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Abstract. The nonlinear magneto-optical Kerr-effect (NO-
LIMOKE) is determined for freestandingFemonolayers with
several in-plane structures from first principles. Based on the
theory of nonlinear magneto-optics by Hübner and Benne-
mann [1] we calculate the nonlinear susceptibilities of the
monolayers using the ab initio FLAPW-method WIEN95
with the additional implementation of spin–orbit coupling
and the calculation of the dipole transition matrix elements
appropriate for freestanding monolayers. We present results
for the spectral dependence of the nonlinear susceptibility
tensor elements and the resulting intensities and Kerr angles.
Special emphasis is put on the effects of structural changes,
such as the variation of the lattice constant and different sur-
face orientations. The influence of spin–orbit coupling on
the tensor elements for different magnetization directions is
presented. Also, the azimuthal dependence of the intensities
generated by several low-index surfaces is given, showing the
pronounced sensitivity of second-harmonic generation to lat-
eral structural changes and magnetic properties even in the
monolayer range.

PACS: 75.30.Pd; 78.20.Ls; 73.20.At; 75.50.Bb

The nonlinear magneto-optical Kerr effect (NOLIMOKE)
combines the surface and interface sensitivity of second-
harmonic generation (SHG) with the sensitivity to magnetic
ordering, which is much stronger here than in linear op-
tics [2, 3]. The existence and the detectability of the nonlin-
ear magneto-optical effect was shown independently in 1989
by Pan, Wei and Shen [4] and Hübner and Bennemann [1].
Whereas the former work was based on a group-theoretical
classification of the nonlinear susceptibility tensorχ(2)ijk , the
latter used an electronic structure calculation to predict the
nonlinear Kerr effect.

During recent years significant improvements have been
made. The group theoretical analysis was extended to an-
tiferromagnetic surfaces [5]. Also several extensions of the
electronic structure calculations have been performed, such
as the calculation of the nonlinear magneto-optical response
of Ni within a tight-binding scheme [6] and of Fe layers

and films by using a FP-LMTO method [7]. In these papers,
spin–orbit coupling (SOC) is treated perturbatively and only
recently [8] was SOC included from first principles to ob-
tain the nonlinear susceptibility of Fe monolayers for several
in-plane structures. Nevertheless, no complete theory com-
bining both the group theoretical analysis and first-principles
electronic structure calculations has been available, since the
dipole transition matrix elements had not been determined
from first principles.

In this paper we present a calculation of the nonlinear
magneto-optics for freestanding Fe monolayers, which ob-
tains all fundamental aspects of magneto-optics, the elec-
tronic structure, including spin-polarization, SOC, and the
dipole transition matrix elements from first principles. The
symmetry aspects are completely determined by the symme-
tries of the wavefunctions.

1 Theory

Our calculations are based on the formula for the nonlinear
susceptibility tensor,

χ
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, (1)

derived in [1]. Hereq is the momentum of the incident
light, α is a damping constant simulating a finite lifetime
and chosen as0.2 eV, f(Ek,l) denotes the Fermi-distribution
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and mi is the i th direction cosine ofq with respect to the
plane of incidence. The energy bandsEk,l and the wavefunc-
tions |k, l〉 are determined by using the ab initio FP-LAPW
method WIEN95 [9]. SOC is included as described in [8].
Within this treatment the wavefunctions reveal the correct
symmetry of the system, including SOC. Thus, by determin-
ing the dipole transition matrix elements

〈
k, l |i |k′, l ′〉 from the

wavefunctions, we obtain the correct form of the susceptibil-
ity tensor with respect to symmetry, as derived in [4] from
first principles. The numerical differences between group-
theoretically allowed and forbidden tensor elements is about
12 orders of magnitude. The precise treatment will be de-
scribed elsewhere [10].

Since, at this stage of the investigations, we are mainly
interested in the effects of lateral structural changes on
the magneto-optical spectra, we calculate only freestanding
monolayers, neglecting the substrate. The absence of a sub-
strate enables us to choose arbitrary in-plane structures and
reduces the required computer time to a reasonable value. Of
course, the substrate cannot be neglected for a quantitative
determination of the magneto-optical response and will be
included in further studies.

Within the electric-dipole approximation the presence of
inversion symmetry breaking is necessary for the occurrence
of SHG. Thus, in the case of freestanding monolayers we
have to introduce an artificial symmetry breaking perpen-
dicular to the surface. This is done by integrating the dipole
transition matrix elements in the upper half of the unit cell
only, which effectively sets the wavefunctions in the lower
half volume equal to a constant. Roughly speaking, this sim-
ulates a substrate with a constant charge density. In doing
so, we also solve the general problem of treating semi-
infinite systems like film or layer structures with ak-space
method like WIEN95, which uses three-dimensional transla-
tional invariance.

The SHG intensities are then calculated from the nonlin-
ear susceptibilities by using the expression for the second-
harmonic-generated field given in [11].

2 Results

Figure 1 shows the spectral dependence of the imaginary part
of the four independent tensor elements of the nonlinear sus-
ceptibility χ(2)ijk obtained from aFe(001) monolayer with out-
of-plane magnetization (M ‖ z) derived from a fcc lattice.
The in-plane lattice constant is varied from2.4Å to 2.76Å
(Cu hasa= 2.56Å), simulating different substrates. For this
system the nonlinear susceptibility tensor has the following
form:

χ(2) =
(

0 0 0 xyz− xxz+ 0
0 0 0 xxz+ yxz− 0

zxx+ zxx+ zzz+ 0 0 0

)
. (2)

There are four independent tensor elementszxx+, zzz+, xxz+
andxyz−. The first three do not change their sign under mag-
netization reversal (+ superscript) and thus will be called
“nonmagnetic”1, whereas thexyz element changes its sign

1 Of course, these tensor elements also depend on the magnetization, but
only in second order.
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Fig. 1. Spectral dependence of the imaginary part of the nonlinear suscepti-
bility tensor elements of aFe(001) monolayer for different lattice constants
a given in Å. The magnetization is out-of-plane (M ‖ z). The lattice constant
is varied between 2.4 and2.76Å

(− superscript) and is thus termed “magnetic”. The tensor
elements show a clear dependence on the lattice constant, as
was already found in calculations with constant matrix elem-
ents [7, 8]. Zeros in the spectra are shifted to larger energies
for smaller lattice constants; maxima have a larger magnitude
for larger lattice constants. Of course, the spectral dependence
becomes much more complicated with the inclusion of the
matrix elements, since the latter affect both the width and
absolute values of the resonances. The nonlinear Kerr angle
Φ
(2)
K,p in the polar configuration (p is the input polarization) is

given by

Φ
(2)
K,p+ iε(2)K,p =

As fc fsχ(2)xyz

Ap[N2Fs( f 2
c χ

(2)
zxx+ f 2

s χ
(2)
zzz)+2Fc fc fsχ

(2)
xxz]

(3)

where fs,c are Fresnel coefficients of the incident field,Ap,s
andFc,s are transmission and Fresnel coefficients of the gen-
erated field andN is the refractive index of the substrate
material.ε(p)K is the ellipticity, and an approximation for small
angles is used. From Fig. 1 it is clear that the contribution of
theχ(2)zzz andχ(2)xxz elements can be neglected because of their
magnitude. Thus the nonlinear Kerr angle is directly propor-
tional to the ratio of theχ(2)xyz and theχ(2)zxx elements weighted
by the transmission and Fresnel coefficients (in the numer-
ical calculation, however, all tensor elements are included).
Though the spectral dependence of the Fresnel coefficients
is rather weak in this energy range compared to the tensor
elements, a clear relation between the spectral dependence of
the Kerr angle and the tensor elements is not obvious. Never-
theless, both the spectral dependence of the Kerr angles and
the relevant tensor elements for the different lattice constants
(see Fig. 1) show some common features. Maxima around
1 eV are followed by a crossing of the curves between 1 and
1.5 eV. The spectral dependence of the linear Kerr angles in
the upper part of Fig. 2 shows a similar feature at twice the
energy but exhibits much more structure for higher photon en-
ergies. More detailed investigations of the complex quantities
involved show that the spectral dependence of the nonlinear
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Fig. 2. Spectral dependence of the linear and nonlinear Kerr angle of
a Fe(001) monolayer with out-of-plane magnetization. The lattice constant
is varied between 2.4 and2.76Å

Kerr angles is mainly ruled by the magnetic tensor elements.
Figure 2 shows that in our calculations the linear and nonlin-
ear Kerr angles are of the same order of magnitude, which
does not agree with the experimental findings [12]. This is
due to the specific form of the artificial inversion symmetry
breaking performed here, which also underestimates the size
of thezzztensor element. Note, the present study focuses on
the structural effects on the nonlinear Kerr spectra. This prob-
lem only occurs in the case of free-standing monolayers and
can be overcome by including substrate effects and using unit
cells for the electronic structure calculations in which inver-
sion symmetry is explicitly broken [10]. Furthermore the size
of the tensor elements in Fig. 1 is too large when compared
with previous estimates [13]. This can be a problem of the
neglected screening effects at the surface.

Figure 3 shows the differences in the spectral dependence
of the nonmagnetic tensor elements of theFe(001) monolayer
with a lattice constanta= 2.56Å for in-plane (M ‖ y) and out
of plane (M ‖ z) magnetization. Since the two-dimensional
unit cell of the (001) surface is a square lattice, thex and y
directions are equivalent for out-of-plane magnetization, and
thusχ(2)zxx= χ(2)zyy. For in-plane magnetization thex and y di-
rections are no longer equivalent and thusχ(2)zxx 6= χ(2)zyy. The
effect of this symmetry breaking on the nonmagnetic tensor
elements is shown in Fig. 3. It shows only a slight dependence
on the magnetization direction. This is expected from the fact
that nonmagnetic tensor elements are only of second order in
SOC [14].

One advantage of SHG over linear optics is the enhanced
symmetry resolution resulting from using the third-rank ten-
sorχ(2)ijk in SHG as opposed to the second-rank tensorχ

(1)
ij

used in linear optics. The in-plane symmetry resolution can
be monitored by calculating the azimuthal dependence of the
intensities. This is displayed in Fig. 4, where the azimuthal
dependence of the intensities withpin andpout polarization is
plotted for theFe(001),Fe(110), andFe(111) monolayer with
in-plane and out-of-plane magnetization. SHG can resolve up
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Fig. 3. Spectral dependence of the nonmagnetic tensor elements of
a Fe(001) monolayer with out-of-plane and in-plane magnetization. The
weak dependence reveals the SOC dependence of second order
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Fig. 4. Azimuthal dependence of the nonlinear intensities withp polariza-
tion of the incident and generated light for theFe(001),Fe(110) andFe(111)
monolayer with out-of-plane and in-plane magnetization

to three-fold rotational symmetries. Thus, forM ‖ z, the SHG
signal of the square latticeFe(001), which has four-fold sym-
metry in this configuration, shows no azimuthal dependence.
Also theFe(111) surface withM ‖ z shows no azimuthal de-
pendence since, in the absence of a substrate, this monolayer
has a six-fold symmetry. The curve for theFe(110) surface
reveals its two-fold symmetry. The dashed line indicates the
intensities for inverted magnetization direction, showing the
effect of broken symmetries due to the magnetism and SOC.
For an in-plane magnetization this effect is increased. The
magnetization shifts the SHG intensities in the direction per-
pendicular to the magnetization. Also, the well-known effect
of a large magnetic contrast in the intensities in the transverse
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configuration is reproduced by our ab initio theory. Finally,
it is clearly visible that the in-plane magnetization destroys
the circular dependence of the intensities in the case of the
Fe(001) andFe(111) monolayers.

3 Summary and discussion

We have presented results on the nonlinear magneto-optical
effect of Fe monolayers as obtained from first-principles cal-
culations. The dipole transition matrix elements were com-
puted from the wavefunctions. The inversion symmetry has
been artificially broken to obtain SHG from the free-standing
monolayers. The symmetries of the system including SOC
are completely reflected by the wavefunctions yielding the
correct form of the nonlinear susceptibility tensor known
from group theoretical classifications [4]. The tensor elem-
ents and the resulting Kerr angle show a clear dependence on
the lattice constant, in agreement with previous results from
calculations using constant matrix elements. The spectral de-
pendence of the nonlinear Kerr angle shows up as a complex
superposition of the tensor elements and transmission and
Fresnel coefficients involved. The precise inclusion of SOC
reveals a weak dependence of the nonmagnetic tensor elem-
ents on the magnetization direction. The high sensitivity of
SHG to the in-plane structure was shown for the Fe(001),

Fe(110), and Fe(111) monolayers, also showing the important
influence of the magnetic tensor elements.
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