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Abstract. We propose a new method for the generation of
single photons. Our scheme will lead to the emission of
one photon into a single mode of the radiation field in re-
sponse to a trigger event. This photon is emitted from an
atom strongly coupled to a high-finesse optical cavity, and the
trigger is a classical light pulse. The device combines cavity-
QED with an adiabatic transfer technique. We simulate this
process numerically and show that it is possible to control
the temporal behaviour of the photon emission probability by
the shape and the detuning of the trigger pulse. An extension
of the scheme with a reloading mechanism will allow one to
emit a bit-stream of photons at a given rate.

PACS: 32.80.Qk; 42.50.Ct; 42.65.Dr

Atoms, ions or photons in a superposition of different states
are the basic building blocks of quantum information pro-
cessing, quantum communication, or quantum cryptography,
where they act as elementary quantum bits (qubits) [1]. Sim-
ple quantum-logic operations [2, 3] in future quantum-logic
networks [4] and the transmission of quantum information
from one place to another [5], such as the teleportation of
a quantum state [6–8], are based on the entanglement of
different qubits or even different types of qubits. In a quan-
tum network, for example, single atoms or ions are entangled
with individual photons. To generate such an entanglement in
a controlled way, a triggered source for single photons will be
needed.

So far, most schemes used for the generation of single
photons rely on spontaneous emission events or on parametric
down-conversion. However, these processes produce photons
at more or less random times. Only recently, evidence for
a single-photon turnstile device has been demonstrated by
Kim et al. [9]. They employed the Coulomb blockade mech-
anism in a quantum dot to trigger the emission of a single
photon, radiated in an essentially random direction. Here, we
adopt a different approach. Our studies are based on pro-
posals by Law et al. [10, 11], where a single atom strongly
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coupled to an optical cavity is used as the active medium gen-
erating the photon. The cavity defines the active mode and
ensures photon emission into a well-defined direction. The
main aspects of the proposed mechanism can be explained an-
alytically, but numerical simulations are necessary to analyze
the flexibility and the limits of the excitation process.

Figure 1 shows the excitation scheme for a single-photon
emission on the energy scale of the atomic bare states. We
consider aΛ-type three-level atom with two long-lived states,
|u〉 and |g〉, typically two Zeeman or hyperfine states of the
atomic ground state, and an electronically excited state,|e〉.
The atom is inside a single-mode optical cavity, with states
|0〉 and |1〉 denoting a cavity field with zero and one pho-
ton, respectively. The cavity frequency is close to the atomic
transition frequency between states|e〉 and|g〉, but far off res-
onance from the|e〉 to |u〉 transition. Hence, only the product
states|e,0〉 and |g,1〉 are coupled by the cavity mode. The
coupling constantg is time independent for an atom at rest.
Note that the cavity does not couple states with equal photon
number, i.e.|e,0〉 with |u,0〉, and|e,0〉 with |g,0〉.

Initially, the system is prepared in state|u,0〉. To trig-
ger a photon emission, the atom is exposed to a light pulse

Fig. 1. Scheme of the atomic levels coupled by the trigger pulse, the cavity,
and a possible repumping pulse
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crossing the cavity transverse to its axis. This pulse has Rabi
frequencyΩT and is near resonant with the transition between
states|u,0〉 and|e,0〉, thereby coupling these states. Provided
the trigger pulse rises sufficiently slowly, an adiabatic evolu-
tion of the atom-cavity system is assured. If the two-photon
resonance condition is fulfilled, a STIRAP-type adiabatic pas-
sage [12, 13] takes place and a transition from|u,0〉 to |g,1〉
is realized. The process generates a single photon in the cavity
mode, and the subsequent decay of the cavity field leads to the
emission of a single-photon pulse. In the end, the state vector
of the atom-cavity system is|g,0〉, which is decoupled from
any further interaction.

To analyze the excitation scheme in more detail, we as-
sume a Raman-resonant excitation, where∆ is the common
detuning of the trigger pulse and the cavity mode from the in-
termediate level|e,0〉. The combined atom-cavity system is
examined in the interaction picture. In the basis of the uncou-
pled states,{|u,0〉, |e,0〉, |g,1〉}, the interaction Hamiltonian
reads

H =−h

2

 0 ΩT 0
Ω∗T 2∆ 2g

0 2g∗ 0

 , (1)

where 2g is the cavity-induced resonant single-photon Rabi
frequency on the|e,0〉 ←→ |g,1〉 transition. If the time de-
pendence of the Hamiltonian is neglected, the state vector
of the system,|Ψ 〉, can be expressed as a time-independent
superposition of the three eigenstates (or dressed states, see
[14]) of Hamiltonian (1):

|a0〉 = cosΘ|u,0〉−sinΘ|g,1〉 ,
|a+〉 = cosΦ sinΘ|u,0〉−sinΦ|e,0〉+cosΦ cosΘ|g,1〉 ,
|a−〉 = sinΦ sinΘ|u,0〉+cosΦ|e,0〉+sinΦ cosΘ|g,1〉 ,

(2)

where the mixing anglesΘ andΦ are given by

tanΘ = ΩT

2g
and tanΦ =

√
4g2+Ω2

T√
4g2+Ω2

T+∆2−∆
, (3)

with ΩT andg assumed to be real. The corresponding eigen-
frequencies are

ω0= 0 and ω± = 1

2

(
∆±

√
4g2+Ω2

T+∆2

)
. (4)

When a trigger pulse is applied, the Hamiltonian and the
dressed-state basis,{|a0〉, |a+〉, |a−〉}, are changing as a func-
tion of time. Provided that all parameters change slowly, the
state vector,|Ψ 〉, adiabatically follows the dressed-state ba-
sis and can still be expressed as an invariant superposition of
|a〉-vectors throughout the interaction.

Before the trigger pulse is applied (ΩT = 0), the atom
is only coupled to the cavity mode (2g> 0), i.e. tanΘ = 0.
Therefore, preparing the atom initially in|u,0〉 is equivalent
to a preparation of the atom-cavity system in state|a0〉. It is
obvious from (2) and (3) that any interaction with the trigger
pulse leading toΩT� 2g, i.e. tanΘ� 1, implies the evolu-
tion of |a0〉 and, hence, the state vector,|Ψ 〉, into state|g,1〉.

Therefore, the atom is transferred to the other long-lived state,
|g〉, and a photon is generated in the cavity mode at the same
time. As adiabatic following must be assured, the slope of the
trigger pulse must be sufficiently small to fulfill the adiabatic-
ity constraint [15],∣∣〈a±| d

dt |a0〉∣∣� |ω0−ω±| or |Θ̇| � |ω0−ω±|. (5)

For a Gaussian trigger pulse,ΩT(t) = Ω0 exp(−(t/∆τ)2),
with a duration (FWHM) of∆τ

√
4 ln 2, and an amplitude

comparable to the atom-cavity coupling,ΩT(∆τ) ≈ 2g, the
excitation is adiabatic if

∆τg� 1/
√

2. (6)

This constraint yields a first lower limit for the time inter-
val required to generate one photon, because the population
transfer will not work reliably with trigger pulses shorter than
the inverse coupling constant,g−1. A second lower limit is the
cavity-decay time,(2κ)−1, which is needed for the emission
of the photon out of the cavity.

Up to this point, the finite lifetimes of the cavity field,κ−1,
and of the atom’s excited state,γ−1, have been omitted in
the analytical treatment. To include these two decay channels,
we chose|U〉 = |u,0〉, |E〉 = |e,0〉, and |G〉 = |g,1〉 as ba-
sis states and simulate the emission process numerically in the
density matrix representation. Note that the non-interacting
state|g,0〉 is not included in this representation. The time
evolution of the atom-cavity system is given by the master
equation [14],

d

dt
%=− i

h

[
H, %

]−Γ%, (7)

where the linear operatorΓ describes the effect of all relax-
ation processes. The elements ofΓ% are expressed in terms of
the relaxation constants,γE= γ , γG= 2κ, γU = 0 (there is no
loss from state|u,0〉), and the Einstein coefficients,Aki , for
spontaneous transitions between the basis states:[
Γ%
]

ij =
1

2
(γi +γj )%ij − δij

∑
k

%kkAki . (8)

The first term on the right-hand side of (8) encompasses only
losses and dampings of the%ij ’s, whereas the second term
takes into account the incoherent population flux into basis
states. In the present situation, only state|u,0〉 is populated
by spontaneous emission from|e,0〉. For simplicity we as-
sume that this transition contributes50% to the total decay
rate of state|e,0〉, i.e. the only non-zero Einstein coefficient is
AEU = 1

2γ . The other50% is due to the direct transition to the
non-basis state|g,0〉. This decay channel is already included
in γ and, hence, taken into account by the first term. Note that
the spontaneous decay process|e,0〉 −→ |g,1〉 is neglected
because of the typically small solid angle of the cavity mode
(Ω/4π ≈ 10−4). Finally, the transient photon emission rate,
2κ%GG, is obtained from the numerical solution of (7).

Results of the simulation are shown in Fig. 2, where a trig-
ger pulse with a Gaussian shape and realistic values forγ and
κ were chosen. It is obvious that the generated photon is al-
ready emitted from the cavity before the Rabi frequency of
the trigger,ΩT, gets larger than 2g. This early photon emis-
sion occurs if the cavity lifetime,(2κ)−1, is short with respect
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Fig. 2. Numerical simulation of a single-photon pulse. The time evolution
of the trigger pulse,ΩT(t), and the constant coupling to the cavity mode,
2g, are shown in the upper part. Below, the corresponding photon emis-
sion rate out of the cavity is shown, assuming a cavity-decay constant of
2κ = 2π×1.5 MHz and a spontaneous emission rate constant ofγ = 2π×
6 MHz. The integral of the emission rate yields a single-photon emission
probability of 92%

to the duration of the trigger pulse. Once the photon is emit-
ted, the remaining system is in state|g,0〉, which is decoupled
from any further interaction. Therefore it is not really neces-
sary to reach the final conditionΩT � 2g, and the trigger
pulse could be switched off even non-adiabatically after the
photon emission has taken place.

In Fig. 3, the populations of the states|u,0〉 and |g,1〉
are plotted together with the photon-emission rate as a func-
tion of time for different values ofκ. In the loss-free case,
neither a photon is emitted nor a photon remains inside the
cavity mode, since the initial condition (coupling to the cav-
ity and weak trigger pulse) is restored towards the end of the
interaction. This coherent population return [16] to the ini-
tial state,|u,0〉, occurs with the falling edge of the trigger
pulse. It takes place if the cavity-decay time,(2κ)−1, is longer
than the trigger pulse duration. With increasing cavity-decay
constant, 2κ, the emission probability not only rises, but also
narrows and shifts towards earlier times. From this, one might
be tempted to use a bad cavity with large loss for optimum
performance. However, since the decay of the cavity field
directly affects state|g,1〉, the off-diagonal density-matrix
element%UG is also damped and, hence, the coherence be-
tween states|u,0〉 and |g,1〉 gets lost. Since an incoherent
superposition of these states does not project exclusively onto
the dressed state|a0〉 (see (2)), some population is transferred
to the other dressed states,|a±〉, which contain a contribution
from |e,0〉. Hence, the excitation can be lost by spontaneous
decay. This loss is expected to be small in the case of strong
coupling, g> (κ, γ/2). For example for the parameters of
Fig. 3, the fraction of transient population in the excited state,
|e,0〉, is less than 10−3 throughout the whole process. There-
fore spontaneous emission loss in transverse modes other
than the cavity mode is negligible and will not degrade the
process significantly.

We now consider the more general case where the trig-
ger pulse detuning,∆T , and the cavity detuning,∆C, from
the appropriate atomic resonances are not necessarily equal.
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Fig. 3. Population of states|u,0〉 and |g, 1〉 (upper part) and photon-
emission probability (lower part) as a function of time forγ = 2π×6 MHz
and different values ofκ in response to a Gaussian trigger with∆τ = 5µs
and a peak Rabi-frequencyΩ0 = 2g= 2π×9 MHz

Results are displayed in Fig. 4, which shows the overall pho-
ton emission probability,PEmission, and the overall loss prob-
ability, PLoss, as functions of∆T and∆C. Both probabili-
ties are calculated from the time integral of the correspond-
ing emission and loss rate, i.e.PEmission=

∫
2κ%GGdt and

PLoss=
∫ 1

2γ%EEdt, respectively. It is evident from Fig. 4a,
that the emission probability as well as the losses have two
maxima forΩ0� g. The reason for this is the cavity-induced
coupling of states|g,1〉 and|e,0〉, producing a new doublet
of non-degenerate states. This is the well-known vacuum-
Rabi splitting [17], now probed by a weak light pulse coupled
to the atom [18]. The splitting survives only for weak driving,
but changes drastically for larger trigger amplitudes,Ω0 ≥ g,
as shown in Fig. 4c. In this case, the photon emission prob-
ability is close to unity if the excitation is Raman resonant
(∆T =∆C) and the losses are vanishingly small. We em-
phasize that this holds true even in the case of a resonant
excitation(∆T =∆C = 0), i.e. an influence of the vacuum-
Rabi splitting is neither visible in the emission probability
nor in the spontaneous emission losses, as shown in the sec-
ond row of Fig. 4. For∆T 6=∆C, these losses reach their
maximum if the trigger pulse is resonant with the atomic
transition(∆T = 0), and the bandwidth of the losses power-
broadens with increasing amplitude of the trigger pulse (from
left to right). As mentioned above, the losses are vanishingly
small only if the Raman resonance condition,∆T =∆C, is
fulfilled.

The influence of the trigger amplitude and the common
detuning,∆=∆T =∆C, on the shape of the photon emission
probability is shown in the last row of Fig. 4. The duration
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Fig. 4a–c.Photon emission probability, loss of excitation in transverse ra-
diation modes, photon-pulse duration (FWHM) and center as functions
of both cavity detuning,∆C, and trigger-pulse detuning,∆T , from the
atomic resonance. The trigger pulse is∆τ = 5µs long. The three columns
correspond to three different peak Rabi-frequencies of the trigger pulse
(a Ω0 = 2π×0.64 MHz, b Ω0 = 2π×1.6 MHz, c Ω0 = 2π×6.4 MHz).
The cavity-decay constant isκ = 2π×0.75 MHz, the spontaneous emis-
sion constant isγ = 2π×6 MHz and the atom-cavity coupling constant is
g= 2π×4.5 MHz. The probabilities are shown in shades of gray, ranging
from 0.0 (white) to 1.0 (black). The duration (solid lines, last row) and the
center position (dashed lines, last row) of the emission are only shown for
a Raman resonant excitation, i.e. for∆T =∆C. The center of the emission
probability precedes the center of the trigger pulse inb andc

(FWHM) and center of the time-dependent emission proba-
bility vary only slightly as a function of∆, but show a strong
dependence on the trigger-pulse amplitude.

Figure 5 shows the photon-emission probability, the dura-
tion and the center of the emission as functions of the trigger
pulse amplitude,Ω0, for a resonant excitation,∆T =∆C = 0.
The photon-emission probability tends towards an asymptotic
limit of PEmission= 95% and does not reach unity with in-
creasing trigger pulse amplitude. This limit is caused by the
damping of%UG, which was already discussed above. Note
that the emission probability is already larger than90% if the
peak Rabi-frequency of the trigger,Ω0, exceedsg/2.

The single-photon pulse duration varies between two lim-
its. Figure 5 shows that it does not exceed the FWHM,
∆τ
√

2 ln 2, of the trigger-pulseintensity. A longer photon
pulse is not possible due to the coherent population return
mentioned above. Of course, the lower limit of the pulse dura-
tion is given by the cavity decay time. It can also be seen from
the figure that the center of the emission shifts towards earlier
times with increasing amplitude of the trigger pulse. In the
case of a Gaussian trigger-pulse, a lower bound for the cen-
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Fig. 5. The photon-emission probability (solid line) and its duration
(FWHM, dotted line) and center position (dashed line), shown as a func-
tion of the peak Rabi-frequencyΩ0, for an atom-cavity coupling constant
g= 2π×4.5 MHz, resonant excitation,∆T = ∆C = 0, a cavity-decay
constant κ = 2π×0.75 MHz and a trigger-pulse width of∆τ = 5µs.
This corresponds to a duration (FWHM) of the trigger-pulseintensity of
∆τ
√

2 ln 2= 5.9µs, which is also the upper limit of the photon-pulse du-
ration. The lower limit is given by the cavity decay-time,(2κ)−1. These
two limits are indicated by thehorizontal dash-dotted lines. For the para-
meters chosen here, the emission probability exceeds90% if Ω0 > g/2.
This regime is indicated by thedash-dotted vertical line

ter of the emission does not exist, since the emission occurs
as soon asΩT(t) andg are of comparable magnitude.

We finally discuss two possible applications. First, a repet-
itive emission of single photons might be desirable. Hence,
the emission cycle has to be completed by an independent re-
pumping scheme, which brings the system back to the initial
state,|u,0〉. In Fig. 1, a possible re-pumping mechanism with
a microwaveπ-pulse is indicated. Alternatively, one could
think of a cavity-independent Raman re-pumping scheme.
With the emission cycle closed, the device could produce
a bit-stream of single photons as proposed in [11].

Second, an interesting aspect of the scheme is its possible
use for quantum teleportation: a photon is only generated if
the atom is initially prepared in state|u〉. An atom that resides
already in state|g〉 cannot emit a photon. But in both cases the
system reaches the same final state|g,0〉. It follows that any
initial superposition state of the form

|Ψi 〉 = α|u〉+β|g〉
is transformed into

|Ψ f 〉 = |g,0〉⊗ (α|one photon〉+β|no photon〉) ,
and an entanglement between the photon and the atom is not
established. Instead, the information about the initial atomic
state is encoded in the emitted light field. In a setup where the
emitted photon is captured by a second remote atom, the ini-
tial atomic state might be reinstalled and the quantum state is
teleported to the other atom.
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We conclude by noting that the proposed scheme requires
a single atom localized in the center of a high-finesse optical
cavity. This can easily be achieved with a technique recently
reported in [19, 20]. With an individual atom in the cavity,
the photon emission probability – and therefore the shape of
the photon wavepacket – can be controlled by varying the
shape and the amplitude of the trigger pulse. From our nu-
merical simulations, we expect a photon-emission probability
close to unity. It should also be possible to repeat the photon-
emission process at a predefined rate using an independent
re-pumping scheme to recycle the atom. Moreover, the emis-
sion process depends also on the initial state vector of the
atom, so that a quantum teleportation of internal atomic states
could be realized.
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