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Abstract. The photorefractive response to an applied electric
field is measured in a photorefractive quantum well, provid-
ing evidence in favor of the nonlinear transport in the de-
vice due to the hot electrons. The reduced mobility of the
hot electrons limits the drift length, and thereby limits fringe
overshoot. Thus the nonlinear transport prevents the slow-
ing down of the grating writing rate for increasing fields
which is common in bulk photorefractives. The photorefrac-
tive phase shift in transverse-field photorefractive quantum
wells is measured as a function of the frequency offset be-
tween two laser writing beams that generate moving gratings.
The two-wave mixing passes through a maximum at an op-
timum frequency which depends on the magnitude and the
sign of the applied dc electric field. The phase shift associ-
ated with the moving grating adds or subtracts from the static
phase shift induced by hot-electron transport in the semicon-
ductor quantum wells, depending on the sign of the field and
the sign of the dominant photocarriers. We observe a linear
relationship between the roll-off frequency and the power of
the writing beams.

PACS: 42.40; 42.65; 78.65

Photorefractive quantum wells operating in the transverse-
field geometry exhibit a photorefractive phase shift under an
applied dc electric field that could not be attributed to trap
limitation [1]. The presence of the phase shift led to non-
reciprocal energy transfer during two-wave mixing, and pro-
duced record photorefractive gains in excess of1000 cm−1

in these devices [2]. The nonlocal dielectric response pro-
duced a “turn-on” voltage signature that was reminiscent of
the Gunn-effect mechanism in dopedGaAs [3], which led
to the suggestion that the photorefractive phase shift in the
quantum wells was a consequence of nonlinear transport and
electron velocity saturation [4]. This hypothesis was verified
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experimentally in 1996 when a direct experimental connec-
tion was made between the phase shift and the structure of
the conduction band valleys [5]. Clear evidence for the simul-
taneous onset of transport nonlinearity due to electron heating
and the onset of the photorefractive phase shift were seen in
experiments performed on several different samples whose
band structures had been specifically engineered.

The nonlocal dielectric response associated with the elec-
tron heating and nonlinear transport has important conse-
quences for applications such as laser-based ultrasound de-
tection. Two-wave mixing in photorefractive quantum wells
has been used to perform homodyne detection of surface dis-
placements [6]. In these experiments, the relative phase be-
tween the signal wave and the local oscillator must be equal
to 90◦. This phase relationship is needed to achieve max-
imum linear detection of surface displacements. Because the
photorefractive quantum well acts as an adaptive beam com-
biner, the photorefractive phase shift contributes to the rela-
tive phase of the signal and local oscillator, and therefore is of
practical interest for this application.

In this paper, we perform a detailed study of the two-
wave-mixing dynamics in transverse-field photorefractive
quantum wells using running gratings, paying special atten-
tion to the role played by the hot-electron photorefractive
phase shift. The moving gratings produce an additional shift
of the space-charge grating relative to the intensity pattern.
This shift can add constructively or destructively with the
static hot-electron phase shift, producing changes in the sign
for some grating velocities. The principal aspects of the
hot-electron phase shift are discussed in Sect. 1, and the de-
vice design, fabrication, and characterization are discussed
in Sect. 2. The experiments are described in Sect. 3, which
has two parts: one that addresses the hot-electron effect on
the grating response time in the absence of moving gratings;
and one that includes the effects of running gratings. One
of the interesting aspects of the hot-electron transport non-
linearity in photorefractive quantum wells is the absence of
field-induced slowing down of the grating response time in
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spite of the large fields that are applied. This has the import-
ant consequence that the photorefractive quantum wells can
maintain high speeds despite the use of high fields. This fea-
ture is unique to the photorefractive quantum wells and to the
nonlinear transport effects of the hot electrons.

1 Hot electrons

In AlGaAs/GaAs multiple quantum wells, the quasi-equili-
brium transport regime can be characterized by the change
in the electron mobility as electrons are transferred from
the direct conduction-band minima to the higher energy
conduction-band valleys. The electric field heats the carriers,
raising their energy which produces inter-valley scattering
events to scatter them to the indirect valleys. These hot
electrons have a strong nonlinear velocity vs. field behav-
ior. The transport of hot holes on the other hand, is linear
in applied electric field [7]. Electron-transport nonlineari-
ties may arise from several different mechanisms, including
inter-valley transfer, real-space transfer, and field-enhanced
deep-level-defect capture-cross-sections [8, 9]. Photorefrac-
tive instabilities may be a direct consequence of nonlinear
electron transport [10] .

Under large electric fields the electron temperature,Te,
can be significantly larger than the lattice temperature,
TL. The electron temperature and the drift velocityv(E),
are related to the energy-relaxation timeτr, by the quasi-
equilibrium approximation [11] as

eEv(E)= 3

2
kB

(
Te−TL

τr

)
. (1)

It follows that the electron temperature is

Te= TL+ 2eτrv(E)

3kB
E . (2)

In a two-valley model the electric-field-dependent average
mobility is given by

µ(E)= f(E)µl+ [1− f(E)]µu , (3)

where f(E) is the fraction of electrons in the lower energy
valley, andµl andµu are the mobilities of the electrons in the
lower and the upper valleys, respectively. To model the pho-
torefractive response we considered a phenomenological hot-
electron transport model. The electron fraction in the lower
valley is given by [3]

f(E)= [1+ Rexp(−∆U/kBTe)
]−1

, (4)

whereTe is the electron temperature, which is a function of
the applied electric fieldE, kB is the Boltzmann constant,
andR is the density-of-states ratio between the upper and the
lower valleys. ForGaAs, R takes a value of 96,∆U is 0.3 eV,
and the electron velocity is

v(E)=
[
µl+µuRexp(−∆U/kBTe)

]
1+ Rexp(−∆U/kBTe)

E . (5)

For electric fields of4 kV/cm, the electron temperature is
higher than the lattice temperature by several hundred de-
grees. This temperature is sufficient to promote the hot

electrons into the indirect conduction band minima that are
present in semiconductors such asGaAsand InP. Electrons
in these minima have significantly lower mobilities, leading
to a strongly nonlinear velocity vs. field dependence. When
the velocity saturates, the differential mobilitydv/dE van-
ishes [4]. This implies that the electron dielectric relaxation
almost vanishes and charge is unable to relax. This drives the
space-charge into saturation and leads to aπ/2 photorefrac-
tive phase shift.

2 Sample design, fabrication and characterization

The samples used in our experiments were photorefractive
multiple quantum wells grown by molecular beam epitaxy
(MBE). The structures were MBEAl0.3Ga0.7As/GaAsmul-
tiple quantum wells (MQW) grown on semi-insulatingGaAs
substrates. Capping and stop-etch layers were grown on
a semi-insulatingGaAssubstrate at600◦C, followed by an
MQW layer grown at600◦C consisting of a 100-period su-
perlattice of70Å GaAswells and60Å Al0.3Ga0.7As barriers.
The samples were proton implanted at a flux of2×1012 cm−2

at 160 keV and then at a flux of1×1012 cm−2 at 80 keV
to make them semi-insulating with uniform defect densities.
The substrate is opaque and is removed for transmission stud-
ies. The samples were epoxied onto glass and the substrate
was removed using a dilute ammonium hydroxide etch, which
stops at theAlGaAs stop-etch layer. The stop-etch layer was
then removed using a dilute hydrofluoric acid flash for about
15 susing a40% dilute solution, and two coplanar gold con-
tacts were evaporated on the top layer.

The samples were characterized using an infrared spec-
trometer, and the results are shown in Fig. 1. The change in
transmission of the sample due to an applied electric field was
measured using a silicon photodiode connected to a lock-in
amplifier. The differential transmission is shown as a function
of wavelength for several applied electric fields in Fig. 1a.
This gives the wavelength location of the exciton and the
optimum electric field to use for best performance in the mix-
ing experiments, which were performed at an applied field of
0.75 V/µm. The change in absorption is calculated from the
differential transmission using the relation

∆α=− 1

L
ln
(

1+∆T

T

)
, (6)

where L is the thickness of the active electro-optic layer,
and is plotted as a function of wavelength for several applied
electric fields in Fig. 1b. The change in refractive index is
obtained from the change in absorption using the Kramers–
Kronig relations, and is shown in Fig. 1c.

3 Experiments

3.1 Hologram response time – testing the hot-electron model

For the hologram response time study, degenerate four-wave
mixing was performed using a CWTi:sapphire laser tuned to
836 nm. The beam intensity ratio of the two hologram-writing
beams was 1: 1 with the polarization of one beam modulated
by 90◦ using an electro-optic modulator (ConOptics 350-80)
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Fig. 1a–c.Differential transmission (a), change in absorption (b), and the
corresponding change in refractive index (c) for several applied electric
fields. The electric field is a dc field modulated at100 Hz

with a bandwidth of200 kHz. The diffracted beam is detected
with a high-gain avalanche photodetector (Hamamatsu APD
C5460-01) with a response time of approximately3µs. The
combined system (modulator and detector) had a response
time of approximately4.5µs.

The photorefractive response time is an important param-
eter that enables one to verify the validity of the use of the
nonlinear hot-electron transport model. The electric field in
the photorefractive effect is the spatially modulated space-
charge field. Therefore, the time required for this field to build
up depends on many factors influencing the charge photoex-
citation, transport, and redistribution. Under spatially inho-
mogenous light illumination, the space-charge field develops
until it is balanced by the relaxation due to the conductivity

of the material. For a temporal step function of an intensity
interference pattern with a spatial sinusoidal structure, the
amplitude of the first spatial harmonic of the space-charge
field has a simple response function, given by [12, 13]

ESC(t)=mEMax
SC

(
1−e−t/τR

)
, (7)

with the maximum amplitudeEMax
SC and the intensity modula-

tion depth

m= 2
(I1 I2)

1/2

(I1+ I2)
. (8)

In the case of drift-dominated transport (in the absence of hot-
electron effects) the field response timeτR is given by [14]

τR = εε0

σp+σd

[
1+ (KgLE

)2
]

= εε0

(Iατ +nd) eµ

[
1+ (KgLE

)2
]
, (9)

whereε is the dielectric constant,σp,d are the photo- and dark
conductivity, respectively,I is the light intensity with a unit
of photon flux density,α is the absorption coefficient,τ is
the carrier lifetime,nd is the dark carrier density,µ is the
bipolar mobility,Kg = 2π/Λ is the grating vector with grat-
ing spacingΛ, andLE = µτE is the photocarrier drift length
under an electric fieldE. For no applied field (E= 0), the re-
sponse time is simply the dielectric relaxation time, which is
inversely proportional to the light intensity. At the saturation
intensity, which is the intensity needed for the photoconduc-
tivity to compensate the dark conductivity (≈ 100 nW/cm2

for our samples with a dark resistivity of109 Ω cm), the di-
electric relaxation time is about1 ms. At higher intensities,
the dielectric relaxation time decreases.

In four-wave-mixing experiments, it is the temporal be-
havior of the diffracted signal that is measured instead of
the space-charge field itself. The diffracted beam intensity
is proportional to the square of the change in the refractive
index. For transverse PRQWs based on the Franz–Keldysh
effect, the refractive index is approximately proportional to
the square of the space-charge field, in the low field regime
(E< 6 kV/cm). Therefore, theoretically, the temporal func-
tion of the diffracted signal is given by

ID(t)= I Max
D

(
1−e−t/τR

)2
. (10)

By measuring the temporal buildup of the diffracted signal
and fitting with (10), the space-charge-field response time can
be deduced. However, due to the sub-quadratic dependence
of the refractive index on the field and other factors, (10) is
not an exact expression of the time-dependence function of
the diffracted signal. For simplicity, we define the response
time of the diffracted signalτD as the time needed to reach
(1−1/e), i.e. 63% of its steady-state value. From (10) we
get the relationship betweenτD andτR asτD = 1.6τR andτD
behaves identically toτR as far as its dependence on the phys-
ical parameters such as electric field and light intensity are
concerned.

Figure 2 shows a typical temporal response of the
diffracted signal with step-like hologram writing beams at
three different light intensities, showing that higher light in-
tensity produces faster response, with possible overshoot at
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Fig. 2. Photograph showing the typical time response of the diffracted signal
from the hologram with step-like writing beams. The three traces corres-
pond to three intensities of4.6 mW/cm2 (lower trace), 18 mW/cm2 (middle
trace), and55 mW/cm2 (upper trace, near the detection limit)

Fig. 3. Measured hologram response timeτD as a function of incident light
intensity. Thecurve in the figure is a fit according to (9) withτD = 40/I +
4.5µs

the highest intensities. Figure 3 shows the intensity depen-
dence of the signal response timeτD measured at836 nmand
at an applied field of7 kV/cm. The response time asymptoti-
cally approaches the detection limit of4.5µs at an intensity
around40 mW/cm2. The curve in the figure is the theoret-
ical 1/I fit with a constant detector limit according to (9),
with the dark conductivity neglected. The fit agrees well
with the experimental data. The intensity used in the figure
is the sum of the two writing beam intensities, which are
individually obtained by measuring the power and the full-
width at half-maximum (FWHM) of the spatial profile of each
beam and then corrected from the Fresnel reflection on the
semiconductor–air interface. No Fabry–Pérot effects are con-
sidered. A convenient benchmark for the PRQW devices is
a grating response speed in the range of250 kHz for an in-
tensity of10 mW/cm2. However, this speed depends on the
precise proton implant dose for this device, and the speed can
be made faster or slower by selective choice of the implant
during device fabrication.

The hologram response time would depend on the exter-
nal applied electric field through the dependence of (9) in
the absence of hot-electron effects. Increasing the field would

Fig. 4. Hologram response time as a function of applied electric field is plot-
ted as data. Thesolid line is calculated using (9) and thedotted lineis from
the nonlinear transport model including hot electrons [15]

be expected to significantly slow down the response because
larger space-charge fields are needed to screen the applied
field, which takes longer to build up, and also because pho-
tocarriers have large drift lengths at high fields and overshoot
the dark fringes, resulting in ineffectiveness in space-charge
buildup. However, (9) is not valid in the case of transport non-
linearity, but must be modified by the field-dependence of the
electron velocity.

The experimental data of the response time as a func-
tion of the applied electric field are shown in Fig. 4 with
the theoretical curve using the simple quadratic function in
(9), as well as the hot-electron transport calculation in [15].
The experimentally measured response is much faster than
the linear-transport curve, providing evidence in favor of the
nonlinear transport in the device due to the hot electrons.
The reduced mobility of the hot electrons limits the drift
length, and thereby limits fringe overshoot. This is a sig-
nificant side-effect of the hot-electron mechanism that has
important consequences for applications. The devices do not
slow down under high applied fields, but maintain excellent
speed properties.

3.2 Moving gratings

Moving gratings in photorefractive materials have been used
to obtain spectroscopic information about the photorefractive
recording mechanisms [16], as well as to enhance the pho-
torefractive gain [17]. We use the moving gratings expressly
for the former purpose, and are able to extract dynamic infor-
mation pertaining to the formation of space-charge gratings
under hot-electron conditions.

For the moving-grating experiments we performed de-
generate two-wave and four-wave mixing using a CW
Ti:sapphire laser tuned to838.5 nm, with a fringe/grating
spacing of21µm. The experimental setup is as shown in
Fig. 5. This setup although similar in design, is different
from the one that is used for the hologram response time
study that was discussed earlier where the polarization of
one beam was modulated by90◦ using an electro-optic mod-
ulator. Two matched acousto-optic modulators operating at
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Fig. 5. Experimental setup for two-wave and four-wave mixing with
acousto-optic (AO) modulators to introduce a frequency offset between the
two mixing beams

center frequencies of80 MHz controlled the frequency dif-
ference between the two writing beams. The running gratings
are produced by keeping one of the acousto-optic modula-
tors at a fixed frequency (f = 80 MHz) while varying the
frequency of the other modulator,f +∆ f . The electric field
across the photorefractive quantum well was modulated using
a 0.75 V/µm dc field, modulated by a100 Hz sine wave.
The transmitted zero-order beams and the diffracted first-
order signals were detected using silicon photodiodes with
650-nm long-pass filters. The transmitted and diffracted sig-
nals were recorded as a function of time on a digital storage
oscilloscope.

The measured two-wave-mixing gain is given by [15]

γm(E)= 1+ β

1+β
[

4πnmL

λ cosθ
sinφ(E)− αmL

cosθ
cosφ(E)

]
(11)

whereβ is the ratio of the incident beam intensities andαm
and nm are the Fourier components of the absorption and
index gratings that would be produced by a maximum mod-
ulation. The contribution to the two-wave-mixing gain by the
absorption grating is symmetric with respect to the photore-
fractive phase shiftφ, whereas the contribution from the index
grating is asymmetric.

The two-wave mixing, in arbitrary units, is shown in
Fig. 6a as a function of∆ f for both positive and negative
electric-field directions. There is an optimum frequency de-
tuning at which the two-wave mixing reaches a maximum in
the case of positive field, while the gain changes sign at nearly
this same frequency for negative fields. The four-wave mix-
ing, in arbitrary units, is shown in Fig. 6b as a function of
∆ f for both positive and negative electric field and is highly
symmetric with respect to the polarity of the electric field.
This indicates that the device electrical contacts are symmet-
ric. The photorefractive phase shift is obtained by combining
the two-wave-mixing gain measurements with the four-wave-
mixing diffraction efficiencyη, defined as

√
η= π∆nL/ (λ cosθ) , (12)

through

sinφ = 1

2
√
β

γn√
η
, (12a)

Fig. 6a–c. Two-wave mixing, four-wave mixing, and the sine of the pho-
torefractive phase shift as a function of detuning frequency for an electric
field of ±0.75 V/µm. The low-frequency phase shift approachesπ/2 for
E> 0.3 V/µm due to hot-electron effects associated with the Gunn effect

where

γn = γ(+E)−γ(−E)

2
(13)

is defined as only the asymmetric contribution to (11).
The photorefractive phase shift is shown in Fig. 6c as

a function of∆ f for both field polarities. In the case of pos-
itive polarity, the phase shift induced by the lagging gratings
adds constructively with the static hot-electron phase shift. At
an optimum frequency offset∆ f = 20 kHz, the phase shifts
collectively add toπ/2. On the other hand, for negative po-
larity, the lagging phase shift and the hot-electron phase shift
combine destructively and the total phase shift goes through
zero around10 kHz. The total phase shift at low frequency de-
tuning is close toπ/2 for applied fields larger than3 kV/cm,
attributed to the hot-electron effects [4].

The dynamic phase shift that is driven by the lagging
space-charge grating is a function of the illumination in-
tensity, which defines the response rate of the space-charge
grating formation process. We performed an intensity study
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Fig. 7. Two-wave mixing signal, plotted as
∆Iasym=∆I(+)−∆I(−), as a function of de-
tuning frequency for increasing beam intensities.
The applied field is0.75 V/µm and the fringe
spacing is21µm

Fig. 8. Four-wave-mixing diffracted intensity
plotted as a function of detuning frequency
under the same conditions as Fig. 7

of the moving fringes for positive field polarity in which
the hot-electron phase shift adds constructively to the lag-
ging phase shift. Figure 7 shows the asymmetric two-wave-
mixing data as a function of the frequency difference be-
tween the two writing beams for increasing beam intensities.
The intensities of the two mixing beams were maintained
to be approximately equal in all cases. The photorefractive
gain displays a resonant behavior with a peak that coincides
with the detuning at which the output diffraction efficiency
rapidly decreases, shown in Fig. 8 under the same conditions
as in Fig. 7.

The two-wave and four-wave mixing data are combined
through (13) to generate sinφ, which is shown in Fig. 9. The
frequency offset that produces aπ/2 phase shift is an increas-
ing function of the total intensity. The frequency at which
sinφ = 1 is plotted in Fig. 10 as a function of laser inten-

sity. The dependence is fit extremely well by a linear function
of intensity (up to3 mW/cm2 with a roll-off frequency of
70 kHz), which is consistent with the data in Fig. 4, measured
under very different conditions. This data also illustrates that
the hot-electron effect has the same linear-intensity depen-
dence as for linear transport, despite the significantly different
field dependence.

4 Conclusion

We have presented an experimental demonstration of the ef-
fect of frequency detuning on the photorefractive phase shift
in a transverse-geometry photorefractive MQW using mov-
ing gratings. The photorefractive phase shift always achieves
a value ofπ/2 for positive field polarity at an optimum beam
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Fig. 9. Sine of the photorefractive phase shift
as a function of detuning frequency for differ-
ent beam intensities under the same conditions
as Figs. 7–8. Thecurve for the beam inten-
sity of 2.6µW is plotted between the correct
limits. Successive curves have been offset by
sinΦ = 0.5 from preceding curves. The sine of
the photorefractive phase shift has a maximum
for every beam intensity at a particular detun-
ing frequency where there is an optimum lag
between the moving intensity pattern and the
lagging space charge. Thehorizontal dasheson
the y axis on theright denote the zero line for
each curve, and the line at the maximum is
the sinΦ = 1.0 line for that curve. The differ-
ent symbolsstand for different powers as fol-
lows,•−275µW,�−190µW, �−142.8µW,
4−89.5 µW, ◦−56.0µW, �−27.8 µW, �−
16.4µW, ∇−2.6µW

intensity and optimum grating velocity. The cutoff frequency
at which the peak photorefractive gain occurs increases lin-
early with the beam intensities. This linear relationship puts
two parameters under our control, the frequency detuning
and the mixing beam intensities, that help to tailor the value
of the photorefractive phase shift. This may help a num-
ber of applications in opto-electronic devices. For instance,
demonstrations of optical applications include high-speed
image correlators [18], femto-second auto-correlation [19],
time-to-space mapping of femto-second pulses [20], as
well as adaptive beam combiners for laser-based ultrasound
detection [6].

Fig. 10. The detuning frequency cutoff as a function of mixing beam inten-
sity. The applied field is0.75 V/µm and the fringe spacing is21µm
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