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Abstract. A novel set of normalized coupled nonlinear dif-
ferential equations drawn after Von der Linde et al. is used
to describe stimulated Raman scattering in optical fibers. The
numerical solutions of the differential system lead in a natural
way to the calculation of the ratio between Stokes and pump
powers at the output end of the fiber. The model is exploited
to deduce the optimum performances of a1.064-µm pumped
third-order cascaded Raman laser operating at the wavelength
of 1.24µm in cw regime of operation, whose output should
be useful in pumping a1.31-µm fiber amplifier.

PACS: 42.60D; 42.80

Since the majority of terrestrial optical communication sys-
tems currently operate at wavelengths close to1.3µm, there
is a need for amplifiers that regenerate the signals travel-
ling at this wavelength. Very few proposals have been ad-
vanced, without success, and it appears that even the recently
proposed amplifiers based on Pr+3-doped fluoride fibers
(PDFAs) [1, 2] suffer a number of disadvantages. A tech-
nique proposed earlier, based on stimulated Raman scattering
(SRS), has been re-examined and found to be still a ro-
bust candidate for amplification of the signal transmitted at
1.31µm.

Raman amplification of the signal at1.31µm requires the
availability of a pump source at1.24µm. Fiber laser emis-
sion at this wavelength can be obtained through a third-order
Raman cascade pumped by aNd+3-doped double-clad fiber
laser output at1.064µm [3–5] in high-delta-GeO2-doped
silica fibers, where feedback is provided by low-loss, high-
reflectivity fiber Bragg gratings (FBGs) [6].

A number of papers employing this scheme have re-
cently been presented [7–9] and shows that SRS indeed offers
a rugged and reliable alternative to PDFAs. A novel theoret-
ical model is presented for the analysis of fiber laser perfor-
mances in the following.

The numerical solution of this model allows us to calcu-
late the ratio between Stokes output powers and fiber-coupled
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pump powers under the assumption of fiber single-mode op-
eration at the wavelengths of the beams involved in SRS.

In Sect. 1 a description of the theoretical model employed
in the calculation of Stokes modes output powers is reported.
It is an extension to fiber resonators of a model first intro-
duced by Von der Linde et al. [10, 11] for the description of
Raman amplification of light pulses in CS2. In Sect. 2 a com-
parison is made between the results of the simulation of fiber
laser performances obtained using this model and those ob-
tained by a previously described model which relies on a set
of coupled nonlinear differential equations in terms of beam
effective powers [12]. In Sect. 3 our conclusions are finally
presented.

1 Theoretical model

In a preceding paper [12] the single-pass evolution of pump
and higher order Stokes beams of the Raman laser has been
described in terms of effective powers that take into account
the finite width intensity distributions of the beams involved
in SRS through the calculation of the beam power fraction in
the fiber core. The definition of effective powers relies on the
introduction of effective core areas which appear explicitly in
the set of the nonlinearly coupled equations which describe
SRS within that model.

Another way to take care of the finite beam width is to
start directly from the set of nonlinearly coupled equations for
beam intensities [13]:
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whereIi , νi , αi , i = p, s1, . . . , s4 represent the beam intensi-
ties, the frequencies, and the attenuations at pump and higher
order Stokes modes wavelengths, respectively.

We now introduce the following adimensional parame-
ters:

Z = zgRIp(0, r)

βi = αi /gRIp(0, r), i = p, s1, . . . , s4 , (2)

wherez is the longitudinal coordinate of propagation along
the fiber axis,Ip(0, r) is the pump intensity distribution at
z= 0 andgR is the Raman gain coefficient at the pump wave-
length. The initial pump intensity distribution is regarded as
a function of the radial coordinate in a plane normal to the
beam direction of propagation as a consequence of the as-
sumption of laser single-mode operation. The beam intensi-
ties are then replaced by the following normalized intensity
functions:

Ki (Z)= Ii (Z)/Ip(0, r) i = p, s1, . . . , s4 (3)

which allow us to put the differential system (1) in the follow-
ing form:
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Both the adimensional parameterZ and the normalized atten-
uation coefficientsβi , i = p, s1, . . . , s4 depend on the pump
intensity distribution atz= 0.

It is possible to solve the differential system (4) distin-
guishing the two following cases:

1. the normalized intensitiesK are calculated for a given
value of incident pump intensity as a function of the dis-
tance of propagation along the fiber axis;

2. the normalized intensity functions are calculated for
a given fiber length as a function of incident pump inten-
sity.

Since our scope is to analyse the effect of a definite beam
intensity distribution over the fiber cross section we chose
to deal with the second case. In what follows the numeri-
cal integration of the differential set of nonlinearly coupled
equations (4) will be given assuming a fixed fiber length as
a function of the initial pump intensity values. If the fiber
length is fixed, the differential system can be set in a more
practical form by an appropriate change of representation. We
define a new set of functionsK ′ given by:

K ′i = Ki exp(βi Z) . (5)

In terms of theK ′ functions the set of differential equations
assumes the following form:
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The gain and loss coefficients for theK ′ functions are deter-
mined both by the attenuation coefficients and by the fixed
fiber lengthL.

The main parameters we are interested in are the ratios be-
tween Stokes beams output powers and fiber-coupled pump
power:

Ri = Pj(L)

Pp(0)
(7)

The pump intensity distribution on the fundamental mode can
be approximated by a Gaussian function,

Ip(0, r)= Ip(0,0) exp(−2(r/wp)
2) , (8)

wherewp is fundamental modal beam radius [14], and the
power ratios at the output end of the fiber can then be calcu-
lated as:

Rj =
∫∞

0 Ip(0, r)K j(Ip(0, r))r dr∫∞
0 Ip(0, r)r dr

. (9)

By changing the variable of integration, the power ratios can
be written as follows:

Rj =
∫ Ip(0,0)

0 K j(I)dI

Ip(0,0)
, (10)

whereIp(0,0) is the pump peak intensity atz= 0. A further
change of the variable of integration allows the power ratios
to be directly evaluated in terms of the adimensional parame-
ter Z.

Rj = Pj(L)

Pp(0)
=
∫ Zf

0 K j(Z)dZ

Zf
, (11)

where the upper extreme of integration is given by:

Zf = zgRIp(0,0) . (12)

The normalized intensity functionsK(Z)which are requested
for the calculation of the power ratios can be obtained by in-
tegrating the differential system (6) between 0 andZf and
inverting (5).
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The initial conditions for the normalized intensity func-
tions in the new representation have been approximated as
follows:

K ′p= 1 K ′si
= Pnoise

Peff
p (0)

(13)

where Pnoise is the spontaneous emission contribution to
Stokes mode power [12] andPeff

p (0) represents the effective
fiber-coupled pump power. The numerical integration of the
differential system, subjected to appropriate boundary condi-
tions for each Stokes component, has been performed using
either a standard Runge–Kutta numerical integration method
or a stiff integrator, giving results in substantial agreement
in both cases. In Fig. 1 the nomalized intensity functionsK
are plotted vsIp(0, r) for a 800-m-long fiber sample with
a26% GeO2 dopant concentration (%) in the fiber core, a max-
imum index difference∆ of 0.036 and a cutoff wavelength of
0.98µm. The value of Raman gain coefficient has been de-
duced from [15], taking into account the inverse dependence
on pump wavelength [16], the linear dependence onGeO2
dopant concentration [17] and the fact that the Raman gain
coefficient forGeO2 fibers is about eight times higher than for
SiO2 fibers [18]. Note that the value reported in [15] is about
half the value reported in [19] in order to account for the ef-
fects of polarization scrambling. By making use of (11) the
Stokes-to-pump power ratios have been obtained as a func-
tion of pump peak intensities (Fig. 2).

If we compare the results reported in Fig. 1 with those in
Fig. 2 we observe that power ratios rise to a maximum value
within the range of pump intensities where theKi functions
have substantial values and for laser intensities beyond this
range they are inversely proportional toIp(0,0).

The results reported in Fig. 2 differ from those obtained
by integrating the nonlinear differential system for the ef-
fective powers [12] in that the pump and the Stokes modes
powers show up simultaneously at the fiber end. In the for-
mer case only one Stokes beam, or at most two of them, are
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Fig. 1. Normalized intensities vs pump intensities atz= 0, Ip(0, r) for
a 800-m 26% GeO2-doped fiber sample with a0.98-µm cutoff wavelength
and 0.036 maximum index difference
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Fig. 2. Power ratiosR at the output end of a800-m 26% GeO2-doped
fiber sample with a0.98-µm cutoff wavelength and 0.036 maximum index
difference as a function of pump peak intensity atz= 0

present at the end of the fiber, all the others being vanishingly
small.

For the simulation of beam propagation of the cascaded
fiber Raman laser, the initial conditions for the beam succes-
sive passages in the resonator cavity have been determined by
averaging the normalized intensity functionsK obtained from
the numerical integration over the previous passage between 0
andZf . As it is evident from (7)Zf is a function of the pump
peak intensity value.

In the forward propagation passages the pump peak in-
tensity value is fixed for a given input pump power whereas
in the backward direction it has to be determined from effec-
tive residual pump power after reflection off the cavity output
mirrors.

2 Results of the simulations

The calculated values of slope efficiencies, maximum con-
version efficiencies, thresholds, and figures of merit obtained
within the model described above have been plotted against
fiber cavity length for two fiber samples with different dopant
concentrations. The plots are reported in Figs. 3 and 4 for two
different values of the third Stokes output coupling coeffi-
cient, the relevant fiber parameters being specified in each
figure caption.

The figure of merit has been defined as the ratio be-
tween slope efficiencies and threshold powers corresponding
to a given fiber length:

R= slope efficiency

Pth
. (14)

The slope efficiency behaviour as a function of fiber length is
determined by the cavity losses: as a matter of fact slope ef-
ficiencies are lower for20% output coupling configurations
and, for a given value of third Stokes output coupling, for the
most strongly doped fiber sample which is also characterized
by a faster decrease of slope efficiency with fiber lengths. The
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threshold decrease with fiber lengths is exponential: thresh-
olds are lower for the most strongly doped fiber sample which
features both higher Raman gain coefficient and smaller core
areas. For both values of third Stokes output couplings the
optimum resonator performance is obtained using the most
strongly doped fiber sample.
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Fig. 3a–d. Comparison between the cal-
culated values of:a slope efficiencies,
b maximum conversion efficiencies,
c thresholds,d figure of merit vs fiber
length for a third-order cascaded Raman
resonator with 20% third Stokes out-
put coupler for two fiber samples with
different dopant concentration. Fiber pa-
rameters: % = 18%, ∆ = 0.026, λc =
1µm (dotted line); ρ = 26%, ∆= 0.036,
λc = 0.98µm (solid line)
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Fig. 4a–d. Comparison between the cal-
culated values of:a slope efficiencies,
b maximum conversion efficiencies,
c thresholds,d figure of merit vs fiber
length for a third-order cascaded Raman
resonator with4% third Stokes output
coupler for two fiber samples with dif-
ferent dopant concentration. Fiber param-
eters: ρ = 18%, ∆ = 0.026, λc = 1µm
(dotted line); ρ = 26%, ∆= 0.036, λc =
0.98µm (solid line)

For a20% third Stokes output coupling, the optimum res-
onator performance (determined by the maximum value of
the figure of merit) corresponds to a fiber length of400 mof
the most strongly doped fiber sample. This cavity configura-
tion features a threshold of153 mW and a slope efficiency
of 51%. For a4% output coupling, the optimum resonator
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Fig. 5a–d. Comparison between the cal-
culated values of:a slope efficiencies,
b maximum conversion efficiencies,
c thresholds,d figure of merit vs fiber
length for a third-order cascaded Ra-
man resonator with4% third Stokes
output coupling within model I (dashed-
dotted line) and model II (solid line).
Fiber parameters:ρ = 18%, ∆ = 0.026,
λc = 1µm
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Fig. 6a–d. Comparison between the cal-
culated values of:a slope efficiencies,
b maximum conversion efficiencies,
c thresholds,d figure of merit vs fiber
length for a third-order cascaded Ra-
mam resonator with20% third Stokes
output coupling within model I (dashed-
dotted line) and model II (solid line).
Fiber parameters:ρ = 18%, ∆ = 0.026,
λc = 1µm

performance corresponds to a fiber length of400 m of the
most strongly doped fiber sample. This cavity configuration
features a threshold of260 mW and a slope efficiency of
51.1%. The calculated values of the parameters defining the
fiber laser performance for a20% output coupling are in
good agreement with the performance parameters obtained by

Grubb and co-workers using a800-m-high delta-GeO2-doped
fiber and a20% third Stokes output coupler [7] whereas for
a 4% output coupling the calculated value of threshold is
almost halved and slope efficiency is slightly lower [7]. In
Figs. 5 and 6 the performance parameters calculated with the
model described in the present work (model II) are compared
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with those obtained within the previously reported model
(model I) for the most strongly doped fiber sample. As shown
in the figures the main differences between the two sets of
calculated values are as follows.

1. The slope efficiencies obtained within model II show
a roughly linear decrease with fiber lengths within the
range of fiber lengths taken into consideration in the sim-
ulations whereas those calculated within model I feature
a rapid decrease with fiber lengths for small fiber lengths
and a slower decrease for longer fiber lengths;

2. The calculated thesholds within model II are considerably
lower than those of model I;

3. The maximum conversion efficiencies calculated within
model II reach higher values than those calculated within
model I but show a faster decrease with fiber length for
long fiber lengths.

The apparent contradiction between these results is a con-
sequence of the fact that our model predicts third Stokes
linear power scaling within the range of input pump pow-
ers taken into consideration (up to3.5 W) only for relatively
small fiber lengths. By increasing the fiber cavity length the
range of input pump powers over which the resonator features
linear power scaling narrows. In fact, by increasing the fiber
cavity length, the fourth Stokes Raman thresholds decrease
resulting in a rapid depletion of the third Stokes beam. This
fact may be regarded as a consequence of the use of fibers
with both high dopant concentration and extremely small core
areas (the fiber core diameters being less than3µm for the
most strongly doped fiber sample).

3 Conclusion

A redefined model for the description of a third-order cas-
caded Raman laser operation has been reported where the fi-
nite width beam transverse modal distribution has been taken
into account. The set of normalized nonlinearly coupled dif-
ferential equations describing SRS has been integrated for
a number of fibers of different lengths corresponding to dif-
ferent laser cavities.

The results have been compared with those obtained
within a prevously reported model where the beam propa-
gation has been described in terms of effective powers. The
main differences between the two sets of calculated values
arise from the presence of lower threshold powers, slope ef-
ficiencies, and maximum conversion efficiencies.

The lower values of maximum conversion efficiencies are
a consequence of the fact that our model predicts linear power
scaling of third Stokes output power only within a limited
range of input pump powers; the decrease of third Stokes
maximum conversion efficiencies with fiber length is faster
for the most strongly doped fiber sample. The results of the
simulations show that maximum conversion efficiencies of
fiber-coupled pump power up to60% are reachable both for

a 26% GeO2-doped fiber sample both for20% and4% third
Stokes output couplings. The values calculated within this
model are in good agreement with the reported experimen-
tal values of slope efficiencies and thresholds for20% output
coupling: for a4% third Stokes output coupling the calcu-
lated threshold value is even much lower than the reported
experimental value (it is almost halved).

It is our opinion that this model provides a more realis-
tic description of the performance of a cascaded fiber Raman
laser than the previously reported model since it relies on
a differential system where the functions to be integrated
are the conversion efficiencies of the pump intensity com-
ponents across the fiber section, thus being more sensitive
to the effective spatial intensity distribution than a model
where the beams are approximated by plane waves with con-
stant intensities across planes normal to the beam direction of
propagation.

Acknowledgements.The authors wish to thank the Istituto di Analisi Numer-
ica of CNR, Pavia for the computer facilities, both hardware and software.

References

1. E. Ishikawa, H. Yanagita, K. Itoh, H. Aoki, H. Toratani: OAA ’96
Monterey CA, paper ThC2-1 (1996)

2. J. Kobelke, M. Duhamel, F. Chatton, T. Georges: OAA ’96 Monterey
CA, paper FD1-1 (1996)

3. H. Po, J.D. Cao, B.M. Laliberte, R.A. Minns, R.F. Robinson, B.H.
Rockney, R.R. Tricca, Y.H. Zhang: Electron. Lett.29, 1500 (1993)

4. H. Zellmer, U. Willamowsky, A. Tunnermann, H. Welling, S. Unger,
V. Reichel, H.R. Muller, J. Kirchhof, P. Albers: Opt. Lett.20, 578
(1995)

5. D. Inissis, D.J. DiGiovanni, T.A. Strasser, A. Hale, C. Headley, A.J.
Stentz, R. Pedrazzani, D. Tipton, S.G. Kosinsky, D.L. Brownlow,
K.W. Quoi, K.S. Kranz, R.G. Huff, R. Espindola, J.D. LeGrange,
G. Jacobovitz-Veselka, D. Boggavarapu, X. He, D. Caffey, S. Gupta,
S. Srinivasan, K. McEuen, R. Patel: CLEO ’97 Post-deadline papers,
CPD31-1 (1997)

6. G. Meltz, W.W. Morey, W.H. Glen: Opt. Lett.14, 823 (1989)
7. S.G. Grubb: Proc. OSA OAA ’95 Davos, SaA1-1 (1995)
8. E. Dianov, D.G. Fursa, A.A. Abramov, M.M. Bubnov, A.M. Prukhorov,

A.V. Shipulin, G.G. Devjatykh, A.G. Guryanov, V.F. Khopin: Electron.
Lett. 31, 1057 (1995)

9. P.B. Hansen, A.J. Stentz, L. Eskildsen, S.G. Grubb, T.A. Strasser,
J.R. Pedrazzani: Proc. OAA ’96 Monterey, PDP1-1 (1996)

10. D. Von der Linde, M. Maier, W. Kaiser: Phys. Rev.178, 11 (1969)
11. W. Kaiser, M. Maier:Laser Handbook, 2nd edn., ed. by F.T. Arecci

(North Holland, Amsterdam 1972) pp. 1077–1150
12. A. Bertoni: Opt. Quantum Electron.29, 1047 (1997)
13. Y.R. Shen, N. Bloembergen: Phys. Rev.137A, 1767 (1965)
14. D. Marcuse: J. Opt. Soc. Am.68, 103 (1978)
15. D. Mahgerefteh, D.L. Butler, J. Goldhar, L.G. Joneckis: OFC’97 Tech.

Dig., p. 188 (1997)
16. G.P. Agrawal:Non linear fiber optics, 2nd. edn. (Academic Press, San

Diego 1995) p. 318
17. S.T. Davey, D.L. Williams, B.J. Ainslie, W.J.M. Rothwell, B. Wake-

field: IEE Proc.136, 301 (1989)
18. F.L. Galeener, J.C. Mikkelsen, R.H. Geils, W.J. Mosby: Appl. Phys.

Lett. 32, 34 (1978)
19. R.H. Stolen, E.P. Ippen: Appl. Phys. Lett.22, 276 (1978)


