The displacemeot al i

the particle relative to the trap centeiis chosen along the [0-1(N=Y-=13 D oninSLr; —92). (6)
unit vectom and written in terms of a creation operatofhe i

interaction potential reads
Note that the same result may be obtained from Fermi’s

V(r,t) =—x-F(r,t) = —a(b+ bT) n-F(,t), (1) Golden Rule, by assuming a mixture of initial states for the
fluctuating force field and summing over its final states. In

wherea = (h/(2M£2))Y/2 is the size of the trap ground state Sects. 2 and 3, the heating rates for trapped ions and spins

(M is the particle mass and the trap frequency) anBi(r,t)  are computed using (6). The main goal of the calculation is

the force acting on the particle. This force is fluctuating, andherefore the spectral density of the relevant force (electric or

it is convenient to use a reduced density matrix descriptiofnagnetic fields).

for the particle when the force fluctuations are averaged over. Finally, the master equation (2) also allows us to describe

The density matri evolves according to a master equationthe decay of the coherences between trap states which is
a hazardous process for quantum-bit manipulations. The co-

herence between the lowest trap levels relaxes according to

| ( \ / . V++v-
\ e X Nli> polrelax = — po1+ 2y, p12. (7
( \ f Y \"-,.../ 2

distance z

4 £

\ ooy of
\  frapped |

<\ [1> ;."I # N I
Nparice/ 5, UN o/ )T ;. We see that the coherences decay with a similar rate as the
il R P populations. This is a consequence of the interaction Hamil-
tonian (1), and different results are obtained using other coup-
lings or adding explicit phase noise, see, for example, [12,
solid at 300 K 13]. In the following, we focus on the population dynamics

Fig. 1. Left: trap in front of a flat surfaceRight: heating and loss processes for simplicity.

fluctuating field heating loss
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1.2 Internal state flips reflected from the surface. The free space field leads to a term
G (r, r; ) in the Green function that is actually indepen-
In magnetic or optical traps for neutral particles, the trap podent of the trap position; it gives the spectral density of the
tential depends on the internal atomic state (see Fig. 1, rigiflackbody field (the Planck law):
part). If this state is changed due to fluctuations in the mag-
netic field, the particle may be subject to an anti—trapping:»*Ebb)'J (r;w)= S(Ebb) (w)3ij , (11)
potential and strongly perturbed. The interaction Hamiltonian
for spin flips|i) — | f) is the Zeeman interaction bby hw3
S () = (12)

(8) 37T50C3(1—e_hw/T) ’

whereT is the temperature of the surface (we put the Boltz-
wherepu is the particle’s magnetic moment aiir, t) the  mann constaritg = 1).
fluctuating part of the magnetic field. For this interaction, To calculate the field reflected from the surface, we ex-
a master equation similar to (2) may be formulated from thQ)and the free-space dipole field in plane waves and apply
general theory outlined in Appendix A.1. This equation is notthe Fresnel reflection coefficients p(u) for each wave in-
very instructive, however, if we assume that the particle is losgident on the surfaces@ndp label the two transverse field
as soon as it reaches the statg. In this case, it is sufficient polarizations andi is the sine of the angle of incidence).

VZ(r, t) =—[- B(r’ t) )

to quote the transition ratg, 1 obtained from (A.2) The resulting Green functio." " (r, r; w) characterizes the
el ) (Flislid modification of the thermal radiation in the near field of
HIRIGEDY %%ﬁ(r; —or) (9) the surface. The radiation density is increased with respect
p to the far-field expression (11) because it also contains non-

propagating (evanescent) waves. The corresponding spectral
whereS is the magnetic field fluctuation spectrum definegdensity depends only on the distarze the surface and may
by an expression similar to (4), ambys = E¢ — E; the en- € written in the form [18]
ergy difference between initial and final internal states. (Wexn#ij .. | «bb ’
switch to Greek subscripts to avoid confusion with the initiale§E (1 0) = §"(@)gj k2, (13)
state label.) In a magnetic trap, for exampilg, | f) are mag-  \where the diagonal tensgj has the dimensionless elements
netic sublevels and the frequeney a Larmor frequencyin g — Oyy = gj andg,, = g, with (k= |w|/c):
the bias field of the trap. In optical traps, we consider the hy-

perfine components of the atomic ground statejs thus the 3 +°°u du -
hyperfine splitting. gi(ka) = Re / Tez'kzv (rs(u) + (U? = Drp(u)) ,
0
2 Heating of a trapped charge e _
gL(kz)zgRe/.—u duez'kzvrp(U), (14)
In this section, the master equation of the previous section s v

is applied to the most simple situation, that of an electrically 5

charged particle in a harmonic trap [9—14]. As mentioned in, — {V. 1-v% O=u=l, (15)
the introduction, the ion is heated up because fluctuating elec-  |ivu?—1, u>1.

tric fields leak out of the metallic surface nearby. The force in_. -

the interaction Hamiltonian (1) is given by the electric field rhnally, the relevant Fresnel coefficients are

sv—+e—U?
F(r,t) =qE(r,1), (10) ry(u) =———+r—,
P sv++/g —U?
whereq is the ion’s charge andthe position of the trap cen- v—Je— U2
ter. rs(u) = > (16)
v++Ee—U
o ) where ¢(w) is the relative dielectric function of the bulk
2.1 Electric field fluctuations metal.

. For typical trap frequencies the corresponding electro-
In the formula (6) for the heating rate, we need the specmagnetic wavelength is much larger trarso we can restrict
tral density of the electric field fluctuatior (r; ). This  our calculations to the quasi-static linzit< & and find ana-
quantity is conveniently obtained by making use of thelytical expressions for the tensor elements (14). The details
fluctuation—dissipation theorem outlined in Appendix A.2.are outlined in Appendix B. We have to distinguish between
According to this theorem, the field’s spectral density is prothe case of a large and a small skin depth of the conducting
portional to the imaginary part of the field’s Green functionmaterial compared to the distanzeThe skin depth, which
Gij (r, I; ), multiplied with the Bose—Einstein mean occu- js the characteristic length scale on which an electromagnetic
pation number (A.8). The geometry we have chosen is sufyave entering a conducting solid is damped, is given by (for
ficiently simple to allow the Green function to be calculated,, ~ 0) [19]
analytically [18]. Recall that the Green function describes the 1
electric field radiated by an oscillating dipole (cf. (A.7)). Thiss _ * 55—
field is the sum of the dipole field in free space plus the ﬂelcfS Tk 28000, (A7)
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where ¢ is the specific resistance. Since in our frequency vanishes. The previous asymptotic expansion does not
regime the dielectric function for a metal is dominated by thecover this case. The coefficiengs  (kz) given in the Ap-

zero—frequency pole, it is related to the skin depth by pendix B, (B.5), show damped oscillations with a period
. , equal to the wavelength. In the short-distance limi x, we
e(w) ~ o i ) (18) getg; (kz) — —1 andg, (k2 -1, the divergence a—0
goow k282 thus disappears. The electric field fluctuations are essentially

those of the free space blackbody spectrum, with a minor

In Appendix B.1, we derive approximations for the f“nCtionSmodification due to the boundary conditions.

0;..L (k2) in the form of inverse power laws (B.2), (B.4). Both
regimes qf large and small skin depth can be covered by the
following interpolation formula: 2.2 Heating rate

352 z
0ij (k2 = (Sj + Gjj 5) , (19)  We plotin Fig. 2 the heating rate (6) for an ion (trap frequency

8kZ £2/2n = 1 MHZ) above a copper surface. The dots are based
wheres; is a diagonal tensor with the elemesfs=s,y = % on an exact (numerical) evaluation of theoefficients (14),

.= 1. Thus we arrive at a final expression for the elecWhereas the solid line uses the interpolation (19). The change
tric field spectrum, applying the high-temperature limit of thein the power law at the skin depth is clearly visible. Note the
Planck law (12): marked increase of the field fluctuations compared to the free

space blackbody level (dotted line). Also shown is the esti-
S(En )ij (r: w) = E S+ (20) mate given by Lamoreaux [10] who modeled the trap in terms
T 4B \ VT 5w ) of a resistively damped capacitor with a thermally fluctuating
voltage (Johnson noise). Wineland et al. [14] pointed out that
We note that in the case of a short distance, the parallel andalistic estimates for the corresponding resistance actually
perpendicular tensor elements both show/ 2 ependence give smaller heating rates. Our results suggest that the minia-
and differ by a factor of 2, whereas for larger distances theurization of ion traps down tum sizes entails difficulties
tensor elements are equal and show 2 behavior. to maintain long coherent storage times, unless all physical
The 1/Z° power law of the regime « § may be under- components are cooled down.
stood in terms of image theory: the electrostatic dipole field
varies precisely as/t2 and its reflection from the surface is

characterized by the fact@s — 1) /(¢ + 1) ~ 1+i(ks8)%. The 3 Trapped spin coupling to magnetic fields
imaginary part of the reflected field thus reproduces (19). This PP b upiing gnetic

is the regime discussed in [15]. It is interesting to note thaf, yuq section, we turn to traps for neutral particles and con-
for a larger distance >> §, the field fluctuations are enhanced sider the Zeeman coupling (8) of the atomic magnetic mo-

with respect to the electrostatic regime (see Fig. 2). This i ent to a fluctuating magnetic field. In magnetic and optical
oot gl el = mor ety Gamoad . g e s 3 o
layer quenches the algebraic penetration of the field Yate (magnetic sublevel or hyperfine state). This implies
For completeness, we also mention the Iimiting.case of-nonzero loss rate from thetraplthatwe'calculate in Sect. 3.1.
a perfect] conductin’ surface > oc) whose skin depth n the ether hand, the Zeeman interaction elso exerts aforce
P y 9 o P proportional to the gradient of the magnetic field. If this force
fluctuates, it does not necessarily flip the atomic spin, but
excites the atom into a higher trap level. The corresponding

10%7! ¢ % Shl o v | heating rate is the subject of Sect. 3.2.

i e, = 1
d 15! “u ey ' .
© S | 3.1 Spin flips
ERURIRE. e T o . .
20 i i . 3.1.1 Magnetic field correlationswe first compute the mag-
B g o | e W netic field fluctuations in the vicinity of the solid surface. By
A 1%s | Dlackbody: Jevel in denth e ‘ analogy to the ion case, we use the fluctuation—dissipation
; .~ : P " i theorem (A.8) and determine the Green tensor for the mag-
022 . 1 netic field. In fact, the calculation is very similar to that for the
100nm 1pm 10pum 100pum 1mm 10mm 100mm  electric field: starting from the field radiated in free space, we
distance from surface expand it in spatial Fourier components and compute for each

Fig. 2. Heating rate for a trapped ioDots coupling to electric prox- plane wave the reflection at the solid surface. It turns out that
imity fields, computed from (14). Theolid line is obtained using the the Fresnel coefficients for the magnetic field are identical to
asymptotic formula (19)Dashed line coupling to thermal voltage fluctu- those for electric fields, except that one has to exchange the

ations. Parameters: trap frequen®y/2z = 1 MHz, copper substrate with . . . 7
0=17x106Qcm at Tp: 380 é@r’hgion mass ig\,,pz 40amuand its S andp-polarizations. We thus get the following near-field

chargeq = e. The trap axis is perpendicular to the surfates e,. The ther-  COrrection to the magnetic field fluctuation spectrum:
mal voltage fluctuations are characterized by a circuit resistarsieg10].

The endcaps are separated by twice the ion-surface distance. Size and _ S(Ebb) ()

inverse lifetimes of typical ion traps are indicated by the shaded rectansg‘ DIl (r: o) = hij (k2) . (21)
gle [1,20,21] c?
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Similar to (13),h; is a dimensionless and diagonal tensorin the following we will restrict ourselves to two extreme
with elements cases: the coupling between two Zeeman sublevels in the

oo presence of an external magnetic field and the coupling be-
3 udu ., tween two hyperfine ground states without external fields ap-
hy (k) = ZRe / Teznm (rp(W) + (U2 = Drs(w) plied. The former case is for example realized in a magnetic

0 trap, whereas the latter corresponds to optical traps.

+o0 o In the case of a magnetic trap the trapped atom is sub-
h, (k2) = §Re / u du ke () . (22) ject to a constant magnetic field with stren@hin the center

2 v of the trap, assuming the atom is not moving. The magnetic

0 sublevels are split due to the Zeeman effect by the Larmor
For experimentally relevant parameters, the magnetic field§equencyw. = gsug Bo/h. (We focus on a vanishing nuclear
at the resonance frequency have a wavelength (at least sosin for simplicity.) Without loss of generality we can assume
cm) much longer than the size of the trap. This implies agaithe magnetic field to be lying within thezplane, since the
that we need the short-distance asymptotieg x of (21).  diagonal tensor in (23) has the symmetry propégy= hyy.
A calculation outlined in Appendix B.2 gives the following If the magnetic field forms an angle with respect to the
interpolation formula that covers both regimes of a large an@ axis, we denote bym), the basis states with quantization

o0

small skin depth axis parallel to the magnetic field (the ‘trap basis’). Rewrit-
L ing (26) leaves us to calculate matrix elements of the form
y _ S 22\ . 2
i k2) = G52z (”@) : @310 pa )P = B0 Jo e | SuImie | (27)

wheres; is the diagonal tensor introduced in (19). The mag-These elements are evaluated by expanding the spin vector
netic field spectrum (21) thus equals in the high-temperatur@omponents in a rotated coordinate system (denoted by the

limit prime) adapted to the trap basis. The result is the following:
2 3 -1

nhi .. Mol Sj 2z cosd
S w) = 1670 2 <1+m . (24)  o(m|Sdmi)g = (9(Ms|S, IMi)s +o(Ms|S_|Mi)s) >
Note the different exponents for the distance dependence i+9(mf|S3|mi)9 sing,
compared to the electric field fluctuations (20). o (Mt 1SyIMiYe = = (o(ms[S_IMi)e — o (Mt S, IMi)e)

If the trap distance is small compared to the skin depth, 2 .

we recover the magnetic field spectrum given in (10) of [15],9<mf |SsImi ) = (G(mf IS, Mo o (Mf S |mi>9) —siné
apart from the fact that the parallel tensor componesys ( * B 2

syy) differ. This difference is due to the fact that the calcula- +o(m;|S;|m;)y COSH , (28)
tion of [15] uses the Biot—Savart law to get the magnetic field . .
from a statistical model of polarization currents in the solid.whereS,; is thez-component of the spin operator ad, S.
This approach is valid for stationary currents only, and a difficorrespond to raising and lowering operators in the trap basis,
culty appears at the surface because the model for the curretiy§ose action is known [22]. In the case of an electronic spin
is not divergence-free there. Therefore, although the magnetfe= 1/2, the trapped (untrapped) level is the ), = [-1/2)s
field perpendicular to the surface is correctly described, theMr)s = |1/2)g) Zeeman sublevel, respectively. The matrix
parallel components are overestimated. elements (28) then become
3.1.2 Internal matrix elementn order to compute the spin ,(1/2|S,|—1/2), = ﬁ,
flip loss rate we have to evaluate matrix elements of the total 2
magnetic moment operator as indicated in (9). This operat%r<1/2|5y|_1/2>0 __ '_’
is in general given by 2 ;
sin
0{1/2|S|-1/2)pg = — ——. 29

MZ_MB<9LL+QSS_QI%|>7 (25) WASEYA 2 @9

P With this result, we can compute the magnetic loss rate (34)
with ug the Bohr magnetoni, the total orbital angular mo- pelow.
mentum operatoSthe electronic spin operatdrthe nuclear In the case of an optical trap we have to take into ac-
spin operator and,, gs, andg;, the corresponding-factors.  count that the nuclear spin couples to the electronic spin,
Since the proton masas, is larger than the electron masg ~ F = S+ |, and causes the ground state to split into hyperfine
by three orders of magnitude, we can neglect the contributiolevels, separated by a frequengyr. We are now interested
of the nuclear magnetic moment. Furthermore, the reasonabile the transition probability from one hyperfine ground state
restriction to an atomic ground state with= 0 reduces the to another. Thus, for this case we can write (26) as
problem to the calculation of matrix elements of solely the

spin operator. Together with the fact that the terigoin (23) (|, [i)1? = 1303 |(Fr| S ||:i)]2 ) (30)
for the magnetic field correlations is diagonal, we can focus
on terms of the form A transition from one hyperfine ground state to another can

Lo oo - take place between different magnetic sublevels. Thus we first
[CF] e 11)1° = g5 {FI S 11)1° . (26)  have to calculate the transition rate between two of these
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states. This is done by expanding the basis states in the u

coupled basis, choosing the quantization axis taken along tt 10%s7! ~——, Topical i = g
z axis: '\t\\.\
i T
Fmy =3 Crs™ jmgmy) @y o4 '7 RN
= Em s ¢ . o (a)
ms,m ‘—E 10735 ! \\ .
.. o L ..
whereCS™ are the Clebsch-Gordan coefficients. The ma Z = .
trix element between two hyperfine magnetic levels is then 10765 AN N
skin depths: (b) (a) \'\\\ |
) — mgm ~mgmy : . R !
(Fme| S IFmy= Y Cromcrs™ (m|s, ms) . - | B N
mg,mg,m 100nm  1Tpum 10pm 100pum Imm 10mm
(32) distance from surface

Fig. 3. Loss rates in a magnetic trap above a copper surfacts (solid
Note that the nuclear spin does not flip in the transition. Againines) results based on (22) (on the asymptotic interpolation (23)). Re-
the action ofS, onto the electronic spin statésis) is well Slé'(t)swfaf tENO d'ff%f)em La}zmm ff?ﬂuenc'e&/zﬂkihl MHz (Cvaed_a)a”i,

: . : o z (curve b)are shown. Thearrows mark the corresponding skin
knowniin (32). \.Ne Obtal.n an effective tr_ansmon rate bewveeréepths. Theshaded areandicates experimental data obtained in Konstanz
the two hyperfine man!f()lds by summing the rates over albng Heidelberg [7, 8]. Parameters: s@i: 1/2, magnetic bias field aligned
final m¢-levels and taking the average over the initigl-  parallel to the surface. The loss rate due to the blackbody field (the prefactor
levels. This gives the following result for the hyperfine matrixin (35)) is aboutl013s™* at 100 MHz (not shown)

element (30)

(Fe 1SR = 53 mfzm (Feme| S IFmi) . (33) 10%7" | — Typical _micro —iraps |
i | r 1
w 1gTp !
We finally note that this calculation assumes that the frequeri} ' R |
. ", 3 Cs » |
cies for the transitiongFm;) — |Ffm¢) are all equal to the 103! | \Q :
hyperfine splittingone. This is a good approximation fifwpe & T \\;\\ 1
is large compared to the optical trap potential (that may lift 2 oy %{‘b 1
the degeneracy of the hyperfine states even without a stai™ S 1 Free space \\Q i
magnetic field). , I blackbody level (Cs) N |
107 S—I I \\ L R S S
. . 4 e e ey

3.1.3 Loss rateCombining the matrix elements (26) for the WL o NN

magnetic moment, the magnetic field spectrum (24) and (9 100nm  ITpm 10pm 100um 1mm 10 mm

we get the following loss rate for a magnetic trap distance; from scfner
Fig. 4. Loss rates due to hyperfine-changing transitions in an optical trap

MZ gz 2T above a copper surfac®ots (solid lines) results based on (22) (on the
i = % Z(hw(kz) +21) [(f|S]i )|2, (34) 8assymptotic interpolation (23)). Results for two different atoms alrge shown:
3megh?c® - Rb (I =5/2, wnr/2n = 3.04 GHz transitionF; = 2 — 3= F¢) and33Cs

(I =7/2, wur/27 =9.193 GHz transition F; = 3 — 4= F¢). The ho-

For the case of an electronic sg@z= 1/2 and no nuclear spin rizontal dotted linesmark the corresponding loss rates in the free space

we can use the matrix elements from (29) and obtain blackbody field
gg8ef T 2 3.2 Heating of the c.m. motion
— 7BISTL . i .m, i
F_%_)%(r) = oo {(h)(k2) + 1)(1+cos 0) g
+(h, (k2 +1) sirﬁe} . (35) This case is treated by analogy to the trapped ion. The Zee-

man interaction (8) gives the following magnetic force

This loss rate is plotted in Fig. 3 for two different Larmor fre-
quenciesw,, with the trap bias field chosen parallel to the Fz(r,t) = V (u- B(r, 1)) (36)
surface § = 7/2).We see that quite large loss rates occur if
the trap center approaches the surface down to a few microrthat couples to the displacement of the particle from its equi-
eters. Again, miniaturized traps have to face the influence dforium position. The matrix elements for the displacement
larger noise fields. are that of a 1D harmonic oscillator and are given in Sect. 1.1.

In Fig. 4, we plot the loss rates obtained from the effectivé/Ve are left with the calculation of the magnetic force’s spec-
matrix element (33) for hyperfine-changing transitions. Thdral density. To this end, recall the identity
data are calculated for the lower ground states of traftiiol
and*33Cs. One observes that these rates are much smallgg,, (¢ t) Fzi(r.t) = iiNz(rl, t')Vz (12, 1))
than those for magnetic traps. It is interesting that this reduc- aryi aro; =ty
tion is due to the skin effect: indeed, the magnetic field fluctu- (37)
ations (24) in the intermediate-distance regiing z <« i are
proportional tos® oc w~%/2. Larger transition frequencies thus The relevant information is thus contained in the cross-
lead to smaller loss rates. correlation function for the magnetic field at two different
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positionsry 2. From the fluctuation—dissipation theorem (Ap- apart from different weights for the parallel and perpendicular
pendix A.2), this correlation function is proportional to the spin components. This is due to the different magnetic field
Green functiorH;; (r1, r2; w) for the magnetic field. To sim- correlation tensor (24) that has already been discussed above.
plify the calculation, we focus on a trap with an axiger- In Fig. 5, we plot the heating rat&,_, 1 obtained from the
pendicular to the surface. According to (6), we then onlymagnetic fluctuation spectrum (39) for a typical trap above
need thezzcomponent of the force fluctuation tensor. In theboth a copper and a glass surface. The heating rate above
identity (37), it is thus sufficient to take two positions, =  glass is much smaller because glass is a poor conductor. For
(R, z1,») that differ only in the vertical coordinat®(= (x, y)  a copper substrate, note the crossover when the distance be-
denotes the coordinates parallel to the surface). It may now lmomes larger than the skin depth. A remarkable result is the
shown that the surface-dependent pqﬁ f)(rl, ro; ) of the  large value of the heating rate for small traps (dimensions be-
Green tensor depends only on the average distarcez; +  low thepmrange).

Zp)/2 and the lateral separatié® — R; [18]. This is clear, for

example, from image theory. Siné® = R, for our special

case, we may write
4 Summary and outlook

H""(Rz. R zi0)=H""(RZ R z ), (38)

We have developed a theoretical framework for the system-
where the right-hand side is the Green function taken at idergtic investigation of the heating and concomitant loss of co-
tical positions that has been calculated in Sect. 3.1.1 herence in small particle traps. Our results indicate a clear

We now use the results (B.6), (B.7) for the magnetic correpredominance of near-field effects over ordinary (free space)
lation tensor (Appendix B.2), write= (z1 +z»)/2 and differ-  blackbody radiation. They establish upper bounds for life
entiate with respect tg, ». All told, both asymptotic regimes times in a variety of experimentally relevant types of traps.
of small and large skin depth are described by the interpola- The present model is restricted to particle motion in a sin-

tion formula gle dimension, and the extension to a three-dimensional trap
geometry is an obvious step for future work. A theory beyond
H3T (2 + i) A\t the rate equations discussed here could include noise-induced
S (5 w) = 64 = <1 1583> (39)  shifts of the particle’s energy levels. Finally, still other inter-

actions might be considered for neutral atoms. The coupling
to electric fields via the polarizability tensor is currently under

This spectrum is already summed over all final Zeeman state estigation.

assuming that all of them are trapped. The average for the
magnetic moment is taken in the initial state. For an atom
with L =0, S.= 1/2 in the ground state, it equag%ﬂé ~  AcknowledgementsC. H. would like to thank Bmi Carminati, Jean-
4/1% whereug is the Bohr magneton. Jacques Greffet, Karl Joulain, and Stefan Scheel for sharing their deep
If the trap distance is small compared to the skin depth, wenderstanding of electromagnetic near-field spectra. We are indebted to

recover the expression (11) of [15] for the heating rate John B. Pendry, Ekkehard Peik, and Ferdinand Schmidt-Kaler for commu-
nicating results of previously unpublished work. Travel costs have been

covered by Laboratoire d’Enegtique MoEculaire et Macroscopique, Com-

M%Tﬂég% bustion of Ecole Centrale Paris, Chatenay-Malabry, France. This work has
TIo1(r)= YT (40) been supported by a research grant awarded to C.H. by the Deutsche
64rh$2Mo z Forschungsgemeinschaft.
3.1 . ..
W ©  Appendix A Statistical tools
157! Typic mo—
vpical micro —fraps |
_ e 1 .
I ,  Spin heating (Cu) | A.l Master equations
B lo—hs - e 1
o ’ 1
o3 1 . . .
o b . We outline here a general master equation [18] that describes
g 1078 | S e 1+ thereduced dynamics of a system coupled to a reservoir. The
g i~ 's_*’_“f_’ eating  ( glass) 1 coupling Hamiltonian is given in terms of an arbitrary system
10~ 181 ! - skin depn (cuy | operators, a fluctuating forceF(r, t), and a coupling con-
f . ! stantg:
100 nm . ]”pm. . .i.O”um- : I.0.0.um 1mm
distance from surface V(r,t)y=—gs-F(r, 7). (A.1)

Fig. 5. Heating rate for a trapped spin above copper and glass substrates. ]
Parameters: trap frequenay/2r = 100kHz M = 40 amy magnetic mo-  Throughout this paper, the parameteienotes the trap center
ment ;. = up = 1 Bohr magneton, spi=1/2. The heating rate due to nposition. For a trapped ion, for example, the system operator

the magnetic blackbody field (not shown) is abdr3°s=1. For the - : :
glass substrate, a dielectric constant witheRe5 and a specific resis- s would describe the displacement of the ion from the trap

tanceo = 101 @ cm are taken. These values are used in the short-distanc6€Nter, see (1). In the Markov limit and ignoring reservoir-
asymptotics (B.6) to compute the magnetic field fluctuations induced level shifts, the relaxation dynamics of the reduced
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system density matrix is (The averaging(---) removes the oscillations of the free
5 $ field.) The fluctuation—dissipation theorem now states [18]
. g (@) ( (- () ()
Plreiax=—5 ) ——— (8§ p+rs ] oy 2h ) .
relax h2 ; 2 ( % Sj SF(rL I2; (,()) = mlm G” (rl, I2; C!)) (A8)
—Zsj(“pg(_)) Note that in terms of the mean thermal occupation number
. . d A = 1/(€“/T — 1), one has (fot > 0)
9 (I —®) (o () () i
DI e CUE RV ME Sk (11, 23 ) = 2h A+ 1) I Gy (11, 12 ) (A9)
ij
—Zsf_)pq(“) , (A2)  SL(ri, 12 —w) = 2hAnlm G (11, 123 @) . (A.10)

) - , At zero temperaturefy, = 0, and only the first line sur-
where thes'™ is the positive (negative) frequency part of the i es The relaxation dynamics is then entirely due to sponta-

system operator. More precisely, the free system evolution ifeqys decay, induced by the vacuum fluctuations of the force
the Heisenberg picture is given by field. Heating processes are suppressed. At high temperature,
N >> 1, the fluctuation spectrum becomes independent of the
sign of w. In the master equation, decay and excitation rates

whereho (> 0) is the energy difference between two adja-2"® then nearly the same.
cent system states. The spectral density in (A.2) is defined by

s(t) = sHe et 4 st (A.3)

(cf. (4)) Appendix B Asymptotic expansion of electromagnetic
too field spectra
S(r; ) = / de (F(r, t+D)F(r,p) €. (A.4)  B.1 Electric field

We outline here the asymptotic expansion for the coefficients
The master equation (A.2) allows us to derive rate equag, . (k2 that characterize the electric field fluctuations (13) in
tions similar to (5), and these show that the rates propothe near fielkkz <« 1 of the surface.
tional to St (r; +w) govern spontaneous and stimulated decay ~ The inspection of the integrals (15) shows that the ex-
processes, while excitation processes are proportional @onential €< ~ e-?*! decreases on a large scale~
SL(r; —w). The latter correlation function is thus relevant for 1/(k2) > 1. On the other hand, the other factors in the in-
our heating problem. tegrands increase as powerswfThe value of the integral
is thus dominated by valuas~ umax around the maximum
. o Umax ~ 1/(k2) > 1. It is therefore accurate to use asymp-
A.2 Fluctuation—dissipation theorem totic expansions of the Fresnel coefficients for lange 1.
] o ] ) The asymptotic form of the coefficients depends, however,
In a reservoir at thermal equilibrium, there is a relation begp whether2,_ is smaller or larger than the magnitupié
tween the cross correlation tensor for the field fluctuationgf the dielectric constant. These two regimes are discussed

and the field’s Green tensor [18]. This relation also holds fofy, the following. Their physical significance follows from the
correlations taken at different positions in space, that we havigs|ation (18) between and the skin depth.

to cqmpute in Sect.3_.2. For a force figFfajr, t), the cross cor- The limit 1 < |¢|*2 <« u corresponds to a distance small
relation tensor is defined by generalizing (A.4) compared to the skin depth« § < . In this regime, we get

oo the following asymptotic expressions for the Fresnel coeffi-

. . cients (16)

S,J:(I'l, r; w) = / dr <Fi (r, t+ o) F(ra, t)) e, (A.5) N

00 rp(u) — pk
The Green function is defined as the force field created b}/ e—1
a classical monochromatic, localized disturbaae ro (for s(W) = a2 (B.1)
ierﬁggglt?otnhaaerlgi?ttéﬁigglgeonfsziatr; ?sscnlatmg point dipole). The;_tg% |tr;tegrals (15) for the tensor elements are then evalu-
—e '8 (r—rg)a- F(r, ). (A.6) 3 e—1 352

9k~ oMo Y TaE

In thermal equilibrium, the average linear response to this (kz) e+
source is a harmonic fielgF (r, t; ro)) that depends paramet- 91(k2) ~29;(k2) . (B.2)

rically on the source positiony and is proportional to the
displacemend. The Green function is the corresponding pro-
portionality factor

In the opposite limit of a small skin depth, ik« z <« %, we
have 1« u « |¢|/?, and the reflection coefficients show the
asymptotic behavior

2i 2iu
ro(W) = 14+ ——=, rs(u) - =1+ —. (B.3)

(Fi(r,t; 1p)) = e 1t Z Gij (1, ro; )a. (A7) i
j u/e NG



This yields tensor elements of the form

1 36

g)(kz) ~ e%”@,

_3
4(kz2)?
g1 (k2) ~ gj(kz) . (B.4)
The regimes (B.2), (B.4) are readily combined into the inter-
polation formula (19).

In the limit of a perfectly conductingpPf) surface
(¢ > 00), the skin depths vanishes, and the reflection co-
efficients (16) are equal to,s = +1 (cf. (B.3)). The inte-
grals (15) may be evaluated explicitly, and one gets

h, (kZ) ~ 2h||(kZ) .

be: k) — 3 (sinxz coskz sinXz 2.
- 9= a3 T k2 T T2k )
sinXxz cosxkz
0. (k) =3 ( s ) (8.5)

Note that these functions have finite limiting valueg at 0,
which is different from the behavior (B.2) above a surface

with a finite conductivity. 6.

B.2 Magnetic field

The asymptotic evaluation of the coefficiehfs, (kz) for the

the electric field.

asymptotics of the tensor elements (22) is then given by

15.
ZLIK R 16.
3 (e—1)(e+5) 3 1.
h,(k2) ~ I ~

12 ™ o1 163522 18
3 9

h, (kz) & —I —1) ~2h k2. B.
1(k2) 16kzm(8 ) 1 (k2) (B.6) 20
1
We used the approximatioa| >> 1 appropriate for a good 2>

conductor.

h|| (kZ) ~

1.
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In the opposite limit of a small skin depth, we find

IKZK A

O o1 _ %
16(k2* e 32K3z4’

(B.7)

Both expressions (B.6), (B.7) are reproduced by the interpo-
lation formula (23).
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