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Abstract. From thermodynamic considerations, we derive
a consistent set of equations coupling the steady-state pho-
toinduced photorefractive space-charge field to mechanical
deformations, dc permittivity, and refractive index changes.
For the first time to our knowledge, these equations include
piezoelectricity, electrostriction, the elasto-optic effect, the
linear and quadratic electro-optic effects, as well as the influ-
ence of the volume forces and electric torques. We determine
the conditions on the material parameters, for which volume
forces and torques are of some importance on the optical
properties.

These equations resulting from a macroscopic approach
are valid whatever the physical microscopic origins of the var-
ious effects. Non centrosymmetrical and centrosymmetrical
materials are considered. The order of approximation is the
lowest possible able to describe the mentioned effects in both
types of materials.

PACS: 77.84.-s; 42.70.Nq

The photorefractive effect is usually understood as the opti-
cally generated variation of the refractive index caused by an
induced space-charge field through the Pockels or the Kerr
effect [1], which are electro-optic effects originating from
purely electronic processes. This definition was extended
to include photorefractive polymers. In these materials, the
chromophores have to be oriented under an applied electric
field to break the inversion symmetry, thus allowing the lin-
ear electro-optic effect. The large diffraction efficiency and
two-beam coupling gain observed in some of these organic
materials were explained [2] by an orientational contribution
caused by the birefringence of the chromophores, combined
with the electro-optic effect. In organic glasses [3], the mod-
ulation of birefringence is the major mechanism giving rise to
the spatial variation of the refractive index. In fact, these two
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contributions may formally be expressed in terms of quadratic
electro-optic effect [4].

Electromechanical effects may also modulate the refrac-
tive index, through the elasto-optic effect. This was at the
origin of the “clamped”, “unclamped” dilemma for the values
of the electro-optic coefficients in photorefractive inorganic
crystals. This has been clarified in crystals of infinite exten-
sion [5–7]: the sinusoidally modulated photorefractive space-
charge field stresses and strains the material by piezoelectric-
ity whereas the resulting elasto-optic effect modifies the in-
duced variation of refractive index. These electromechanical
effects could also be at the origin of surface reliefs observed
in some materials.

In this paper, we intend to provide a consistent macro-
scopic description of the interactions between the space-
charge field induced in photorefractive materials and the me-
chanical properties of these materials. Our purpose here is
to avoid the usual phenomenological introduction of the var-
ious effects. The microscopic characteristics of the forma-
tion of the space-charge field are beyond the scope of this
paper. The optical effects include elasto-optic, linear, and
quadratic electro-optic effects. The static effects relate to the
coupling between the mechanical deformations, the electric
field, and the dc permittivity. This description simultaneously
takes into account, for the first time to our knowledge, elec-
trostriction, volume forces, and the equilibrium between me-
chanical and electrical torques. Electrostriction is the main
electromechanical effect in centrosymmetrical materials, that
are basically non piezoelectric. Volume forces describe the
action of the electric field on charges and dipoles. More-
over, when a static electric field and a static polarization are
present, a field of electrical torques is balanced by mechan-
ical torques. These torques and volume forces are usually
neglected. However, torques have been considered in liquid
crystals [8] and their importance has been described in the
case of photorefractive liquid crystals [9] where the induced
birefringence results mostly from molecular orientation under
these torques. They are to be considered as soon as the plas-
ticity of the material does not allow the complete orientation
of the dipoles (permanent or induced) in the direction of the
internal field. Therefore, volume forces and torques will be
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considered in the model to establish in which type of mate-
rials they are finally negligible or not. We will discuss here
non-centrosymmetrical and centrosymmetrical materials.

1 Mechanical, electrical, and optical responses

Various electromechanical effects couple the static electric
field and polarization vectors to the displacement gradient
tensor and to the stress tensor [10]. Once the mechanical and
electrical responses of the material have been obtained for
a given electric field, the optical response may be determined.
It originates in the different susceptibilities associated with
the static electric field (electro-optic effects) but also to the
stress or the deformations (elasto-optic effect). We do not
analyze here absorption effects.

In the text, the symbol associated with a tensor is written
in square brackets if it does not indicate a tensor element. In
this section, all the equations are written using uncontracted
tensors and whenever necessary, the Einstein implicit summa-
tion is used.

1.1 Electromechanical effects

1.1.1 Equilibrium conditions.The material is in a thermo-
dynamic equilibrium resulting from the effects coupling the
electric fields and electric displacements to the mechanical
deformations and stresses. The thermal effects (thermoelas-
tic effect and pyroelectricity [11]) coupling those quantities
to temperature and entropy are neglected.We describe the me-
chanical response, using the electric fieldE (as usual in the
description of the photorefractive effect) and the displace-
ment gradient[u] as independent variables. The stresses[T]
will be expressed in terms of[u], and the dc electric displace-
mentD, in terms ofE.

The static mechanical equilibrium condition [10] accounts
for the balance between the surface forcesTij (stresses) and
the volume forces. These forces are the actions of the electric
field E on the charges (densityρ) and on the dc polariza-
tionPPP . Using the dipolar approximation for the latter contri-
bution, the equilibrium condition is written as:

∂Tij

∂xj
+ρEi +PPP

∂E
∂xi
= 0 . (1)

These volume forces were usually not taken into account
in this equation as we will justify in many materials (see
Sects. 1.4 and 1.5). The stress tensor[T] which appears in (1)
is the sum of a symmetric part[T]s and an antisymmetric part
[T]as which is also usually not taken into account. However
[T]as defines the mechanical torques which balance the field
PPP × E of electric torques appearing inside any material ifE
is not parallel toPPP (with × denoting the vectorial product).
The equilibrium of torques thus fully defines the antisymmet-
rical stress components such that [10]:

Tij −Tji = 2Tas
ij = Pi Ej −P j Ei . (2)

[T]s is expressed by Hooke’s law [10] as a function of
the rigidity [c], the converse piezoelectric[e], and the elec-
trostrictive[a] tensors:

Ts
ij = cijkl ukl −ekij Ek−0.5aijkl EkEl . (3)

This relation is a Taylor expansion of[T]s in Ei and uij ,
limited to its first non-zero terms. The first term never van-
ishes so that the second-order term inuij is neglected. How-
ever, in centrosymmetrical materials, the second term is can-
celled and the first non-zero electric term is a second-order
effect in Ei , i.e. electrostriction. This is why it has been in-
cluded in relation (3). For the same reason, in the case of
centrosymmetrical materials, one could think of introducing
second-order crossed terms inEj ukl . However, we will show
in the discussion of relation (6) that it must be neglected at
this order of the Taylor expansion. Equation (3) applies to
a number of materials, but not to some liquid crystals where
a major effect, flexoelectricity, depends on the derivatives of
the strain [12].

1.1.2 Electric polarization.P i , or equivalentlyDi , may be
developed with respect toEj and ujk. In the acousto-optic
literature [13], this expansion is usually limited to the first-
order terms inEj andujk, i.e. to the contributions of the linear
dielectric polarization, proportional to the relative static di-
electric constantεr(1)

ij , and to the direct piezoelectric effect,
proportional toeijk . However, this expansion would only be
consistent with a linear development of the stress inEi and
uij . To determine the correct expansion forD, we use the
thermodynamic approach, well known in the piezoelectric
literature [14].

Let θ be temperature,S the entropy, andU the inter-
nal energy. Using the differential of the new state function
V =U− E.D:

dV = Tij duij −Dk dEk+ θ dS, (4)

we get the thermodynamic relation,

∂Tij

∂Ek
=−∂Dk

∂uij
. (5)

Therefore, to be coherent with the expansion forTs
ij (relation

(3)), the expansion forDi must include terms proportional
to Ej ukl and additional terms proportional toujk, besides the
usual linear orders inEj andujk. Other terms in the expansion
of Di are not needed. In particular, the second-order terms in
uij are only a small correction to the dielectric polarization
that exists even in centrosymmetrical materials. We thus neg-
lect it in the expansion ofDi . That is why, as a consequence of
relation (5), the term inEj ukl has been neglected in (3). Com-
puting the derivative ofDi with the definitions (2) and (3), we
get the consistent equation forDi :

Di = ε0Ei +P i = Pi + ε0ε
r(1)
ij Ej +e′ijkujk+a′klij Ej ukl , (6)

where

e′ijk = eijk +erot
ijk with erot

ijk =−0.5
(
Pj δik− Pkδji

)
, (7)

and

a′klij = aklij +arot
klij with

arot
klij =−0.5ε0

(
ε

r(1)
ki δl j + εr(1)

k j δli − εr(1)
li δk j − εr(1)

l j δki

)
. (8)

In (6), Pi accounts for the permanent polarization as in fer-
roelectric materials, high glass transition temperature(Tg)
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polymers or ferroelectric liquid crystals. The following term
is the usual first-order expansion in the electric field. The last
two terms are a consequence of equality (5). They represent
the direct piezoelectric effect and electrostriction modified by
the torques as follows:

eijk is symmetrical in the last two indices so thateijkujk =
eijkus

jk, it describes the usual direct piezoelectric effect;[us]
being the strain tensor, symmetrical part of[u].

erot
ijk is antisymmetrical in the last two indices so that

erot
ijk ukl = erot

ijk uas
kl , it describes the additional polarization result-

ing from a rotation of the permanent polarizationP; [uas]
being the antisymmetrical part of[u].

aklij is symmetrical in the first two indices so that
aklij Ej ukl = aklij Ej us

kl , it represents the direct electrostrictive
effect [10] (polarization induced by electrostriction);

arot
klij is antisymmetrical in the first two indices so that

arot
klij Ej ukl = arot

klij Ej uas
kl , it represents an additional polariza-

tion.
As the charge densityρ may be calculated from Poisson’s

equation, these equations (1), (2), (3), and (6), combined with
the conditions on the surfaces, form a set of electromechan-
ical equations that completely determines the deformations
and stresses everywhere in the material, taking into account
the existence of volume forces, electrical and mechanical
torques.

1.2 Optical effects

The definition of the electric displacementD(ω) at optical
frequencies is also derived from thermodynamical considera-
tions. The energy of the optical field should be included in the
expression ofU, thus introducing in (4) the additional term
−Dk(ω)dEk(ω). A thermodynamical relation similar to (5) is
obtained:
∂Tij

∂Ek(ω)
=−∂Dk(ω)

∂uij
. (9)

This introduces in the expression ofD(ω) an additional term
a′klij (ω)Ej (ω)ukl similar in shape to the last term of (6) and
given by (8). Its value at optical frequencies has no direct
connection with its static value. In terms of variation of the
optical relative permittivity, this corresponds to:

δεr elasto
ij = (aklij (ω)+arot

klij (ω)
)

ukl/ε0 . (10)

In the expansion ofDi (ω), this is the only term related toTij ,
by the relation (9). At optical frequencies, there is no constant
term, nor any term inujk. The first non-zero electric term, pro-
portional toεr(1)

ij (ω), accounts for birefringence. One should
add the first non-vanishing and nonlinear terms in the electric
field, in order to describe the optical nonlinearities: the lin-
ear (Pockels) or possibly the quadratic (Kerr, or orientational)
electro-optic effect, when the optical properties of centrosym-
metrical materials are to be described:

δεr electro
ij = χ(2)ijk (−ω;ω,0)Ek+χ(3)ijkl (−ω;ω,0,0)EkEl . (11)

χ
(2)
ijk andχ(3)ijkl are the nonlinear susceptibilities associated with

the Pockels and Kerr effects. We thus write:

Di (ω)= ε0ε
r
ij (ω)Ej (ω)

= ε0

[
ε

r(1)
ij (ω)+ δεr electro

ij + δεr elasto
ij

]
Ej (ω) , (12)

Electro-optic and elasto-optic effects are more often de-
scribed as a change[δη] in the impermeability tensor[η] =
[εr (ω)]−1 under the form:

δηij = r ijk Ek+ gijkl EkEl + pijkl u
s
kl + prot

ijkl u
as
kl . (13)

The clamped Pockels tensor[r ], the Kerr tensor[g], the usual
elasto-optic tensor[p], and the roto-optic tensor[prot] are re-
lated, in the principal axes of the material, to the definitions
(10) and (11) by:
ε

r(1)
ii (ω)ε

r(1)
jj (ω)r ijk =−χ(2)ijk (−ω;ω,0),

ε
r(1)
ii (ω)ε

r(1)
jj (ω)gijkl =−χ(3)ijkl (−ω;ω,0,0),

ε0ε
r(1)
ii (ω)ε

r(1)
jj (ω)pijkl =−aijkl (ω),

ε0ε
r(1)
ii (ω)ε

r(1)
jj (ω)prot

ijkl =−arot
ijkl (ω) .

(14)

The expression ofarot
klij was previously obtained [15] by con-

sidering the effect of a rotation on the index ellipsoid. It is
derived here from thermodynamic considerations. The roto-
optic tensor may be expressed in the principal axes of the
material. The obtained expression is identical to the one given
in [13]:

prot
ijkl =

1

2

[(
1

n2
j

)
−
(

1

n2
i

)]
(δikδjl − δil δjk) . (15)

[prot] has non-zero coefficients if the material is birefringent.

1.3 The space charge field

The permittivity at optical frequency, (12) or (13), can be de-
termined if both the displacement gradient and the electric
field are known. To compute their values one should simul-
taneously solve the set of mechanical equations (1), (2), (3),
(6), and the set of equations of the charge transport model
describing the photorefractive effect. In the photorefractive
band transport model [16, 17], the space-charge electric field
depends on the static dielectric tensor, through Poisson’s
equation. It is also a function of the conductivity tensor[σ]
through the mobility of the charge carriers. Strictly speak-
ing, as[εr ] and[σ] both depend on the displacement gradient
and on the electric field, the charge transport equations are
coupled to the static electromechanical equations. This coup-
ling has been considered in liquid crystals [8] taking into
account torques only. These torques introduce two additional
contributions to the photorefractive space-charge field as usu-
ally calculated. They originate from the anisotropies of the
conductivity and dielectric permittivity. Although these ef-
fects occur in all photorefractive materials, they have only
been described in the case of photorefractive nematic liquid
crystals [9].

Here, we take into account the contribution of the di-
electric anisotropy in (12) or (13) but ignore the effect of
the anisotropic conductivity. In general, the charge transport
and mechanical equations are nonlinear. However in an in-
finite medium the spatially periodic illumination generates
a periodic structure. For low modulations of the sinusoidal il-
lumination pattern, the equations may be linearized as usually
done [17] for the photorefractive effect. We therefore limit
our analysis to the first-order terms (spatial wave numberK )
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and we develop all the space varying quantities with this first
order Fourier expansion:

Q(r)= Q〈0〉 +0.5(Q〈1〉 expiK .r+c.c) . (16)

By solving the set of (1), (2), (3), and (6), one finds that the
displacement gradient at wave numberK is related to the
space-charge field by a linear relation:

u〈1〉jk = αjkl E
〈1〉
l . (17)

This approach, similar to the method derived in photorefrac-
tive crystals [5–7], leads to the definition of an effective di-
electric tensor[εr eff] taking into account the dielectric, piezo-
electric, electrostriction effects and the torques:

D〈1〉i = ε0ε
r eff
ij E〈1〉j

= ε0ε
r(1)
ij E〈1〉j +e′ijku〈1〉jk +a′klij

[
E〈1〉j u〈0〉kl + E〈0〉j u〈1〉kl

]
.

(18)

Therefore, the effective dielectric tensor to be used to deter-
mine the fundamental frequency of the space-charge field is:

ε0ε
r eff
ij = ε0ε

r(1)
ij +

(
e′iklαkl j +a′klij u

〈0〉
kl +a′klimαkl j E〈0〉m

)
. (19)

For an infinite medium, one should first literally calculate the
expression foru〈0〉kl (or u〈1〉kl ) as a function ofE〈0〉 (or E〈1〉),
from the electromechanical (1), (2), (3), (6) and conditions
on stresses or strains (for example clamped or unclamped
samples). Next, the value of the electric fieldE〈1〉 can be com-
puted using the effective dielectric tensor (19), in the charge
transport equations. Once this electric field has been deter-
mined, one finds the numerical values foru〈1〉kl from the literal
expression (17) previously calculated. Finally, the optical ef-
fects are computed reporting these values in (12) or (13).

In the following, we discuss the relative importance of the
different effects. For specific materials, some terms may be
neglected in (1), (2), (3), (6), and (19). We separate the case
of non-centrosymmetrical materials from that of centrosym-
metrical ones. We show that they may both be described by
similar equations.

1.4 Non-centrosymmetrical materials

In these materials, such as high-Tg polymers and some crys-
tals, one may usually neglect the effects of electrostriction
([a], second-order effect) compared to those of piezoelectric-
ity ([e], first-order effect).

1.4.1 Determination of the space-charge field.From (8) one
sees thatarot

ijkl is of the order ofε0ε
r(0)
ij so that in relation (6),

then in the definitions (18) or equivalently (19), one should
neglect the terms proportional toarot

klij compared to the terms

proportional toε0ε
r(1)
ij . Therefore, because we have also dis-

regarded electrostriction, the expression of the effective per-
mittivity may be expressed as:

ε0ε
r eff
ij ≈ ε0ε

r(1)
ij +e′iklαkl j . (20)

It differs from the usual expressions [6, 7] by the termerot
iklαkl j ,

which only exists in ferroelectric materials. Aserot
ikl is of the

same order of magnitude asP (see relation (7)), this term
erot

kl jαkl j may be neglected ifP� |eijk |. This is the case for
example inBaTiO3 (symmetry4 mm), where the relevant pa-
rameters inerot

iklαkl j are P ande15 (see Table 1 for numerical
values). This is found to be still true, although less marked,
in a ferroelectric liquid crystal [18] where the polarization is
10% to 20% of the piezoelectric modulus (1.5×10−4 C/m2

for the latter).

1.4.2 Determination of the deformations.Once again, be-
cause electrostriction is neglected, (3) reduces to:

Ts
ij ≈ cijkl ukl −ekij Ek . (21)

Equation (6) has already been used to determineεr eff
ij , but it

is needed here again to compute the displacement gradient. In
that case, different approximations for the electric displace-
ment may be stated. Because first,erot

ijk is of the order ofP and
second, we deal in this paper with small values of deforma-
tions in the limit of elasticity,erot

ijk ujk is only a small correction
to Pi . erot

ijk can thus be neglected in the expression (6). Sim-

ilarly, arot
ijkl being of the order ofε0ε

r(1)
ij , one should neglect

arot
klij ukl compared toε0ε

r(1)
ij . The remaining terms in (6), the

piezoelectric terms proportional toeikl , can also be neglected.
Indeed, this expression (6) is now used to solve (1) by insert-
ing the value ofPi in (1) and (2). The piezoelectric terms
eijkujk from (6) thus introduce, in (1), terms proportional to
eijkukl Ej which can be neglected compared to the termsekij Ek
originating from (3). Therefore, the electric displacement can
be approximated by:

Di ≈ Pi + ε0ε
r(1)
ij Ej . (22)

From the same reasons, the expressions (2) for the stress ten-
sors can be simplified as:

2Tas
ij =

(
Pi + ε0(ε

r(1)
ik − δik)Ek

)
Ej

−
(

Pj + ε0(ε
r(1)
jk − δjk)Ek

)
Ei . (23)

Using these simplified expressions (21) to (23), one may
compute the displacement gradients with (1). However, in
most previous analyses, volume forces and torques are neg-
lected in (1). Let us examine the relative contributions of
these terms for the spatial wave numberK . For this compar-
ison, we do not consider the exact values for the parameters
and we noteX for the average values of the non-zero coef-
ficients of any tensor[X]. The volume forces induced by the
electric field on the polarization and the influence ofTas have
the same order of magnitude in (1):

PPP
∂E
∂x
≈ ∂T

as

∂x
≈ KE〈1〉

(
P+ ε0(ε

r −1)E〈0〉
)
. (24)

These values should be compared to the two contributions
originating fromTs, for example the piezoelectric part:

e
∂E

∂x
≈ KE〈1〉e. (25)
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Tensor Value Reference

BaTiO3

Clamped dielectric constant ε
r(1)
11 = 2180,εr(1)33 = 56 [22]

Rigidity tensor (1010 N/m2) c11= 22.2, c13= 11.1, c33= 15.1, c55= 6.1 [22]
Piezoelectric tensor (C/m2) e15= 34.2, e31=−0.7, e33= 6.7 [22]
Spontaneous polarization (C/m2) P= 0.28 [23]
Clamped electro-optic tensor (pm/V) r13= 10.2, r33= 40.6, r51= 730 at633 nm [22]

Bi12TiO20

Clamped dielectric constant ε
r(1)
11 = 47 [24]

Rigidity tensor (1010 N/m2) c11= 13.7, c12= 2.8, c33= 14.8, c44= 2.6 [5]
Piezoelectric tensor (C/m2) e14= 1.1 [5]
Clamped electro-optic tensor (pm/V) r41= 4.75 at633 nm [5]

Table 1. Numerical values used for tensors in
BaTiO3 andBi12TiO20

Therefore, both torques and the volume forcesPPP ∂E /∂x may
be neglected in (1), as soon as:

P� |e| andε0ε
r(1)E〈0〉 � |e| . (26)

Similarly we estimate the magnitude of the volume forcesρE
from Poisson’s equation as:

ρE≈ KE〈1〉E〈0〉ε0ε
r eff with εr eff =

(
K
K

)t [
εr eff] (K

K

)
.

(27)

Comparing this force to the main contribution given by (25),
we thus find thatρE is negligible if the following condition is
satisfied:

ε0ε
r effE〈0〉 � |e| . (28)

Therefore, we can neglect volume forces and torques in (1), as
usually done, if conditions (26) and (28) are simultaneously
satisfied. As a matter of fact, given thatεr eff is usually of
the order ofεr(1), condition (28) is often included in condi-
tion (26). Eventually, if conditions (26) and (28) do not hold,
volume forces and torques have to be taken into account, un-
less the piezoelectric effect may be neglected for both static
and optical quantities. This is the case if the clamped and un-
clamped values of the dielectric tensor (or the electro-optic
tensor) are very close to each other.

BaTiO3 is an example of ferroelectric material matching
these conditions (26) and (28) for the usual values of the elec-
tric field (a fewkV/cm) (see the tensor elements of Table 1).
In the non-ferroelectric crystalBi12TiO20 (BTO), volume
forces and torques are also negligible (see Table 1). Surface
gratings induced by piezoelectricity were recently observed
in BTO [19]. We performed numerical simulations neglecting
volume forces and torques in the configuration used for that
experiment. The calculation is complicated by the cut of the
crystal in that experiment. We computed the first harmonic
∆h of the surface relief after simulating the deformations
using the numerical values of the material parameters given
in [5] and the electric field and grating spacing given in [19].
Our simulation gives∆h= 0.33 nm. The agreement with the
experimental result∆h= 0.26 nmobtained from [19] is bet-
ter than the rough approximation∆h = 2.2 nm given in the
same paper.

In the ferroelectric liquid crystal mentioned above [18],
we have already seen thatP< |e|. Assumingεr(1) ≈ 3 and
consideringE〈0〉 ≈ a few 105 V/m as in [18], we also have

ε0ε
r(1)E〈0〉 � |e|. Condition (26) is matched in this material

as well.
These values therefore fully justify the omission of vol-

ume forces and torques for these materials as done in previous
analyses [5–7]. One should recall [7] that the effect of ro-
tations,[uas], were omitted in [6]. However, this complete
analysis had to be performed and the order of magnitude of
the effects given in order to lawfully neglect volume forces
and torques in the materials known up to now. We have no in-
dication of the existence of non-centrosymmetrical materials
where torques and volume forces would have to be taken into
account.

1.5 Centrosymmetrical materials

For centrosymmetrical materials such as low-Tg polymers,
the Pockels effect, the piezoelectric tensor[e] and tensor
[erot], the permanent polarization vanish in all equations.

Determination of the space charge field.Similarly to non cen-
trosymmetrical materials, one should neglect the terms pro-
portional toarot

klij in the expression of the effective dielectric
permittivity (19) so that:

ε0ε
r eff
ij ≈ ε0ε

r(1)
ij +

(
aklij u

〈0〉
kl +aklimαkl j E〈0〉m

)
. (29)

Determination of the deformations.As the piezoelectric ten-
sor vanishes, (2) is:

Ts
ij ≈ cijkl ukl −0.5aijkl EkEl . (30)

In the expression of the electric displacement (6) we once
again neglect the contribution ofarot

ijkl for the same reason as
the one discussed above. The contribution ofaijkl must also be
neglected. Indeed, it introduces in the expression ofTas

ij , and
thus in (1), a term proportional toaklij Ej ukl Em which is much
smaller than the contribution 0.5aklij Ej Em introduced in (1)
by Ts

ij . Therefore one should write:

Di ≈ ε0ε
r(1)
ij Ej , (31)

so that the antisymmetrical part of the stress is,

2Tas
ij = ε0(ε

r(1)
ik − δik)EkEj − ε0(ε

r(1)
jk − δjk)EkEi . (32)
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These equations demonstrate that if the applied electric field
is much stronger than the space-charge field, then the cen-
trosymmetrical materials may be treated in the same way
as non-centrosymmetrical materials, withPi = 0 and pro-
vided that one introduces the following equivalent tensorseeq

ijk ,

χ
(2)eq
ijk , andr eq

ijk in place ofeijk , χ(2)ijk , andr ijk :
eeq

ijk ≡ ajkil E
〈0〉
l ,

χ
(2)eq
ijk (−ω;ω,0)≡ 2χ(3)ijkl (−ω,ω,0,0)E〈0〉l

or r eq
ijk ≡ 2gijkl E

〈0〉
l .

(33)

With these equivalent tensors, we may discuss the importance
of taking into account the volume forces and torques in (1)
exactly as done in Sect. 1.4. Condition (26) simply reduces to:

ε0ε
r(1)� |a| . (34)

Although we do not have exact parameters for photorefractive
materials, we suspect this condition is not always fulfilled.
Indeed, an estimate using Lorenz–Lorentz relation indicates
that in an isotropic material,ε0ε

r(1) ≈ |a| [20].
Moreover, in case an electric field is applied to the mate-

rial, the boundary conditions depend on the electrode attrac-
tion Telec for a centrosymmetrical material. Its knowledge is
required to calculateu〈0〉 (see Sect. 1.3). It is also negligible,
as soon as:∣∣Telec

∣∣≈ ∣∣0.5ε0ε
r(1)(E〈0〉)2

∣∣� ∣∣a(E〈0〉)2∣∣ , (35)

which is the same condition as (34).
As an example, we give the equivalent tensors for an

isotropic material.
[eeq] is a third-rank tensor, symmetrical with respect to

its two last indices, as a piezoelectric tensor. From (33) and
choosing the direction ofE 〈0〉 for the z axis we obtain in
contracted notations: 0 0 0 0 eeq

15 0
0 0 0 eeq

15 0 0
eeq

31 eeq
31 eeq

33 0 0 0

 with


eeq

15= 0.5(a33−a13)E〈0〉

eeq
31= a13E〈0〉

eeq
33= a33E〈0〉 .

(36)

Using (33) and Kleinmann symmetry, the equivalent Pockels
tensor[r eq] is found to be:

0 0 r eq
13

0 0 r eq
13

0 0 3r eq
13

0 r eq
13 0

r eq
13 0 0
0 0 0


with r eq

13= 2g13E〈0〉(g13 is defined in (14)) .

(37)

This is identical to the result obtained for theC∞v symmetry
with Kleinmann symmetry in the case of axial molecules.

In photorefractive organic materials elastic enough so that
the dipoles are able to move and align close to the total elec-
tric field, equations are simplified as well, as the electric
torque is zero. In these materials, refractive index changes
induced by electrostriction may be observed. Electrostric-
tion has recently been evidenced in low-Tg photorefractive
polymers [21].

2 Conclusion

We analyzed the electromechanical (stress, strain, polariza-
tion) and optical responses (electro-optic and elasto-optic ef-
fects) to a possibly modulated electric field, in photorefractive
materials. It applies to many materials such as crystals, sol-
gel films, low- or high-glass-transition-temperature polymers,
multiple quantum wells, or photorefractive liquid crystals, as
far as absorption effects are not concerned.

The electromechanical effects and their consequences on
optical properties are formalized including electrostriction in
centrosymmetrical materials. This had not been done before.
The equations are shown to be formally the same as for non-
centrosymmetrical materials. However the data available at
this date do not allow us to draw reliable conclusions on the
relevant electromechanical effects in these materials. Numer-
ical data about both elasticity and electrostriction, and pos-
sibly the elasto-optic effect, in a given photorefractive poly-
mer are needed to estimate the influence of electromechanical
effects on the optical effects observed in these materials.

The conditions when the volume forces and torques are
effectively negligible are discussed here for the first time to
our knowledge. It seems that in many materials, their contri-
bution is negligible compared to that of the symmetrical stress
Ts

ij . The equilibrium condition on forces (1) may then be sim-
plified as:

∂Ts
ij

∂xj
= 0, (38)

Ts
ij given by Hooke’s law (20) or by (29) depending if the ma-

terial is centrosymmetrical or not. From a theoretical point
of view, this justifies previous works about inorganic crys-
tals [5–7].

However, the equilibrium condition on torques (2):

2Tas
ij =P i Ej −P j Ei (39)

always has to be kept to account for the molecular orientation
at steady state, as done for example in liquid crystals [9].
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