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Abstract. Steady-state and time-resolved off-Bragg-angle
diffraction experiments are used to determine the structure
and the dynamics of photorefractive gratings induced by
interband photoexcitation. In potassium niobate, we iden-
tify in such gratings basically a two-layer structure. Close
to the surface, we find a space-charge electric field gener-
ated by a charge modulation stored directly in the bands.
This grating component is typically50µm thick, the am-
plitude of the refractive index modulation is larger than
10−4, and the response time is a fewµs for resonant inten-
sities of100 mW cm−2. This component is also robust under
non-resonant illumination. Deeper in the crystal, a second
holographic layer extends over a few hundreds ofµm, its am-
plitude is smaller, and its slower response time is in the ms
range. The mutual phase shift between the grating compo-
nents is also determined.

PACS: 42.40.Lx; 42.65.Hw; 77.84.Dy

Off-Bragg-angle light diffraction is an efficient tool to in-
vestigate the structure of holographic gratings for the de-
termination of their best operation conditions. This tech-
nique consists of diffraction experiments in geometries where
the Bragg condition, or momentum conservation, is not ex-
actly fulfilled but, due to the finite spatial extent of the
grating, a diffracted signal is still detectable [1]. In several
works, the diffraction properties of off-Bragg conditions have
been used successfully for example to evaluate the cross-
talk noise, wavelength, and angular selectivity of multiplexed
holographic gratings whose structure (amplitude, thickness,
phase,. . . ) was known a priori [2–5]. In the present work,
we show how time-resolved off-Bragg-angle diffraction can
be very useful to investigate the strength profile as well as
the dynamic response of holographic gratings. Due to their
interesting and peculiar properties, our attention is focused
on phase gratings created in electro-optic, photoconductive
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crystals by means of direct interband photoexcitation [6–9].
To our knowledge, this is the first systematic study of the
temporal and the spatial holographic structure of interband
photorefractive gratings in ferroelectric crystals.

Photorefractive gratings induced by direct band-to-band
photoexcitations have shown several favorable properties.
As compared with the conventional photorefractive gratings,
they are faster, stronger, thinner, and very robust under non-
resonant illumination [6–8, 10]. Experimentally, response
times of a fewµs with index changes larger than10−4

have been already demonstrated even for intensities of few
mWcm−2 in gratings with thickness of the order of100µm.
These characteristics make the interband gratings well suited
for example for high-resolution, high-speed, and low-power
consumption applications for spatial light modulators or op-
tical correlators [10], and for waveguide structures [9] or
dynamic reconfigurable waveguide networks [11], as well as
for material characterization [8, 12].

In a first theoretical part, we summarize the equations
governing the photorefractive processes. To point out the pe-
culiar characteristics of the interband effects, we compare the
solutions for this case with the responses obtained in conven-
tional approach. Based on the steady-state and the dynamics
of the interband space-charge electric field and its intensity
dependence, we propose a first model used to describe the
space and time structure of interband photorefractive grat-
ings. In the following experimental part, we present the holo-
graphic measurements performed in potassium niobate. Ac-
cording to our model we finally derive and discuss the main
parameters required by the description of the interband photo-
refractive gratings.

1 Interband vs. conventional photorefraction

The photorefractive effect is a process in which a nonuni-
form spatial illumination induces an inhomogeneous charge
distribution. The latter produces a space-charge electric
field which, through the linear electro-optic effect, gener-
ates a modulation of the refractive indices of the medium.
That is a phase grating. Withconventionalphotorefraction we
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refer to the case where the charge migration is assisted by
the absorption of photons with energy smaller than the mate-
rial energy band gap [13] as schematically shown in Fig. 1a.
There, the charge carriers are photoexcited into one of the
bands from donors or acceptors levels lying in the band gap.
After diffusion, drift, or photogalvanic effect they recombine
into the acceptors or donors levels.Interbandphotorefraction,
in contrast, relies on direct band-to-band charge photoexci-
tations induced by the absorption of photons whose energy
exceeds the energy gap (Fig. 1b).

In both cases, the charge transport processes are de-
scribed by a similar band-conduction model. Here, we con-
sider a crystal with a single impurity level acting alternately
as donor and acceptor. Under the assumption that the mate-
rial is not dichroic [14], the charge distribution which leads to
a space-charge electric field can be determined by the follow-
ing system of equations:

∂n

∂t
= gI+seI(ND−N+D )−γdirn p−γenN+D

+ 1

e
∇Je , (1a)

∂p

∂t
= gI+shIN+D −γdirn p−γhp(ND−N+D )

− 1

e
∇Jh , (1b)

∂N+D
∂t
= seI(ND−N+D )−γenN+D +γhp(ND−N+D )

−shIN+D , (1c)

Je= en
↔
µeE+kBT

↔
µe∇n , (1d)

Jh= ep
↔
µhE−kBT

↔
µh∇ p , (1e)

∇(ε0
↔
ε E)= e(N+D + p−n−NA) . (1f)

Here,n and p are the free or quasi-free [7] electron and hole
concentrations in the conduction and in the valence band,
ND and N+D are the concentrations of donors and ionized
donors, andNA is the concentration of ionized donors in
the dark.Je and Jh are the electron and hole current dens-
ity vectors,E is the total electric field in the crystal, andI
is the light intensity. The band-to-band photoexcitation con-
stantg≡ αdir/hν is defined as the absorption constantαdir in
an impurity-free crystal divided by the corresponding photon
energyhν, γdir is the band-to-band recombination constant.
Similarly, we have the photoionisation constantse, sh and the
recombination constantsγe, γh for electrons and holes, re-

e- e-

h+
a b
Fig. 1a,b.Schematic band-conduction models for conventional single-level,
singlecharge carrier, photorefraction (a) and for interband photorefrac-
tion (b)

spectively, for transitions from and to the traps. The electron
and the hole mobility tensors are denoted by

↔
µe and

↔
µh, ε0

is the vacuum permittivity and
↔
ε the effective [15] dielectric

permittivity tensor,e is the unit charge,kB is the Boltzmann
constant, andT is the absolute temperature. In this approach
we neglect thermal charge excitation and we do not consider
contributions to the charge transport due to photogalvanic
currents.

The conventional photorefractive space-charge electric
field can determined from (1a)–(1f) by settingg= γdir = sh=
γh = 0, which corresponds to the well-known single-level,
single-charge-carrier species band-conduction model [13,
16]. For brevity we report here only the steady-state value
of the photoconductivityσ = en0µe and the dynamics of the
space-charge fieldEsc. The spatial average of the electron
density in the conduction band at steady-state under an illu-
minationI0 converges to

n0= seI0

γe

(
ND−NA

NA

)
, (2)

while the space-charge field, after switching on a sinusoidal
spatial light distribution with small modulation depthm and
with grating wavevectorK , evolves as

Esc=−im
Eq(ED− iE0)

Eq+ ED− iE0

(
1−eΓt) , (3)

where the complex exponential time rate is

Γ =− σ

εeffε0

×
[
ER(ED+ ER)(ED+ Eq)+ E2

0

]+ i
[
E0ER(Eq− ER)

]
Eq
[
(ED+ ER)2+ E2

0

] .

(4)

Besides the external electric fieldE0, we have the diffusion,
the trap-limited, and the recombination fields

ED ≡ kBT

e
K , Eq≡ e

εeffε0K
Neff , ER≡ γeNA

µeK
, (5)

where the effective trap density is given by

Neff ≡ NA(ND−NA)

ND
. (6)

The decay under homogeneous illumination follows a single
exponential function with the same characteristic time rateΓ .

On the other hand, in the interband case the direct band-
to-band transitions play the main role because of the strong
resonant absorption. In fact, it has already been demonstrated
theoretically and experimentally that optically induced inter-
band effects can easily dominate over the impurity-to-band
transitions [6–8, 10] so that for high enough intensities the
crystal can be considered as trap-free. Equations (1a)–(1f) can
be then simplified by settingse= sh= γe= γh= 0. At steady-
state the spatial average of the charge concentration in the
bands is

n0= p0=
√

gI0/γdir . (7)
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In contrast to the conventional one-level, one-carrier model
where the charge density grows linearly with the light in-
tensity (see (2)), under interband illumination the growth is
proportional to the square root as a direct consequence of
the interband excitation and recombination processes. After
switching on a modulated intensity we then obtain the evolu-
tion of the amplitude of the spatially modulated space-charge
field

Esc(t)=−im A

{
1− 1

2

[
(1− B/C)eΓ1t+ (1+ B/C)eΓ2t

]}
,

(8)

where

A≡ Eqf
[
ED(ERe− ERh)+ iE0(ERe+ ERh)

]
(ED+ ERe+ ERh)(ED+2Eqf)+ iE0(ERe− ERh)+ E2

0

,

(9a)
B≡ (ED+ Eqf)(ERe+ ERh)+ iE0(ERe− ERh)+2EReERh ,

(9b)

C≡ {[(ED+ Eqf)(ERe− ERh)− iE0(ERe+ ERh)
]2

+4EReERh(Eqf− ERe)(Eqf− ERh)
}1/2

. (9c)

The exponential time ratesΓ1,2 are given by

Γ1,2≡−
√
γdirgI0

2EReERh
(B∓C) . (10)

In analogy, we define the free-carrier-limited, the electron and
hole recombination fields as

Eqf ≡ e

εε0K

√
gI0
γdir

, ERe/Rh≡ 1

Kµe/h

√
gI0
γdir

. (11)

With these definitions it can be shown that Re{Γ1,2}< 0. The
evolution during the decay is given by the square bracket
in (8).

Without going into details, we point out the main dif-
ferences between the conventional and the interband space-
charge field. Equation (8) demonstrates that a space-charge
electric field can be produced by spatially modulating the free
hole and the free electron density distributions alone, that
is even in the absence of deep trapping sites. Such gratings
are also robust under non-resonant illumination, i.e. they are
practically not affected by light with wavelength longer than
the fundamental absorption edge [7, 8, 10].

Further, it can be shown that whenED� ED or ED�
ERe/Rh the amplitude ofEsc increases with the intensity in

Fig. 2. Top view (left) and side view (right) of the model
of the two-layer structure of the interband photorefractive
gratings. Close to the surface, the space-charge modula-
tion is due to free charges in the bands with refractive
index change amplitude∆nb and thicknessdb. The deeper
component is due to charges in deep traps and has am-
plitude∆nt and thicknessdt. The two grating components
might be mutually phase shifted byΦ. Thegray curverep-
resents the light intensity:I0 is the incident intensity,Ic is
the critical intensity dividing the linear and the square-root
intensity regime of the photoconductivity,Id is the dark
intensity

contrast to conventional photorefraction whereEsc is inten-
sity independent and limited byNeff. Depending on the rela-
tive efficiency of the photoexcitation and the recombination
processes in (7), the intensity dependence may produce very
large densities of free charges which lead to larger amplitudes
of Esc. Larger charge densities increase also the photocon-
ductivity which contributes to the fast response of interband
effects. A square-root decrease of the characteristic times for
an increasing intensity is expected from (10).

Due to the large absorption the interband gratings cannot
be used for two of the most popular applications of the pho-
torefractive effect; coherent beam amplification, and phase
conjugation [13]. Nevertheless, the absorption can be used to
confine the photoexcitation processes over an extent of the
order of the light penetration depth below the illuminated sur-
face, so that thinner gratings can be recorded. An adjustment
of the grating thickness can be achieved by tuning the illumi-
nating wavelength inside the fundamental absorption band.

2 Grating profile

Compared with the well-behaved conventional gratings, in-
terband holograms present new features in both temporal
and spatial grating evolution. We propose here a first model
used to illustrate the main characteristics of gratings induced
by interband photoexcitation. As we shall elaborate below,
our approach consists of a two-layer grating whose compo-
nents have different amplitudes, thicknesses, response times,
and phases as schematically shown in Fig. 2. Mathematically,
the change of the refractive index∆n produced by switch-
ing on a spatial sinusoidal intensity modulation with grating
wavevectorK is described by

∆n(t, y)={
∆nb(1−e−t/τb) cos(Kz) 0< y< db

∆nt(1−e−t/τt) cos(Kz+Φ) db< y< db+dt ,
(12)

wheredb and dt are the thicknesses of the two layers. The
amplitudes are assumed to converge asymptotically to the
steady-state values with the characteristics timesτb,t.Φ is the
mutual phase shift between the two grating components.

2.1 Interband photoconductivity

The typical intensity dependence of the interband photocon-
ductivity [7, 8] is shown in Fig. 3. There, we recognize two
distinct regimes: a linear and a square-root dependence for
low and higher intensities, respectively. In the high-intensity
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Fig. 3. Intensity dependence of the photocurrent under interband photo-
excitation in nominally pureKNbO3. Sample thickness:47µm, light
wavelength:λ= 364 nm, electric field along the spontaneous polarization:
E= 250 V cm−1. The full lines represent the linear and the square-root
intensity dependence, respectively

regime, the direct band-to-band transitions dominate over
the transition channels involving the deep traps [7, 8]. The
square-root dependence of the photoconductivityσ appears
as in a trap-free crystal in agreement with (7). The influences
of the trapping sites become evident only at lower intensities
when the band-to-trap transitions dominate the charge recom-
bination processes. Here,σ grows linearly with the intensity
as can be shown by solving numerically [7, 9] the whole sys-
tem of equations (1a)–(1f). We define the transition intensity
Ic between the two regimes as shown in Fig. 3.

Note that a square-root dependence may occur also in case
of quadratic recombination between the bands and the traps.
However, this contribution can be safely neglected especially
when the trap concentration is small as in the case of nomi-
nally pure crystals [7–9].

2.2 Charge modulation: bands vs. deep traps

The intensity dependence ofσ suggests a variation of the
strength of the photorefractive grating over the medium depth
due to the strong resonant absorption. Close to the surface,
i.e. in a high intensity regime, we expectEsc to be described
by (8), i.e. produced by a band charge-density modulation as
in a trap-free crystal. In the following, we will refer to this
grating component as the band grating. In fact for domin-
ant interband transitions, the deep traps are practically com-
pletely filled or emptied so that no appreciable charge modu-
lation is stored in such levels [7].

Deeper below the crystal surface, in the low-intensity
regime, the charge modulation in the traps dominates so that
a space-charge field with characteristics similar to the conven-
tional photorefractive fields is expected. This is what we call
the trap grating.

Because two kinds of gratings with rather distinct char-
acteristics are involved, it is reasonable to model the inter-
band grating morphology by the two-layer structure proposed
above. The two grating components are spatially separated
with distinct amplitudes, thicknesses, and response times. Of
course, this sharp distinction is oversimplified, in reality the
two parts smoothly fade one into the other. However, we will
show below that even with this simplification, the experimen-
tal observations can be described in a very satisfactory way.

2.3 Amplitudes of the band and the trap gratings

As long asED� Eqf, ERe/Rh, the amplitude of the pure in-
terbandEsc increases with the square root of the absorbed
intensity as described by (8). Thanks to the efficient photoex-
citation processes,Esc can easily become stronger than in the
traps.

In the deeper grating layer,Esc undergoes the limitations
imposed byNeff similar to the conventional photorefraction
(see (3)). We then expect the amplitude of the space-charge
field to be roughly intensity independent. The amplitude pro-
file of the charge modulation in this layer does not vary with
the incident intensity as long as the incident intensity is higher
than the dark intensityId, i.e. the intensity needed to produce
a photoconductivityσ = σd.

The amplitude profile of both gratings is chosen to be of
rectangular shape as shown by (12) and Fig. 2.

2.4 Thicknesses of the band and the trap gratings

The pure interband grating extends until the transition depth
where the intensity is of the order ofIc. Since the intensity
in the crystal decreases exponentially, according to our model
we expect the transition point to move deeper in the sample
logarithmically with the incident intensityI0

db= 1

α
ln(I0/Ic) . (13)

Beyond this point, the charge modulation in the traps dom-
inates and penetrates into the crystal as long as the photo-
conductivity stays larger than the dark conductivityσd of the
material:

dt = 1

α
ln(I0/Id)−db= 1

α
ln(Ic/Id) . (14)

In fact, beyonddt thermal excitation from the traps, which we
neglect in our model, prevents any charge modulation being
generated.

Like its amplitude, also the thickness of the trap grating
does not depend on the illuminating intensity provided that
I0 > Ic. The only influence of the intensity is to approach the
trap grating close to the surface or to push it deeper inside the
crystal.

2.5 Response times of the band and the trap gratings

Below the crystal surface, we expect a fast grating response of
the order of the photoconductivity rise time, i.e. in theµstime
scale [7, 8]. This time constant is expected to be inversely
proportional to the square root of the intensity as predicted
by (10).

Deeper in the crystal, the temporal evolution of the phase
grating should be slower due to the reduced intensity and due
to the strong influences of the transition involving the traps.
The response time of the trap grating should be in the ms
range as in conventional photorefractive experiments.

The dynamics of the grating amplitudes is simulated in
(12) through a single time constant which describes the expo-
nential responses of each component. Actually, for the band
grating (8) demonstrates that the temporal evolution consists
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of more elaborated behavior which, for the sake of simplicity,
is empirically approximated by a single exponential function.
Because of the intensity dependence of the response times,
τb andτt have to be interpreted as average time constants of
each grating layer. The thicknesses have been assumed to be
time independent.

2.6 Phase shift between the band and the trap gratings

The sign of the majority charge carrier assumes a funda-
mental importance for the determination of the phase shift
between the space-charge field and the intensity light pat-
tern [13]. Since it cannot be excluded that the sign of the
majority charge carriers changes with the intensity, the pos-
sibility that the two grating components are mutually phase
shifted has to be taken into account.

In the case of pure diffusive charge transport, the mutual
phase shift between the modulated electric fields in the two
layers is either 0 orπ. The effect of such a phase shift is ex-
tremely important for the diffraction strength of the interband
grating. If the two components are in phase, under the exact
Bragg angle the light diffracted by the two layers interferes
constructively, whereas if the phase shift isπ the interfer-
ence is destructive, reducing the diffraction efficiency of the
system.

3 Off-Bragg-angle diffraction experiments

The experiments are performed in samples of nominally pure,
single-domain potassium niobate (KNbO3) crystals. This ma-
terial has been chosen because of its excellent photorefractive
properties in the interband regime [7–10].KNbO3 is a ferro-
electric material with perovskite structure. At room tempera-
ture, its phase structure is orthorhombic (point groupmm2)
with the crystallographicb axis in the pseudo-cubic [010] di-
rection, while thea and c axes lie along the pseudo-cubic
[101] and [̄101] directions. The spontaneous polarizationPS
is oriented along thec axis and the energy band-gap amounts
to Egap≈ 3.3 eVat room temperature [17].

The investigation of the interband photorefractive grat-
ings is performed through Bragg diffraction experiments in
a conventional non-degenerate four-wave-mixing configura-
tion as shown in Fig. 4. The holographic grating is recorded
by two interfering ultraviolets-polarized laser beams atλ=
364 nm (hν = 3.4 eV) while the read-out process is per-
formed by the diffraction of a third probe beam atλ =
633 nm. The p-polarized read-out beam has a photon en-
ergy (hν = 2.0 eV) smaller than the energy gap in order to
avoid influences on the band-to-band processes. The rele-
vant optical absorption at the ultraviolet wavelength [7, 17] is
αa≈ αc= 540 cm−1 whereas in the visible it isα= 0.1 cm−1.

The strength of the space-charge electric field is deter-
mined by measuring the intensity of the diffracted probe
signal [18]. The light diffracted by this layered structure is in-
terpreted as the coherent sum of the waves diffracted by each
grating component [18, 19] as shown in Fig. 4.

z

y

KNbO3 b

c

a

ϑB

∆ϑB

Writing beams

λ = 364 nm

Read-out beam
λ = 633 nm

Diffracted waves

Transmitted beam

Fig. 4. Schematic set-up of a non-degenerate four-wave-mixing configu-
ration. Two interfering beams record the interband grating while a third
non-resonant beam incident close to the Bragg angleϑB is diffracted at the
two layers of the hologram

According to (12) and noting thatε = n2, during the grat-
ing build-up, the amplitude of the output scattered wave is

E(t, kd)∝
∫

∆ε(t, r)eiqrdr

∝ δ(qx)δ(K−qz)

×
[
∆εb(1−e−t/τb)

sin(qydb/2)

qy
eiqydb/2

+∆εt(1−e−t/τt)
sin(qydt/2)

qy
eiqydt/2

ei(qydb−Φ)
]
, (15)

wherekd and ki are the wavevectors of the diffracted and
the incident read-out wave, andq ≡ kd− ki is the momen-
tum mismatching. Thus the diffracted intensity isId(kd) ∝
E(kd)E∗(kd).

3.1 Steady-state experiments

From the angular selectivity of the Bragg condition, the thick-
ness and the amplitude of the diffraction grating can be de-
termined [18]. The following experiments are performed in
2-mm- and47-µm-thick pure samples at a grating period of
0.5µm by scanning the incident angle of the probe beam
around the calculated exact Bragg angle. In order to observe
the interband effects, the total ultraviolet intensity is kept con-
stant to a value of150 mW cm−2, well above the threshold
intensity Ic.

In the47-µm-thick samples an unusual double-peaked an-
gular selectivity of the Bragg condition appears as can be
clearly seen in Fig. 5. The maximum of the diffraction effi-
ciency is measured for an incident angle different from the ex-
act Bragg angle. The curve is qualitatively equivalent for grat-
ing periods up to5µm and also independent of the diffraction
configuration (isotropic or anisotropic [13]). Because of the
small diffraction efficiency and the reduced grating thickness,
this peculiar shape can be only explained by a diffraction grat-
ing consisting of at least twodistinct components placed at
two distinctregions in the crystal. The symmetry of the curve
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Fig. 5. Measured angular selectivity of the diffraction efficiency for
isotropic Bragg diffraction in a47-µm-thin (•) and in a2-mm-thick (3)
sample. In both samplesΛg = 0.5µm along thec axis. The total writing
intensity atλ= 364 nmis 150 mW cm−2 with a modulation depthm = 0.2.
The full lines are curves calculated according to (15)

indicates also that the two grating components must be mu-
tually phase shifted by≈ π. This implies that at a certain
depth, and thus at a given intensity, the majority charge carri-
ers change the sign. With this kind of diffraction experiment,
however, it is not possible to identify the absolute value of
the majority carriers. An answer will be given below by two-
wave-mixing experiments.

In the thick samples (Fig. 5), the evidence about the grat-
ing structure is masked because in this case the diffraction
process is dominated by the trap grating. The half width at
half maximum (HWHM) of the sharper angular selectivity in-
dicates a grating thicknessdtot ≈ λ/HWHM ≈ 160–180µm.
Therefore, it can be concluded that in the thin sample the
trap grating is always limited by the crystal size. So, if in
the thin sample the diffraction strengths of the two grating
components are comparable, in the thick sample the deeper
layer dominates and prevents resolving of the two compo-
nents. This is also supported by the stronger diffraction effi-
ciency measured in the thick sample. The disappearing of the
double-peak curve might also be attributed to a zero phase
shift between the grating components. However, the dynam-
ics of the diffraction efficiency will demonstrate that this is
not the case in these experiments.

3.1.1 Intensity dependence.The angular selectivity of the
Bragg condition is also sensitive to the intensity as shown
in Fig. 6. By varying the total writing intensity from 50 to
300 mW cm−2 in the47-µm-thick samples, we increase am-
plitude and thickness of the band grating (see (8) and (13))
and the trap component is squeezed to the back of the crystal.

This becomes evident when looking at the parametersdb,
dt, and (∆εb/∆εt) obtained by fitting the measurements ac-
cording to (15) at steady-state (t→∞). In fact, the results
obtained in thin and thick samples are reported in Table 1.
The change of relative strength and thicknesses influences the
degree of competition between theπ-shifted components and
modifies the angular selectivity of the Bragg condition.

The thicknesses of the two grating components listed in
Table 1 are in good agreement with the values estimated
from simple photoconductivity arguments. In our samples

Fig. 6. Measured angular selectivity of the diffraction efficiency for
isotropic Bragg diffraction in a47-µm-thin sample for different ultravio-
let writing intensities atλ= 364 nm. Λg = 0.5µm along thec axis and the
modulation depthm= 0.2. The full lines are curves calculated according
to (15)

Table 1. Intensity dependence of the thickness at steady state of the band
and the trap grating components and the relative amplitude obtained in
a 47-µm-thin and in a thick sample. The values are obtained by fitting the
curves shown in Figs. 5 and 6 according to (15)

IUV(mW cm−2) db(µm) dt(µm) ∆nb(∆nt)

Thin crystal
50 13± 1 34∓ 1 4.2± 0.8

100 15± 1 32∓ 1 6.3± 0.8
150 18± 1 29∓ 1 7.1± 0.8
280 21± 2 26∓ 2 9.0± 0.8

Thick crystal
100 16± 3 170± 30 6.7± 1.1
150 20± 3 190± 30 7.4± 1.1

Ic = 1−10 mW cm−2 so that for an incident intensity of
150 mW cm−2, according to (13) the pure interband grat-
ing should extend overdb ≈ 50µm below the surface. Fur-
ther, in pureKNbO3 the typical value of the dark conduc-
tivity [20] is of the order of 10−12 Ω−1 cm−1 which cor-
responds toId ≈ 0.05 mW cm−2. These values, according
to (14), yield an estimated thickness of the deeper layer of
dt ≈ 150–200µm.

As shown in Fig. 7, the thickness of the band grating ap-
preciably increases with the incident intensity, in satisfactory
agreement with the logarithmic behavior predicted by (13).
On the other hand, the thickness of the trap grating stays con-
stant when it is not limited by the crystal size, in agreement
with (14).

The square-root dependence of the amplitude of the
band grating component is also found in good agreement
with the experimental results shown in Fig. 7. By com-
paring theory and experiments, we assumed the ampli-
tude of the trap grating component to be primarily in-
tensity independent as experimentally confirmed by Bragg
diffraction measurements performed in the transverse geom-
etry[7].

No influence is noticed due to the intensity of the read-out
laser beam when the intensity is increased up to2.5 W cm−2.
This confirms a remarkable robustness of the ultraviolet
induced grating with respect to illumination at this wave-
length [7].
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Fig. 7. Intensity dependence of the relative amplitude∆nb/∆nt of the band
and the trap grating components (◦) in a thin sample fitted with a square-
root function. In the same plot the intensity dependence of the thickness of
the fast grating component (•) is compared with a theoretical logarithmic
dependence

3.2 Time-resolved experiments

The diffraction experiments are performed in the thin samples
with the identical configurations as before. The two writing
beams are switched on and off by an acousto-optic deflec-
tor with 1µs response time. The total ultraviolet intensity is
chosen to be150 mW cm−2 in order to observe the strongest
competition between the two grating components.

3.2.1 Angular dependence.In all crystals, we recognize the
presence of at least two distinct response times: A fast one
in the µs time scale and a slower one in thems region.
The two regimes are associated with the rise and to a more
or less pronounced relaxation of the diffraction efficiency.
This kind of dynamics is typical of competing effects such
as electron–hole competition [21–23] or electron–ion com-
pensation [24–27]. However, these processes would lead to
a scaling invariance of the diffraction efficiency as a function
of the angular mismatching. This is clearly contradicted by
the measurements as shown in Fig. 8. The lack of scaling in-
variance is therefore an additional indication that the grating
consists of at least two distinct entities separated in space so
that the effects mentioned above can be excluded.

According to our model, the angular dependence of the
signal dynamics is explained by simple geometric reasons im-
posed by the grating structure. A variation of the incident
angle of the read-out beam introduces a phase shift between
the two waves diffracted at each grating layer as illustrated in
Fig. 4 so that their overlapping leads to a more or less pro-
nounced degree of constructive interference.

The measured dynamics of Fig. 8 is fitted according to
(15) with the same parameter set consisting of thickness, am-
plitude, and response time of each grating component. Only
the incident angle is varied. For the band grating here we
obtaineddb = 16±1µm whereas the trap grating extends
over the remainingdt = 31∓1µm. The relative amplitude
∆nb/∆nt is found to be6.2±1.1 in agreement with the re-
sults obtained at steady state and reported in Table 1. For all
angular mismatchings, we obtained almost the same charac-
teristic times. For this writing intensity of150 mW cm−2, the
fast component associated with the band grating is37±3µs
and the slow response time of the trap grating is found to be
320±40µs.
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Fig. 8. Dynamics of the build-up of the diffraction efficiency for isotropic
Bragg diffraction in a thin sample by varying the angle of incidence from
position 1 to 7.Λg = 0.5µm along thec axis, and the total writing inten-
sity is 150 mW cm−2 with a modulation depthm= 0.2. Thegray linesare
calculated according to (15)

The response times, the relative amplitudes, and the thick-
nesses of the grating components obtained from the fitting
procedure described above have been used to simulate the dy-
namics of the angular rocking curve for Bragg diffraction. In
Fig. 9 we see that shortly after the start of the process, the an-
gular selectivity of the Bragg condition grows as a sinc2(x)
function typical of a single homogeneous diffraction grating
that grows in amplitude. The response of the band grating is
followed by the appearance of the trap grating which mani-
fests itself by the deformation of the sinc2(x) function to the
double-peaked curve at the steady-state. In spite of the simpli-
fied model, the numerical simulations agree surprisingly well
with the measured curves of Fig. 8.

3.2.2 Ultraviolet intensity dependence.The intensity depen-
dence of the response times of each grating component is
measured in a thin sample for a fixed incident angle of the
read-out beam very close to the exact Bragg angle (∆ϑ <
2 mrad). As can be seen in Fig. 10, the dynamics of the
diffracted signal clearly shows an enhancement of the com-
pensation effects between the two gratings with decreasing
intensity.

For an intensity of0.6 mW cm−2 the diffracted signal dis-
appears at steady state indicating that the diffraction strengths
of the two grating components exactly balance each other.
Below such intensity, the slow grating becomes stronger than
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Fig. 9. Simulated time evolution of the angular selectivity of the Bragg con-
dition in a 47-µm-thin sample. The grating parameters correspond to the
values reported in Table 1 obtained by fitting the measured data for a total
writing intensity of150 mWcm−2

its antagonist. The diffracted signal goes through a zero-
crossing point before rising again due to the dominant trap
grating. This compensation effect is shown even better dur-
ing the dark decay of the signal where the fast decay of one
grating reveals the presence of the other one through a sudden
increase of the diffracted signal.
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Fig. 10. Intensity dependence of the dynamics of the diffraction efficiency
during the build-up (left) and the dark decay (right) for isotropic Bragg
diffraction in a thin sample for a fixed angle of incidence very close to the
exact Bragg angle (∆ϑ < 2 mrad). The gray linesare calculated according
to (15)

In Fig. 10, the dynamics of the diffracted signal is fitted
according to (15). The thicknesses of the layers and the inci-
dent angle (qy) are fixed. Note that for each incident intensity,
both build-up and dark decay are fitted together with the same
amplitudes and thicknesses but independent time constants.

The intensity dependence of the fast response time deter-
mined during the signal build-up is plotted in Fig. 11. In the
intensity region where the quadratic recombination processes
dominate, the response time decreases with the square root of
the intensity as theoretically predicted by (10). The deviations
of the data points from the square-root dependence for lower
intensities are to be attributed to the influence of the traps
which tend to slow down the build-up of the space-charge
field.

The fast-time component of the dark decay is of the same
order of the corresponding one determined during the signal
build-up. On the other hand, the slow component of the dark
decay is at least two orders of magnitude slower than the slow
build-up response time. This is explained by considering that
the dark decay of the trap grating relies on the conductivity
generated by thermal charge excitation from the deep traps.

3.2.3 Influence of non-resonant illumination.It is known that
a non-resonant illumination has virtually no influence on the
pure interband photorefractive effect [7, 8, 10]. In contrast,
the diffraction strength of the trap grating is expected to be
reduced by the presence of an additional non-resonant illu-
mination. The experiment is performed in the same configu-
ration as before. The ultraviolet intensity is1 mW cm−2 for
which at steady state the compensation between the two com-
peting gratings is almost complete. The homogeneous visible
illumination atλ= 514 nmis≈ 15 W cm−2.

The dynamics of the diffracted intensity with and without
the additional visible illumination can be compared in Fig. 12.
The curves clearly show that the illumination in the visible in-
creases the diffraction efficiency by drastically reducing the
compensation effects. This result confirms that the trapping
sites participate actively in the interband photorefractive pro-
cess and are associated with the slow trap component. We

Fig. 11. Intensity dependence of response time of the fast grating compon-
ent (◦) in a thin sample compared to a theoretical power law dependence
I−β (β = 0.5)
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Fig. 12. Build-up and dark decay of the diffraction efficiency for isotropic
Bragg diffraction in a thin sample for a fixed angle of incidence very close
to the exact Bragg angle. Thefull line shows the diffraction efficiency when
an additional homogeneous illumination of≈ 15 W cm−2 at λ= 514 nm
is superimposed to the ultraviolet writing intensity of0.6 mW cm−2. The
dotted lineshows the dynamics without any additional light

also observe that the response times are not appreciably modi-
fied by the presence of an additional visible illumination.

3.3 Relative phase shift between the band and the trap
gratings

We have already pointed out that the interband grating com-
ponents may be mutually phase shifted. In support of this
statement we have three experimental evidences: the angular
dependence of the Bragg selectivity, the compensation effects
seen during the dynamics, and the intensity dependence of
the sign of the coupling constant in two-wave-mixing experi-
ments, which we are going to discuss now. All these three ef-
fects together cannot be explained without assuming a phase
shift.

The two-wave-mixing experiments [13] have been per-
formed in the same geometry shown in Fig. 4 by simply
removing the probe beam. As shown in Fig. 13, where the
two-wave-mixing exponential gain is plotted as a function
of the intensity, aroundIc ≈ 1 mW cm−2 the coupling con-
stant changes sign. This means that the direction of the energy
transfer between signal and pump is reversed. The energy
transfer direction in the two-wave-mixing process depends on
the phase between the refractive index modulation and the il-
luminating pattern [13]. In our case the charge transport is
purely diffusive and the above change of sign of the coupling
constant implies a jump in phase byπ.

From the direction of the spontaneous polarization of the
sample, the position of the two beams, and the sign of the
coupling constant we find that for high intensities in this
pure sample the interband photoconductivity is dominated
by holes, in agreement with all previous measurements [7].
Therefore we conclude that for low intensities where the grat-
ing in the traps dominates the coupling process, the electrons
are the majority carriers.

Note that for the measurements in Fig. 13, within the ex-
perimental accuracy, the same absolute values are obtained by
exchanging the role of signal and pump. This proves that for
writing intensities as high as1 W cm−2, the presence of ab-
sorption gratings can be neglected. Furthermore, diffraction
experiments performed in a non-electro-optic configuration
gave no detectable signal, confirming the latter conclusion.

We would like to remark that besides the case of aπ
phase-shift described above, we have also observed gratings

Fig. 13. Intensity dependence of the coupling gain for grating periodsΛg=
1µm and5µm with s- and p-polarized light beams in a thin sample. The
wavelength isλ= 364 nmwith a modulation depthm= 0.11. Thecurves
are calculated according to (8) describing a trap-free crystal

whose two components are in phase, for example in iron-
doped, ion-implantedKNbO3 waveguides [28]. This means
that in this crystal the photoconductivity results are domi-
nated by the same charge carrier type for all intensity regimes.

4 Conclusions

Time-resolved off-Bragg-angle light diffraction experiments
have been used to characterize interband photorefractive grat-
ings in crystals ofKNbO3. The steady-state values and the
dynamics of the diffraction efficiency allowed us to unam-
biguously identify a double-layered structure of the gratings.
The two layers are related to the two distinct intensity regimes
occurring under resonant illumination. We showed with the
help of an interband-conduction model that for high inten-
sities, the charge transitions which lead to the space-charge
field are dominated by the direct band-to-band photoexcita-
tion and recombination processes, whereas for low intensi-
ties the band-to-trap transitions play a major role. Therefore,
close to the surface, the high-intensity light pattern records
a phase grating through a band charge modulation, while
deeper in the sample a phase grating is stored in deep traps.
Amplitude, thickness, and response time of the grating com-
ponents are found in very good agreement with the theoretical
model.
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