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Abstract. We report difference frequency generation andthick samples [7]. KTP has the advantages of a higher
temperature-tuned phase-matching in the nonlinear optlaser damage threshold and higher resistance to photore-
cal material periodically poledKTiOPO, (PPKTP). We fractive damage than PPLN. It has a coercive field about
generated12uW of radiation tunable around.6um by 10 times lower than that ofiNbO3, which allows fine
difference-frequency mixing of the outputs of a frequency-pitch gratings to be easily produced due to limited domain
doubledNd:YLF laser at523 nm (240 m\W) and a tunable broadening during the poling process [7]. These properties,
Ti:sapphire laser ned60 nm(340 m\W). A temperature tun- along with room-temperature operation, make PPKTP an at-
ing rate of 0.73 nny°C for the generated wavelength and tractive alternative material to PPLN for a wide range of
a FWHM temperature acceptance bandwidth6d°Ccm  applications.

was observed. The effectivls coefficient was estimated to In this communication, we report what we believe to

be~5pm/V. be the first demonstration of difference-frequency generation
(DFG) in PPKTP. Importantly, while conventional birefrin-

PACS: 42.65.Ky; 42.70.Mp gent phase-matching in KTP is insensitive to crystal tempera-

ture, we find that in the case of QPM, KTP demonstrates
a useful degree of temperature tuning. We show from theory
The use of periodically poled materials for quasi-phasethat the degree of tunability varies with pump wavelength,
matching (QPM) has recently had a considerable impact iand so anticipate the application of PPKTP to widely tem-
the field of nonlinear optics [1]. QPM permits access toperature tunable DFG and high average power OPOs.
the highest nonlinear coefficients of a material (&g, in
LiNbO3, KTIOPO,, RbTIOAsSQ,), and hence can provide
greater conversion efficiency than possible with traditionall Experimental setup
birefringent phase-matching. In addition, with suitable grat-
ing selection, essentially any wavelength combination withirOur single-grating periodically poled crystal was prepared
the transparency range of the material may be phase-matchi#dm a sample of flux-grown KTP9(mm long by 1 mm
in a noncritical geometry. thick) by patterning a photoresist grating with a period of
While the pioneering work into QPM focused princi- A = 9.55um upon the e face. The sample was first ion-
pally on periodically poled lithium niobate (PPLN), other exchanged ii00% RbNG; on the ¢- side for3.5 hat355°C
materials, notably periodically polédTiOPO, (PPKTP) and  prior to patterning, in order to create a low-conductive RTP
its isomorphs, have recently been successfully developethyer at the surface where the domains can easily nucleate [7].
PPKTP has been demonstrated in the efficient frequencihe sample was then poled by applying th@enslong
doubling of both pulsed and continuous-wave (¢\Wg: YAG pulses at2.5kV, with KCI used as liquid electrodes. The
lasers [2, 3], second-harmonic generation with simultaneoysoled interaction length of the crystal ismmwith the end
femtosecond pulse compression [4], and femtosecond opfiaces polished and left uncoated.
cal parametric oscillators (OPOs) for photon division [5]. In The experimental set up is as shown in Fig. 1. The PPKTP
cw applications, periodically pold@bTiOAsQ, (PPRTA) has  crystal was pumped by two collinear, continuous-wave laser
been used in a singly resonant OPO [6]. beams: one at a fixed wavelengiy, = 523 nm the other,
Flux-grown KTP, now a well-established nonlinear opti- A, tunable around@60 nm The source ab23 nmis an all-
cal material, has been successfully poled by using millimetersolid-state, diode-pumpedd:YLF laser with an intracav-
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e phase-matching condition
iode-Pum BS W na(T N(T ni(T 1
Int?ac:vit?JDoﬁed I > p( ) = S( ) + l( ) +—, (1)
Nd:YLF — Ap As Ai A
Silicon 3
filter where n(T ) = n(25°C) +an(T —25°C)/dT and T is the
crystal temperature.
Tizsapphire / The uncertainty in published Sellmeier data for KTP and
the uncertainty in the grating period result in predicted wave-
Fig. 1. Schematic of the experimental setup (BS, beamsplitter) lengths that are offset from the experimental results. How-

ever, we found that Sellmeier data published by Fan et al. [9]
predicted the closest wavelengths, which were withianm

ity KTP doubler giving an output power of a few hundred at Ti:sapphire wavelengths.
mW. The tunable source is @i:sapphire laser configured The temperature acceptance bandwidth of the interac-
as a standing-wave bow-tie resonator, and is itself pumpeibn was then measured by fixing thesapphire wavelength
by an argon-ion laser. A three-plate birefringent tuner alwhile the crystal temperature was varied. Figure 3 shows two
lows coarse tuning of the multi-axial-mode 0 GHzband-  experimental bandwidth measurements, together with a the-
width) output from 750 t8850 nm When operating around oretical curve based on the temperature-dependentindex data
760 nm the Ti:sapphire laser provides an output power offrom [8]. Experimental data for two differenti:sapphire
a few hundreanW. wavelengths (and hence different temperatures of peak con-

The two beams were combined using a dichroic-coatedersion) are shown; the circles and diamonds correspond to
beamsplitter which transmits the green light and reflects th&i:sapphire wavelengths of61 nm and 753 nmand peak
red. The combined beams were then focused into the crysemperatures d3°C and111°C, respectively.
tal using a singl&0-mm-focal-length lens, resulting in beam It is well known that for the case of tightly focused Gaus-
waists of11.5um and16.9 um for the green and red beams, sian beams, the acceptance-bandwidth curve deviates from
respectively. The PPKTP was mounted in a temperaturahe ideal siné shape associated with collimated beams, and,
controlled oven which could vary the crystal temperaturgfor example, comprehensive analyses have been carried out
from room temperature to ové00°C. by Boyd and Kleinman [10] and Guha et al. [11]. The tight
focusing of the redés = 1.34, and greeng, = 1.75, beams
resulted in the asymmetry of the experimental data as shown
in Fig. 3. The theoretical curve in Fig. 3 is a normalised plot
of the functionhs as defined in [11, eq. (15)], as a function
of temperature (assuming small depletion of the waves, at
Figure 2 shows the tuning range of the wavelength generatezthd As). In [11], hs is defined as a function that shows the
as the PPKTP crystal temperature is varied over a range oélative DFG efficiency, as a function of phase mismatch, for
80°C, while theTi:sapphire wavelength was simultaneouslythe general case of unequal confocal beam parameters. The
tuned to maintain optimum conversion. Over this temperapresent calculation is based orirasapphire wavelength of
ture range th&i:sapphire wavelength is varied fron87 nm 767 nm a poled interaction length & mm and the above
to 755 nm corresponding to a variation in the DFG wave-beam focusing parameters. In order to gigtas a function
length,;, of 1649 nmto 1707 nm The corresponding tuning of temperature in the present case, the phase misnagtch
rate for the generated wavelengtl®ig3 nny°C. This is con-
sistent with the value calculated from tlie/dT data from
Wiechmann et al. [8]94;/dT is calculated from the quasi-
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Fig. 3. Temperature acceptance bandwidth of PPKTP. §diel line shows
the theoretical prediction based on [11]. Experimental cureasles and
Fig. 2. Temperature tuning of PPKTP. Thelid line shows the predicted diamonds correspond to temperatures €8°C and111°C, corresponding
temperature tuning based on [8] to Ti:sapphire wavelengths @61 nmand 753 nm respectively
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has been related to the temperature deviat®on, from the 3 Summary and conclusions
phase-matching temperature by
In summary we have demonstrated difference-frequency gen-

AK— 277 <i% _1lons iﬁ) AT @) eration and temperature tuning of PPKTP. We observed a tun-
o T As T A 0T ’ ing rate of0.73 nny°C for the generated wavelength, which is
a useful rate compared to the rapid tuning observed in PPLN,
where thedn/aT values are from [8]. and a generated power &2 W (1.6 um) for input powers

The asymmetry observed in Fig. 3 results from a spreadf 240 mW (523 nn) and 340 mW (767 nn). The value of
in the wavevectors in the focussed beams. Different wavevethe effectivedss coefficient was estimated to be5 prmy/V.
tor components phase-match at different temperatures resufrom our studies, and our experimental data, we anticipate
ing in the broadening of the temperature acceptance bantiat PPKTP will prove to be a significant nonlinear mate-
width and an offset in maximum conversion fronkk =0.  rial for the near- and mid-infrared, not only for DFG but
In this experiment the maximum conversion occurakt=  also for OPOs, and will have considerable flexibility through
—55cm ! (AT =4°C). a combination of grating-period and temperature tuning. In-

The theory in [11] predicts a FWHM temperature accept-deed, sensitivity to temperature tuning can be engineered to
ance bandwidth 06.9°C cm, which is close to the experi- suit requirements through appropriate design of the grating
mental values 06.0°Ccm and 10°Ccm This agreement period [1]. The high damage threshold of the bulk material to-
suggests that the ful-mm interaction length contributes to gether with the relatively large aperture available with PPKTP
the DFG process. The difference between the two expershould allow, in particular, future application to high-average-
mental bandwidths is not explained by the theory in [11],power, pulsed and continuous-wave tunable OPOs.
which predicts similar bandwidths for each case. We note
that, strictly, this theory describes only deviations from con-Acknowledgement&.A. Turnbull acknowledges personal support from the
ventional phase-matching and does not include the period@arnegie Trust for the Univer;ities of Scotland. M. Ebra'hi'mzadeh gratefu_lly
QOmain inversio_n Qf the_ PPKTP. An _impfo"?d model thatazksr;(;v;/(l:idg:ﬁotxgh?;yal Society of London for the provision of a University
includes the periodic poling may explain this difference. Oth-
erwise the discrepancy could be due to a thermal gradient
between the crystal and thermocouple inside the oven.
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