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Abstract. Expressions have been obtained for the total cross
sections for extinction and scattering of evanescent waves
by small spherical particles. Due to the different structure
of p- and s-polarized waves, cross sections for both extinc-
tion and scattering of p-polarised evanescent waves exceed
those for s-polarised waves, as long as the Mie coefficients for
magnetic multipoles are smaller than those for electric mul-
tipoles for each multipolar order, i.e. for sufficiently small
particles. The difference increases with the angle of incidence
of the totally reflected wave. The definition of cross sections
for evanescent-wave excitation with variable intensity over
the cross-sectional area of the particle allows quantitative
comparison with the case of plane-wave excitation. For ex-
ample, within the dipole approximation the cross sections for
plane-wave excitation lie between those for p- and s-polarised
evanescent-wave excitation, respectively. Due to the inhomo-
geneity of the evanescent field higher multipole contributions
are strongly enhanced as compared to plane-wave excitation
and increase further with the angle of incidence, resulting in
corresponding changes in the scattering and extinction spec-
tra. These effects are demonstrated in the specific case of
scattering of evanescent waves by small silver particles.

PACS: 42.25.Fx; 78.40.-q

Since the early work of Gustav Mie [1] on the scattering
of electromagnetic waves by small spherical particles exten-
sive use has been made of Mie’s theory and later extensions
thereof to determine the size, shape, and orientation of small
particles in vacuum or in gaseous, liquid, or solid media. Sci-
entists and engineers from a large variety of disciplines –
physics, electrical engineering, meteorology, chemistry, bio-
physics, and astronomy – are concerned with this field.

Whereas in standard experimental setups for such inves-
tigations usually large ensembles of scattering particles are
investigated, the recent development of a near-field optical
microscope, employing scattering of an evanescent wave at
a nanometer-sized tip interacting with the sample [2, 3], has

yielded spatial resolution in the1-nm range, i.e. far beyond
the diffraction limit of conventional optical microscopes. The
wide potential applications of such a scattering microscopy
and spectroscopy, especially in biology, medicine, materials
science, and information technology have motivated us to re-
consider scattering and extinction of evanescent waves by
small particles. Although the basic formulae for Mie scat-
tering of evanescent waves result from analytic continuation
of the standard case of plane-wave excitation, the cross sec-
tions and scattered power seem not to have been discussed
thoroughly for evanescent waves, and several aspects seem to
have been overlooked in the literature. As early as 1979 Chew
et al. [4] started to discuss scattering of evanescent waves
by spherical particles. Their theory was recently slightly cor-
rected by Liu et al. [5]. However, as these authors were only
interested in the differential scattering cross sections of rela-
tively large particles, which were computed numerically from
analytical expressions for the scattered fields, we have calcu-
lated total cross sections for evanescent-wave excitation and
discuss in this paper their dependence on wavelength, angle
of incidence, and particle sizes.

The paper is organized as follows. In Sect. 1 we briefly
repeat the theory of evanescent-wave scattering and calcu-
late total cross sections from Poynting´s law by normalizing
to the total power incident on the particle. To this end we
give an expression for the normalization integral in the case
of evanescent-wave excitation, which varies over the particle
cross section. In Sect. 2 we present analytical results for small
silver particles and compare them to results obtained with the
numerical multiple multipole (MMP) method. The latter is
used to study the additional effect of multiple scattering at the
prism surface. Finally, in Sect. 3 a summary of the results is
given.

1 Theory of evanescent wave scattering by spheres

Chew et al. [4] outlined the theory for scattering of evanescent
waves by a spherical particle, which essentially consists in the
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analytical continuation of the case of plane-wave excitation to
complex angles of incidence. In the following we briefly re-
peat the formulae necessary for the derivation of total cross
sections. We assume a spherical particle in front of a glass
prism of refractive indexnP within a medium of real refrac-
tive indexnM at distanced from the prism surface (Fig. 1).
Multiple scattering at the particle and prism surfaces is neg-
lected at this point. A plane wave propagating in the prism
and incident at a subcritical angleθi gets partly reflected and
partly refracted at the boundary glass–air, the refraction being
described by Snell’s law. In the reference frame of the particle
the refracted wave is incident at angleθk to thez axis, as given
by Snell’s law.

The electric field of the refracted wave may be written as

E= Etet exp[ikM (zcosθk+ x sinθk)] , (1)

with the polarization vectoret = ey for the case of s-
polarisation, andet = (cosθk,0,− sinθk)

T for p-polarisation,
andkM = ω

c nM. Et is the complex magnitude of the electric
field vector of the refracted wave, which is determined using
Fresnel’s equations. This wave is expanded in spherical co-
ordinates into electric and magnetic multipoles as usual. For
the general caseθk 6= 0 contributions of polynomials Pnm with
m 6= ±1 are obtained which are not required in standard Mie
theory whereθk = 0:
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whereXnm= LYnm are the well-known vector spherical har-
monics andρ = kMr. The expansion coefficients are given

Fig. 1. Geometry of the scattering problem. The refractive indicesnP, nM
of the prism and of the medium surrounding the sphere, respectively, are
assumed to be real

by [4]:
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where the subscripts TM and TE stand for transverse mag-
netic and transverse electric modes and the superscripts s and
p represent the polarization of the wave. For the scattered
fields outside of the sphere a similar expansion may be set up.
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where the spherical Bessel functions jn(ρ) have been replaced
by spherical Hankel functions of first kind h(1)n (ρ), which for
large arguments represent outgoing spherical waves. Using
a similar expansion for the fields in the interior of the sphere
(of which we will have no further need here) and applying
Maxwell’s boundary conditions at the surface of the spheri-
cal particle results in the scattering coefficients of the sphere,
given by

β
s,p
TM(n,m)= anα

s,p
TM(n,m) , (5a)

β
s,p
TE(n,m)= bnα

s,p
TE(n,m) , (5b)

wherean andbn are the Mie coefficients. These equations co-
incide with those of [4], except for the signs in (3b,c) [6] and
except that in the results for the scattering coefficients not the
complex conjugates of the associated Legendre polynomials
are used but their actual values. The necessity of the latter
correction was already pointed out by Liu et al. [5].

Applying Poynting’s law for the absorbed power density
in the stationary case we obtain the cross sections for extinc-
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tion and scattering of the refracted plane wave.

For s-polarised light:
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For p-polarized light:
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The definitions are:
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The normalisation factorN is equal to one for plane waves,
but assumes a different value for evanescent waves, as will
be discussed below. For an incident plane wave it is easy to
prove that Tn =Πn = 1 for all multipolar ordersn and angles
θk with cosθk ≤ 1, using the addition theorem of the associ-
ated Legendre polynomials. In this case the cross sections do
not differ for s- and p-polarisation and (6) are the well-known
results from standard Mie-theory.

For θi > θc, it follows from Snell’s law that cosθk > 1,
hence sinθk becomes purely imaginary. The functions Tn, Πn
are listed in Table 1 for the lowest four multipolar orders.
Because sin2 θk is now negative,

∣∣sin2 θk

∣∣ in Tn andΠn dif-
fers from sin2 θk. Consequently, Tn, Πn > 1, exceptΠ1 = 1.
Furthermore, Tn >Πn for all n. As the componentkM sinθk
of the wavevector becomes imaginary, the magnitudes of the
electromagnetic fields at distance d from the prism surface
have exponentially decreased by a factor exp(−κd) from their
values at the prism surface where the attenuation constant is
given by

κ = kM sinθk = 2π

λ

(
n2

P sin2 θi−n2
M

)1/2
. (8)

The energy flux given by the time-averaged Poynting vector
is then not constant over the geometrical cross section of the

Table 1. Values of the functionsΠn(θk) and Tn(θk), defined in (7), for
the lowest four multipolar orders. Here,x = cosθk = (nP/nM) sinθi and
z= ∣∣sin2θk

∣∣− sin2θk. It is z= 0 for plane waves, andz= 2(x2−1) for
evanescent waves

n Πn(θk) Tn(θk)

1 1 1+z
2 1+ z 1+4x2z
3 1+2.5x2z 1+ (15x4−7.5x2+1

)
z

4 1+ (7x4−3.5x2+1
)

z 1+ (56x4−56x2+14.5
)

x2z

sphere due to the exponential decrease of the fields. Therefore
in the calculation of optical cross sections for evanescent-
wave excitation the incident intensityI0 has to be redefined.
The corresponding quantititỹI0 cannot be uniquely deter-
mined. Nevertheless it is reasonable to define cross sections
in this case, as they represent particle-specific quantities and
allow comparison to the case of plane waves. The correspond-
ing problem has already been discussed for Gaussian beam
illumination [7–9]. There the intensity in the center of the
Gaussian beam waist was used for normalisation. In contrast
to this we prefer to normalise to the total power incident on
the particle, in order to avoid diverging efficiencies for large
particles where the intensity of the evanescent wave at the
center of the spherical particle is close to zero. The same nor-
malisation was used by Lock [7] to define the extinction effi-
ciency for the case of a Gaussian beam. It seems appropriate,
however, to point out the limited meaning of any definition of
cross sections for an excitation that varies significantly over
the particle surface, as in all applications the scattered or ab-
sorbed power is the relevant quantity. For example, for large
particle sizes the scattering of an evanescent wave arises only
from a small part of the sphere and the definition of a cross
section for the total particle becomes misleading.

As Ĩ0 we choose the incident intensity, averaged over the
cross-sectional area of the sample perpendicular to the Poynt-
ing vector of the evanescent wave.

Ĩ0= 1

πa2

∫∫
〈Sinc〉ndA

= I0 exp(−2κd)
nP

nM
sinθi

I1(2κa)

κa
, (9)

whereI1(2κa) is the modified Bessel function of order 1 with
argument 2κa, for which the series expansion

I1(2κa)

κa
= 1+

∞∑
m=1

(κa)2m

m!(m+1)! (10)

may be used. For a plane waveĨ0= I0.
As the multipole expansions (2) and (4) for the incident

and scattered fields are made in a coordinate system, whose
origin coincides with the center of the sphere, the factorEt
in the multipole coefficients (3) and hence (5) has to be re-
placed byEt exp(−κd) for an evanescent wave. Therefore,
for evanescent-wave excitation the factorI0 exp(−2κd) in (9)
cancels out in the calculation of optical cross sections. The
remaining factor,

N = nP

nM
sinθi

I1(2κa)

κa
, (11)

is the normalisation factor which must be taken into acount
in the cross sections (6). Forκa� 1, i.e very small particles
compared to the wavelength of the incident light, it reduces
to N0 = nP

nM
sinθi . The functionsN−1Tn, N−1Πn have to be

interpreted as weighting factors for the individual multipolar
orders, relative to plane-wave excitation, in the cross sections
for extinction and scattering of evanescent waves. Figure 2
displays the dependence of the size-independent weighting
factorsΠ̃n = N−1

0 Πn, T̃n = N−1
0 Tn on the incident angleθi

on a logarithmic scale fornP= 1.5, nM = 1. At and below
the critical angleθc= 41.8◦ all weighting factors are equal to
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Fig. 2. Dependence of the functions̃Πn = N−1
0 Πn, T̃n = N−1

0 Tn on the
angle of incidenceθi for nP= 1.5, nM = 1. These functions are the weight-
ing factors, relative to plane-wave excitation, of the individual multipolar
contributions to the cross sections for extinction and scattering of evanes-
cent waves by small spherical particles withκa� 1 (compare the text)

one, as in this case the transmitted wave is a plane wave. The
values ofΠ̃n, T̃n at large angles of incidence and for higher
multipolar orders, on the other hand, are much larger than
one. Therefore, the contributions of higher multipolar orders
to scattering and extinction of evanescent waves are strongly
enhanced relative to plane-wave excitation. For very small
particles these contributions are limited, on the other hand, by
the fact that the Mie coefficientsan, bn in (6) are then rapidly
decreasing with increasingn. The decrease ofan, bn at suffi-
ciently high orders insures convergence of the cross sections
in (6) for all particle sizes, in spite of the strong increase of
the functionsΠ̃n, T̃n with the ordern in the case of evanescent
waves. In addition, the normalisation factorN in the denomi-
nator quickly increases with particle size.

For sufficiently small particles, the relation Tn >Πn leads
to σp

sca> σ
s
sca for all wavelengths, as for such particles the ab-

solute values of the Mie coefficientsan for electric multipoles
are larger than the coefficientsbn for magnetic multipoles
to each ordern. The same relation holds true for the extinc-
tion cross sections, as long as the real parts of thean exceed
the real parts of thebn. The fact that p-polarised evanes-
cent waves scatter more strongly from small particles than
s-polarised waves may be readily understood in the case of
very small particles where the electric dipole approximation
may be made. From the retarded potentials it follows that for
an electric dipole induced in a small particle of an optically
isotropic material in the monochromatic evanescent field
Eev, of either p- or s-polarisation, the time-averaged radiated
power is proportional to

〈
(ReE)2

〉= 〈(Im E)2
〉= 1

2 |Eev|2.
For the p-polarised wave the latter quantity contains a factor
T1= |sinθk|2+cos2 θk > 1, which is missing in the case of
s-polarisation. Furthermore, the factor does not appear in the
expression for the power incident on the particle, to which the
scattered power has to be normalised.

It seems appropriate to add a general comment on the po-
larization dependence of the optical cross sections for spher-
ical particles, caused by the occurrence of the functions Tn
andΠn in (6). This polarisation dependence is due to the fact
that p- and s-polarised evanescent waves are not related to
each other by a simple rotation, i.e. a symmetry operation of

the sphere, in contrast to the corresponding plane waves: for
p-polarised waves the electric field is rotating in the plane
of incidence, due to the complex phase shift associated with
total internal reflection, whereas for s-polarised waves it is os-
cillating perpendicular to it. It may be further noticed at this
point that a polarisation dependence of the cross sections is
already observed when the particle resides inside the prism,
i.e. in the standing wave resulting from total internal reflec-
tion. The same holds for a particle in the standing wave in
front of a metallic mirror where also a complex phase shift
occurs in reflection. In both cases, however, the polarisation
effects are much smaller than for evanescent waves.

2 Results for small silver particles

We have applied the theory outlined above to the scattering
and extinction of light by small silver particles in front of
the surface of a glass prism. Optical constants for silver were
taken from [10]. Spectra for the extinction of particles with
2a= 10 nmand 2a= 200 nmare shown in Figs. 3 and 4, re-
spectively. For the evanescent waves,θi = 60◦, nP= 1.5, and
nM = 1 is assumed (i.e. dispersion ofnP, nM is neglected). In
the analytical calculation, obviously, we neglected backscat-
tering from the prism surface as well as multiple scattering.
This is a reasonable assumption considering the low reflectiv-
ity of the glass surface.

Very small silver particles such as those of Fig. 3 exhibit
the well-known dipolar surface plasmon resonance at around
365 nm. The shape of the extinction spectrum for evanescent
waves is unchanged in this case compared to plane waves,
and, as expected from the discussion above, the ratio of the
cross sections for extinction as well as for scattering is for all
wavelengths to a very good approximation given byN−1

0 T1

p-polarised evanescent wave) to 1 (plane wave) toN−1
0 Π1 (s-

polarised evanescent wave), withΠ1= 1.
For larger particles, like those of Fig. 4 (2a= 200 nm),

higher multipolar orders become important and are enhanced
for evanescent waves as compared to plane waves. This leads

Fig. 3. Wavelength dependence of the cross sections for extinction of plane
waves and evanescent waves by a spherical silver particle with 2a= 10 nm.
The solid lines are calculated using (6a,c) for evanescent waves and the
formulae of standard Mie theory for plane waves, respctively. Thesquares
indicate numerical results obtained by means of the multiple multipole
(MMP) method. Thereby multiple scattering at the prism surface was neg-
lected
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Fig. 4. Wavelength dependence of the cross sections for extinction of
plane waves and evanescent waves by a spherical silver particle with
2a= 200 nm. As in Fig. 3 thesolid lines are the analytical results from
(6a,c), and thesquaresindicate the numerical results obtained by means of
the MMP method

to the structured spectra in Fig. 4, which are not simply in
a constant ratio to each other any more. Figure 5 displays
the decomposition of the extinction spectrum into the differ-
ent multipolar contributions for p-polarised evanescent waves
(Fig. 5a) and for plane waves (Fig. 5b), the numbers indicat-
ing the multipolar order. The strong enhancement of higher
multipoles for evanescent-wave, as compared to plane-wave
excitation, is evident. For example, the octupolar contribution
to the spectrum of the large silver sphere in Fig. 5a can now
clearly be resolved and leads to the double peak structure at
short wavelengths. For s-polarization the higher multipoles
are also enhanced with respect to plane-wave excitation but
less than for p-polarization (compare Fig. 4 and Table 1). The
scattering of spherical particles behaves qualitatively in the
same way as the extinction (multipole decomposition for scat-
tering cross sections not shown here), but higher multipolar
contributions decrease faster with ordern, as the squared ab-
solute values of the Mie coefficients appearing in (6b,d) for

Fig. 5a,b.Decomposition of the extinction cross section into the individual
multipole contributions for a silver particle with 2a= 200 nm. a p-polarized
evanescent wave.b Plane wave. The numbers indicate the order of the mul-
tipole, whose contribution to the total extinction cross section is shown.
Results for s-polarized evanescent waves are not shown here, but are similar
to those for p-polarization

the scattering cross sections decrease faster than their real
parts, which determine the extinction, (6a,c).

We have finally applied a numerical technique for the cal-
culation of electromagnetic fields, i.e. the multiple multipole
(MMP) version [11] of the generalized multipole technique
(GMT) [12], to the present case of scattering and extinction
by small spherical particles to include the effect of multiple
scattering. For comparison with the analytical results given
above, backscattering from the surface, at which the evanes-
cent wave is generated, was first neglected and the spatial
distribution of electromagnetic field vectors and the Poynt-
ing vector of the scattered wave were calculated. The time-
averaged Poynting vector was integrated numerically over
a surface enclosing the particle to obtain the power of scat-
tered light. Similarly, the excitation intensity was integrated
numerically over the cross section of the sphere in order
to obtain the normalisation factor for the cross sections. In
Figs. 3 and 4 the symbols (full squares) indicate the numer-
ically obtained results. Both methods are, of course, in ex-
cellent agreement for this simple geometry. We also obtained
full agreement for various other absorbing and nonabsorbing
particles and sizes not discussed here.

When the effect of backscattering from the prism was in-
cluded in the calculation, we obtained the results shown in
Fig. 6 for particles in contact with the surface of the prism.
In Fig. 6, the extinction spectra for a p-polarised evanescent
wave as well as for a plane wave are compared to those pre-
sented in Figs. 3 and 4. For the plane wave normal incidence
from the prism side was assumed. From the curves in Fig. 6
it becomes obvious that the multiple scattering due to the
prism surface leads to a significant redshift of peak positions.
Moreover, in those parts of the spectra that are dominated by
scattering, corresponding in the present spectra roughly to the
wavelength rangeλ > 0.4µm, the extinction cross section is
enhanced, whereas it is diminished in those spectral regions
where the absorption is the main contribution to extinction.
The case of multiple scattering of plane waves for small par-
ticles on or near a surface has been treated analytically by
various authors [13–18]. Similar to our results, a redshift and
an enhancement of the scattering efficiency was observed.
In [13–18] the plane wave was assumed, however, to be inci-

Fig. 6. Comparison of the extinction cross section spectra for a silver sphere
with diameter 2a= 200 nm in free space (solid lines) and on the glass
prism (squares) for excitation with a plane wave (lower two curves) and
a p-polarised evanescent wave (upper two curves)
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dent from the side of the thinner medium. This is not directly
comparable to the present case. A more detailed discussion of
these effects will be given in a forthcoming paper.

3 Summary

In this paper, the theory of Chew et al. [4] and Liu et al. [5]
for extinction and scattering of evanescent waves by spherical
particles has been used to obtain total extinction and scat-
tering cross sections. The cross sections have been defined
for the case of evanescent waves, and an expression for the
normalising integral has been given. Scattering and absorp-
tion of evanescent waves differ remarkably from scattering
and absorption of plane waves in that the special proper-
ties of the evanescent wave lead to increased contributions of
multipolar orders (n, m) with n> 1, which in turn lead to in-
creased contributions of ordersn> 1 in the expansion of the
scattered wave. The results are polarisation-dependent cross
sections, which are much larger for p-polarised light than for
s-polarisation. The derived formalism was applied to silver
particles of different sizes to compute optical cross sections at
wavelengths between300 nmand1000 nm. The results show
quantitatively the effects expected from the model, especially
that higher multipolar ordersn are weighted more strongly
than for plane-wave excitation. It should be pointed out, how-
ever, that these effects are relevant not only in the special case
of particles exhibiting plasma resonances, but more gener-
ally, for example in the case of the so-called morphological
resonances.

We have further used the numerical multiple multipole
(MMP) technique to test the analytical results and to take into
account the influence of backscattering from the prism sur-
face for particles on the glass prism surface. In comparison
to our analytical results we have found excellent agreement.

Taking into account the prism surface finally leads to signifi-
cant changes in the spectral dependence of the cross sections,
which will be discussed in a forthcoming paper.
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