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Abstract. We describe the steady-state and transient power
characteristics of continuous-wave intracavity singly resonant
parametric oscillators (ICSROs). The operation characteris-
tics of recently demonstrated ICSROs are reviewed. We de-
rive a rate-equation model for the ICSRO which features
a multi-frequency laser field. The steady-state behaviour of
the device is detailed and methods to optimise the signal and
idler outputs are presented. A Liapunov analysis tests the
high-power stability of the system. We find that ICSROs do
not suffer from the problems of instability which are charac-
teristic of other intracavity frequency-mixing schemes and, as
such, represent practical continuous-wave sources capable of
high output powers and conversion efficiencies. Finally, we
quantify the level of practical stability through an analysis of
the novel transient behaviour of the ICSRO. We find that, to
optimise the power stability, the signal cavity lifetime should
be made as large as possible.

PACS: 42.65.Yj; 42.60.-v; 42.60.Lh

Intracavity frequency-conversion has long been established as
an efficient method for generating continuous-wave (cw) vis-
ible light. Recent demonstrations of intracavity optical para-
metric oscillators (ICOPOs) have extended this approach to
produce cw light tunable through the infrared [1–7]. The
intense optical field within the pump laser cavity permits
the use of a singly resonant OPO (SRO) geometry, avoiding
the usual resonance constraints of cw doubly resonant OPOs
(DROs). The resulting systems have exhibited Watt-level,
amplitude-stable output powers with high quantum efficien-
cies, while single-frequency outputs have been demonstrated
within crude multi-frequency pump-lasers.

In this paper we describe the steady-state and transient
power characteristics of the cw ICSRO, principally through
the development of a theoretical model. In Sect. 1 we review
the experimental and theoretical progress in ICOPOs to the
present date. In particular, attention is paid to the operation
characteristics of the recently demonstrated ICSROs. All but
one of these devices [2] have been based upon standing-wave
laser resonators which feature multi-frequency laser fields.

In Sect. 2 we develop a rate-equation model for the ICSRO
which features such a multi-mode laser. Our model is in the
spirit of those of [8–11] where the interacting waves adopt
a particular fixed phase-relationship and dynamics occur on
a scale of the cavity lifetimes. In Sects. 3 and 4 we analyse the
steady-state behaviour of the ICSRO, and show how it may be
optimised to give very high output-power efficiencies.

It is well known, however, that at high powers intracavity
up-conversion can suffer from dynamic instabilities [9, 10].
These cause the erratic amplitude fluctuations of the “green
problem”, and present design constraints to the power-scaling
of such systems. It was shown previously [8] that intracav-
ity DROs (ICDROs) exhibit similar instabilities at moder-
ate pumping levels. While the demonstrations of ICSROs at
a pumping level of a few times the OPO threshold have shown
that stable operation is possible, it can not rule out instabili-
ties at higher pump levels. In Sect. 5 we address this issue of
high-power stability through an analysis similar to [8, 10]. We
find that ICSROs do not suffer from the same problems of in-
stability and, as such, represent practical cw sources capable
of high output powers and conversion efficiencies. Section 6
aims to quantify the level of practical stability through an an-
alysis of the novel transient behaviour of the ICSRO.

1 Summary of cw ICOPOs

The operation a cw OPO internal to a laser cavity was first
considered in a theoretical paper on the ICDRO by Osh-
man and Harris [8] in 1968. Their analysis found that, in
addition to the resonance constraints normally associated
with external-cavity DROs, such devices exhibit instabili-
ties at moderate pumping levels. They showed that the IC-
DRO could operate in three different regimes when pumped
above OPO threshold. First, there are two stable steady-state
modes of operation: the efficient and inefficient regimes; sec-
ond, there is an unstable, repetitively self-pulsing mode. The
steady-state regimes are distinguished by the relative phase
∆φ= φp−φs−φi between the driving pump laser frequency
ωp, and generated signal, and idler frequencies,ωs, ωi , re-
spectively. For the efficient regime,∆φ is fixed atπ/2 which
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optimises the nonlinear coupling. The inefficient regime is
characterised by∆φ 6= π/2; the parametric interaction drives
the phases rather than the amplitudes and departs further from
maximum conversion with increasing pump power. The puls-
ing mode produces a train of sub-microsecond pulses when
the ICDRO is pumped≈ 3 times above OPO threshold, lim-
iting the potential for high-power cw operation of such a de-
vice. The relative magnitudes of cavity losses and laser and
parametric gains determine in which regime the ICDRO will
operate.

Soon after that paper, several demonstrations of ICDROs
were reported in both cw and Q-switched lasers [12–15].
At this time Falk et al. [15] demonstrated a pulsed ICSRO
based on a Q-switched laser. Subsequently, a theoretical an-
alysis [16] of phase fluctuations in the ICDRO was published.

More recently, work has concentrated on ICSROs. These
are free of the resonance constraints of DROs and so have
the potential to form more practical devices, provided that the
higher power thresholds may be surpassed. The next reported
work on ICOPOs was a theoretical treatment in 1984 [17] of
conversion efficiency and optimum focusing in cw ICSROs.
This was followed by the first demonstration of afs OPO [18]
and further work on Q-switched ICSROs [11, 19]. This paper
extends the work in [11, 17] to accommodate multi-frequency
pump fields and addresses, for the first time, cw ICSRO
power stability and relaxation oscillations.

The first cw ICSRO was reported by Colville et al. in
1996 [1]. This device was based on a KTP crystal pumped
at the intracavity focus of aTi:sapphire laser. When pumped
above OPO threshold, the device exhibited the characteris-
tic clamping of the laser field at the threshold level [20].
An output power of400 mW was achieved with an ampli-
tude stability of±8% over a50-stime-scale. The multi-mode
laser-pump field was shown to couple through a single-mode
signal field to generate an idler of the same bandwidth as the
pump.

The power and tuning characteristics of this, and subse-
quently reported devices, are shown in Table 1. These feature
ICSROs based on both birefringently phase-matched [1–3, 5]
and the new quasi-phase-matched [4, 6, 7] materials. The for-
mer have relied on the tunability of the pump source for
wavelength tuning. The latter have allowed tuning with fixed-

External Laser Nonlinear Wavelength: Output Conversion Ref.
pump crystal signal range powers efficiency

Idler range

Ar+-Ion Ti:sapphire KTP 1.09–1.21µm 270 mW 70% [1, 3]
14 W 20 mm 2.53–2.87µm 350 mW
Ar+-Ion Rh6G KTP 1.03–1.04µm 28 mW — [2]

— 12 mm 1.25–1.37µm —
Ar+-Ion Ti:sapphire KTA 1.10–1.25µm 500 mW > 85% [3]
14 W 12 mm 2.32–3.00µm 800 mW
Diode Nd:YVO4 PPLN 1.56–1.60µm — — [4]
30 A 25 mm 3.18–3.33µm 850 mW
Diode Nd:YLF KTA 1.50µm 150 mW 70% [5]
7 W 15 mm 3.47µm 220 mW
Ar+-Ion Ti:sapphire PPLN 1.07–1.28µm 50 mW 75% [6]
6 W 19 mm 2.30–3.33µm 240 mW
DPSSL Ti:sapphire PPLN 1.07–1.28µm — 50% [6]
5.1 W 19 mm 2.30–3.33µm 100 mW
Ar+-Ion Ti:sapphire PPRTA 1.13–1.27µm — 43% [7]
8 W 4.5 mm 2.53–3.26µm 200 mW

Table 1. Powers and tuning characteristics of
cw ICSROs

wavelength lasers [4] and multi-parameter pump and grating
tuning in [6].

Total down-converted powers at the Watt level have been
demonstrated with very high conversion efficiencies [3, 4].
The ICSRO is typically less demanding of the pump laser
power or spectral characteristics than are external cavity
PPLN SROs [21, 22], since the latter require either multi-Watt
or single-frequency pump sources to exceed threshold. This
potential to operate SROs with relatively crude, moderate-
power lasers makes the intracavity approach an attractive al-
ternative to the external cavity SRO.

2 Derivation of multi-mode ICSRO model

We extend the derivation of the dynamical equations in [11]
to accommodate a multi-frequency pump laser field (for ex-
ample caused by spatial-hole-burning in a homogeneously
broadened gain medium). The laser bandwidth is assumed to
be well within the spectral acceptance bandwidth of the para-
metric interaction, allowing all laser modes to couple through
a single-frequency, resonant signal [1, 3]. Figure 1 shows the
schematic arrangement of the ICSRO. The device comprises
a pump laser of lengthLp which is in turn pumped by an
external laser source, and an OPO cavity of lengthLs in
which the signal field is resonant and the idler field exits after
a single pass. The high-finesse laser and OPO cavities share
a common end mirror and are separated by a beamsplitter.
A nonlinear crystal of lengthl is situated in the common arm

Idler

Signal

Pump
External
Pumping

Laser Cavity

OPO Cavity

Crystal
LaserNonlinear

Crystal

z = 0

Idler

Fig. 1. Schematic arrangement of the ICSRO
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and, to simplify the algebra, the cavities and crystal share
a common end atz= 0.

We define the laser and signal fields as

Ep(z, r, t)=
∑

j

2Ep j (t) exp(−r 2/w2
p) sin(kp j z)

×cos(ωp j t+φp j ) , (1)

Es(z, r, t) = 2Es(t) exp(−r 2/w2
s) sin(ksz) cos(ωst+φs) . (2)

Here, the subscriptj denotes thej th laser mode,kp j,s=
np,sωp j,s/c, andnp,s is an effective refractive index, averaged
over the cavity to avoid boundary problems.wp andws are
the sizes, respectively, of the laser and signal transverse waist
radii in the nonlinear crystal.

We choose to set the signal to be a single-frequency
field because we have found in practice [1, 3] this to be the
most common mode of operation when the laser bandwidth
is much less than the spectral acceptance bandwidth of the
parametric interaction. Additionally, we have shown that the
use of étalons in the OPO cavity can ensure stable single-
frequency signal operation [3].

The use of such a single-mode signal implies that the
OPO generates a single idler frequencyωi j for eachωp j .
We note that other nonlinear processes do take place in the
ICSRO, where thej th laser mode mixes with thekth idler
j 6= k. However these normally have a negligible effect since
they do not feed energy into a cavity axial mode. They are
only significant in the special case where the laser and OPO
cavity lengths are in a low integral ratio. For in this arrange-
mentωp j −ωik matches another resonant frequency of the
OPO cavity, which we find experimentally can allow sus-
tained multi-mode signal operation. In general, however, the
pump laser and OPO cavity lengths are not in such an integral
ratio, ωp j −ωik does not match a resonance, and additional
signal frequencies tend to be suppressed by the signal cavity.

The three interacting fields mix in the nonlinear medium
to generate a polarisation

Pi,s,p= 2ε(2deff)Ep,i,s(z, r, t)Es,p,i(z, r, t) . (3)

Only the travelling-wave components of the resonant fields
which propagate in the same direction interact, and we re-
tain only the terms which satisfyωp j = ωs+ωi j ·Pi(z, r, t)=
P+i (z, r, t)+P−i (z, r, t) radiates a two-way, single-pass idler
field, whose axial amplitude variation is calculated from the
relation

ni

c

∂E±i (z, r, t)
∂t

± ∂E±i (z, r, t)
∂z

=−ωiP
±
i (z, r, t)/2ε0nic . (4)

The± distinguishes travelling waves with±ki j z. Since the
resonant fields’ dynamics occur on a time scale of the order
of their high-finesse cavity life-times, the idler experiences
a quasi-constant nonlinear source term over its transit of the
crystal. We therefore assume that the idler’s temporal varia-
tions follow those of the resonant waves [11].

With this assumption, and combining (1)–(4), the idler
field in the crystal is found to be of the form

E±i (z, r, t) =±
2deff

∆knic
exp

(
−r 2(w−2

p +w−2
s )
)

Es(t)

×
∑

j

{
ωi Ep j (t) cos

(
−(ωi j t+φ±i j )±ki j z

)
×
(

cos
(
∆φ±j −∆k(z+0

−l )
)
−cos(∆φ±j )

)}
. (5)

Here we use a common∆k for every value of∆kj = kp j −
ks− ki j because the laser bandwidth is taken to be much
smaller than the parametric gain bandwidth. In the ICSROs
described in [1, 3], for example, the spread in∆kj is less than
0.07 cm−1. The form of the idler field is not constrained by
a resonant cavity so we assume that its transverse variation
takes the form of the driving polarisation.

Now sinceE±i (z, r, t) = 0 at the start of each pass of the
nonlinear crystal, the nonlinear coupling always establishes
a phase of∆φ±j = π/2; i.e. the coupled-wave equations pre-
dict that the idler is generated in that phase. Any subsequent
perturbation to the phase is rapidly corrected because the idler
leaves the cavity after a single pass, and no ‘memory’ of the
perturbation remains in the system. Therefore only the effi-
cient regime of the steady-state solutions can occur. Setting
∆φ±j = π/2 and∆k= 0, assuming phase matching, simpli-
fies (5) to

E±i (z, r, t) =
2deff

nic
exp

(
−r 2(w2

p+w2
s)
)

Es(t)

(
z

l− z

)
(6)

×
∑

j

{
ωi j Ep j (t) cos

(
−(ωi j t+φ±i j )±ki j z

)}
.

The envelope ofE±i (z, r, t) within the crystal increases lin-
early with±z.

We subsequently follow the derivation in [11] of the
coupled rate equations. We outline this below for comparison
with the single-frequency case.

The evolution of the resonant fields is described by the
self-consistency equations

Ės(t)+ Es(t)/τ
′
s=−ωsCs(t)/2ε0n2

s , (7)

Ėp j (t)+ Ep j (t)/τ
′
p=−ωp j Cp j (t)/2ε0n

2
p

−ωp jPlaserj (t)/2ε0n2
p . (8)

Here τ ′s, τ ′p are the signal- and pump-field cavity lifetimes.
Plaserj represents the polarisation in the laser medium which
provides optical gain to the system.Cs(t), Cp j (t) are polarisa-
tion terms describing the nonlinear medium. They are related
to the nonlinear polarisationsPx(z, r, t), wherex= s, p j , via
the volume integral

Px(t)= 2

πw2
x

2

Lx

l∫
0

2π∫
0

∞∫
0

Px(z, r, t) sin(kxz)

×exp(−r 2/w2
x)r dr dϕdz

= Cx(t) cos(ωxt+φx)+Sx(t) sin(ωxt+φx) . (9)

Equation (9) projects the nonlinear source terms onto their re-
spective cavity modes. It comprises overlap integrals for both
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the transverse and axial variations ofPx(z, r, t). The axial
overlap integral accounts for the varying amplitude of the
idler, and the fact that the fields only interact over the length
of the crystal.

Combining (1)–(3), (6), and (9) we find the polarisation
terms to be

Cs(t)=−ε0ld
2
eff

[
2/(1+w2

s/w̄
2
s)
]
(l/Ls)Es(t)

×
∑

j

ωi j Ep j (t)
2/cni , (10)

Cp j (t)=−ε0ld
2
eff

[
2/(1+w2

p/w̄
2
p)
]
(l/Lp)Ep j (t)ωi j

× Es(t)
2/cni , (11)

wherew̄s,p is the waist radius of the nonlinear polarisation; it
is related to the field waists by

1/w̄2
s,p= 1/w2

i +1/w2
p,s . (12)

Following a similar argument to [11], we now replace the
laser polarisation term in (8) withGj Ep j/Gj−thτ

′
p, to give

τ ′pĖp j =
(
Gj/Gj−th−1

)
Ep j − τ ′pωp j Cp j/ε0n2

p . (13)

Gj is the saturated gain associated with thej th laser mode
(
∑

Gj ∝ laser population inversion), whileGj−th is the
threshold gain required for laser oscillation.

We now have all of the necessary polarisation terms to
form the coupled rate equations. Before proceeding to the
steady-state and transient analyses, we simplify the equa-
tions by introducing a similar dimensionless notation to that
in [11]. The resonant fields are first re-expressed as photon
flows:

Fs= nscε0E2
sπw

2
s/4hωs ,

Fp j = npcε0E2
p jπw

2
p/4hωp j (14)

and we note from (7) and (10) that for the signal field to expe-
rience gain, the laser photon flow must exceed the threshold
value∑

j

Fp j


th

= npn2
snic2ε0Ls

hωpωsωiτ ′sd2
effl

2

π(w2
s+w2

p)

2
. (15)

The threshold value on the right of (15) is identical to that
of (27) in [11] whenαid = 0. However, now the threshold
must be attained by the total photon flow of all of the laser
modes. So long as the laser bandwidth is sufficiently small
that one may consider that all nonlinear processes are phase
matched, then the multi-mode laser provides the same gain as
a single-frequency laser of the same total power [23].

We now define a normalised gain, signal power, and laser
power by

Nj = Gj /Gj−th , (16)

Ps= Fs/
[∑

Fp j

]
th
, (17)

Pp j = Fp j/
[∑

Fp j

]
th
. (18)

After multiplying (7) byEs and (8) byEp j , the coupled equa-
tions are given by

τsṖs= Ps

∑
j

Pp j −1

 , (19)

τpṖp j = Pp j
(
Nj −1− FPs

)
, (20)

whereF = τ ′pnsLs/τ
′
snpLp is the ratio between the laser and

signal cavity finesses;τs, τp are the signal and pump photon
lifetimes which are twice their respective field values.

Finally, we add the evolution equation for the saturated
laser gain, which may be derived from the Bloch equa-
tions [11]:

τuṄj = σj −Nj

1+ xPp j + xµ
∑
k6= j

Ppk

 . (21)

τu is the upper-state lifetime andσj is the number of
times the j th laser mode is pumped above threshold (σj ∝
unsaturated gain).x is a saturation parameter, defined as

x=
[∑

Fp j

]
th
/Fsat , (22)

whereFsat is the laser saturation photon-flow. We include
cross-saturation between pairs of laser modes through the co-
efficient µ < 1. Equation (21) is identical in form to that
used by Baer in [9]. He found that the cross-saturation terms,
which are due to partial inhomogeneous broadening, are es-
sential to a description of a multi-mode laser with intracavity
frequency doubling. The inclusion of these terms allows a fair
comparison between Baer’s model and the present work. We
now proceed to analyse the steady-state and transients of
(19)–(21).

3 Steady-state power characteristics

We consider first the case of a single-frequency laser field.
Setting time derivatives to zero, (19)–(21) yield the steady-
state solution for operation above the OPO threshold,σ ≥
σth−OPO= 1+ x, as

P0
p = 1, N0 = σ/(1+ x), P0

s (N
0−1)/F . (23)

This is shown graphically in region III of Fig. 2. Above the
OPO threshold, we find that the laser field is clamped to its
threshold value, independent of the level of external pump-
ing. Power is down-converted into the signal and idler fields
which increase linearly with external pumping. The clamped
laser field limits the degree to which the laser gain is sat-
urated; the gain now increases linearly with external pump
power. Below OPO threshold, the ICSRO operates as a con-
ventional laser.

We next consider the steady-state operation including
a multi-frequency laser field. The general steady-state solu-
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External Pumping Rate: σ

I II III

σth-OPOσth-L

Ps

Pp

N

Fig. 2. Steady-state operation of signal powerPs, laser-pump powerPp, and
saturated gainN

tion of equations (19)–(21) withM axial laser modes is:

P0
p j = σj /

∑
j

σj + (1+ xµ)

×
Mσj −

∑
j

σj

/x(1−µ)
∑

j

σj

 ,

N0
j =

∑
j

σj / {M+ x (1+µ(M−1))} ,

P0
s = (N0

j −1)/F . (24)

Now the total laser power
∑

j P0
p j is clamped at the OPO

threshold level, as shown previously in (15) and experimen-
tally in [1]. The laser gain has a common value for every laser
mode and, together with the down-converted signal, increases
linearly with the total external pumping power.

From the requirement thatP0
p j ≥ 0, we find that each of

theM modes must satisfy

σj ≥ (σj )th−L = N0
j (1+ xµ)

= 1+ xµ
∑
k6= j

P0
pk+ FP0

s (1+ xµ) ; (25)

a new threshold condition which includes the parametric loss
to individual modes (in the absence of parametric loss, the
laser has a threshold of(σj )th−L = 1+ xµ

∑
k6= j P0

pk). Now
the gain to an individual mode must exceed the nonlinear loss
presented by the signal field (whose magnitude depends on
the total laser gain) as well as the parasitic cavity loss and
gain cross-saturation effects. To achieve oscillation, the gain
to a given laser mode must now be greater than a fraction[1+
xµ]/[M(1+ xµ)+ x(1−µ)] of the total laser gain.

The consequence of (25) is to narrow the laser linewidth
when above OPO threshold. For some modes in the low-gain
wings of the laser gain profile may not be able to tolerate

the additional lossFP0
s (1+ xµ). These modes, which were

present when below OPO threshold, can no longer oscillate.
An estimate of the degree of narrowing would require an an-
alysis of the spatial-hole-burning in the medium to determine
the distribution ofσj , but we can note here that the allowed
deviation from the meanσj is inversely proportional to the
number of oscillating modes.

4 Power optimisation

Optimisation of the down-converted power of the ICSRO
was first considered by Tran-Ba-Chu and Broyer [17]. They
showed that, under optimum nonlinear coupling,100% of the
potentially extractable laser power could be down-converted.
In this section we derive simple expressions, involving the ex-
perimentally measurable quantities of laser and OPO thresh-
olds, to describe optimisation of the idler and signal outputs.

Combining (17) and (22)–(23) (for the case of a single-
frequency laser), we obtain an expression for the signal
photon-flow inside the OPO cavity:

Fs= Fsat

αs

(
σ

σth−OPO
−1

)
αp(σth−OPO−σth−L) , (26)

where we have made the substitutionF = αs/αp; αs, αp are
the round-trip photon losses in the signal and pump cavities.
αpσth−L andαpσth−OPO are the round-trip gains required to
achieve laser and OPO thresholds, respectively.

In the steady-state, the round-trip photon losses from the
signal and idler fields are equal. Thus the idler photon-flow
output is

(Fi)out= αsFs= Fsat

(
σ

σth−OPO
−1

)
αp(σth−OPO−σth−L) .

(27)

Now we wish to find the optimum value ofσth−OPOfor a given
pumping rateσ . This may be done by solving the equation

∂(Fi)out

∂σth−OPO
= 0 . (28)

We thereby find that the idler power for a given pumping rate
σ is greatest when

σth−OPO=√σth−Lσ . (29)

That is when the OPO threshold is the geometrical mean of
the laser threshold and the applied external pumping rate.
Substitution of (29) into (27) gives

(Fi)
max
out = Fsatαp(

√
σ−√σth−L)

2≡ (Fp)out , (30)

which is the familiar expression for the output power of
a laser(Fp)out when subject to optimum output-coupling.
Therefore when (29) holds, the OPO is100% efficient. Fig-
ure 3 plots the ratio of(Fi)out to (Fp)out against the external
pumping rate. Once above threshold, the efficiency rapidly
rises to100% before gradually tailing off as the OPO over-
couples the laser field. By arranging the OPO threshold to
satisfy (29), the idler output power may be optimised at any
pump power.
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Fig. 3. Down-conversion efficiency expressed as percentage of extractable
laser power

We have repeated the derivation from (6) onwards with
∆k 6= 0, and find that (26) still holds, but now withσth−OPO=
1+ x/ sinc2(∆kl). It follows that (29) and (30) are true for
any∆k. The single-frequency analysis (26)–(30) may easily
be extended to the multi-mode steady-state of (24). Again,
(29) and (30) are true, assuming a common value of∆k for
all modes, but whereσ , σth−L, σth−OPO are now replaced by∑
σj , (

∑
σj )th−L, (

∑
σj )th−OPO.

To optimise the signal power, we must divide the sig-
nal round-trip loss into a parasitic lossαsp and an output
coupling lossαso. The signal output photon-flux may then be
re-expressed as

(Fs)out= αsoFs= αsoαpK

(
σ

1+ (αso+αsp)K/Fsat
−1

)
,

(31)

where we have combined equations (17), (22), and (23) and
defined

(Fp)th = αsK , (32)

since we note thatαs∝ 1/τ ′s. As before, we optimise the sig-
nal output by solving the equation

∂(Fs)out

∂αso
= 0 . (33)

We find that the signal power, for a given pumping rateσ , is
greatest when

σth−OPO=
√
(σth−OPO)minσ . (34)

(σth−OPO)min is the OPO threshold in the absence of signal
output coupling.

It is obvious that the signal and idler can only be simul-
taneously optimised in the limit when(σth−OPO)min ≈ σth−L.
Most applications, of course, will only require one of the two
wavelengths, so we propose three optimisation schemes for
the ICSRO.

4.1 Idler power

To optimise the idler power one sets the OPO threshold pump
rate to satisfy (29). Since output coupling of the signal is not
important, this may be done by either choosing the appropri-
ate length of nonlinear crystal or, if power damage is an issue,
by increasing the beam waist in the crystal [17].

4.2 Signal power

To optimise the signal power one minimises the value of
(σth−OPO)min, so that the OPO may be pumped as high above
threshold as possible, then open up the output coupling so as
to satisfy (34).

4.3 Total power

As with the signal optimisation, one minimises the value of
(σth−OPO)min by using as strong a nonlinear coupling as pos-
sible. But now the output coupling should be increased to
raise the threshold value to satisfy (29). This optimises the
idler power, while setting the signal output on the gradual de-
cline in efficiency due to over-coupling.

5 Power stability analysis

While a numerical analysis of the rate equations such as that
in [9] can show directly the presence and form of fluctuations,
an indirect analytical approach can be of significant use as
a probe for the presence of instability [8, 10]. Our approach is
to use Liapunov’s direct method [24] to test whether the sys-
tem (19)–(21) can exhibit the instabilities which may lead to
large-scale power fluctuations. For comparison with the other
intracavity systems of [8] and [9, 10], we state the results of
a Liapunov analysis of each.

We first consider the steady-state solutions (23). Re-
expressing (19)–(21) in terms of deviationsδPp, δPs, δN from
P0

p , P0
s , N0 we obtain:

τsδṖs= δPp(δPs+ P0
s ) , (35)

τpδṖp= (δPp+1)(δN− FδPs) , (36)

τuδṄ =−δN(1+ x)− xδPp(δN+N0) . (37)

We now form a Liapunov function for the system (35)–(37).
The Liapunov functionV(δPp, δPs, δN) is a scalar function
analogous to the total energy of a mechanical system. It has
the properties [24] that: (a)V(δPp, δPs, δN), and its first par-
tial derivatives, are continuous within some regionΩ about
the origin, (b)V = 0 at the origin and elsewhere inΩ V> 0,
and (c)V̇ ≤ 0 inΩ.

By neglecting the spontaneous emission term in (37), and
then integrating (35)–(37) with respect to time, we identify
a Liapunov function for this system as

V = τp

{
δPp− P0

p ln(Pp/P0
p )
}
+ Fτs

{
δPs− P0

s ln(Ps/P0
s )
}

+ τu
{
δN−N0 ln(N/N0)

}/
x , (38)

the general form of which is shown in Fig. 4. Provided
σ ≥ 1+ x (the OPO threshold condition) thenV ≥ 0, and
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takes a minimum value of zero at the origin of theδPp, δPs,
δN phase-space (the steady-state solution). Taking the time
derivative of (38) yields

V̇ =−(1+ x)δN2/xτp(N
0+ δN) . (39)

SinceδN≥−N0, (39) is always negative. This implies that as
the system evolves with time, the magnitude ofV decreases
to its minimum value; the system always settles to the steady
state. We may therefore infer that, givenσ ≥ 1+ x, the cw ef-
ficient regime of the ICSRO is completely stable against any
perturbation, and that no repetitively pulsing mode exists.

This result may be compared with the Liapunov function
for the ICDRO:

2VDRO= δĖ2
3+ δ(φ3−φ1−φ2)

2+ω3κ
2(ω1E2

2+ω2E2
1)δE

2
3 ,

(40)

V̇DRO= (g0−α3−3g0βE2
3)δĖ

2
3+κ(φ3−φ1−φ2)

2

× (ω3E2
1E2

2− (ω1E2
2+ω2E2

1)E
2
3)
/

E1E2E3 , (41)

whereδE3, δ(φ3−φ1−φ2) are deviations from their respec-
tive steady-state values, and all other notation is as defined
in [8] with α1= α2. ForVDRO≥ 0 andV̇DRO≤ 0 we require

(g0−α3) > g0βE2
3 , (42a)

(g0−α1−α2−α3) < g0βE2
3 , (42b)

(g0−α3) < 3g0βE2
3 (42c)

to be satisfied. These are the stability conditions of equations
(30), (31), and (32) in [8]; if not fulfilled, the system will be
either (a) below threshold, (b) in the inefficient regime, or (c)
exhibit large amplitude fluctuations.

Oshman and Harris qualitatively explain the pulsing
mechanism in the ICDRO when (42c) is not satisfied. They
show that the build-up rate, at high intracavity pump pow-
ers, of the signal and idler can be sufficiently rapid that it
exceeds the cavity decay rate of the pump. While at low pump
powers, the laser field may build up much faster than the
down-converted fields. This causes repeated overshooting of
the steady-state levels, yielding a train of pulses. The ICSRO
does not exhibit this behaviour because the non-resonant idler
acts as a regulator to changes in the resonant fields. It pro-
duces a more rapid response in one resonant field to a change
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Fig. 4. General form of Liapunov function (38)

in the other, which may be seen in the quadratic, rather than
linear dependence of the other resonant field in (10) and (11).
This action prevents the positive feedback which causes puls-
ing in the ICDRO.

Next we analyse the multi-frequency laser operation
in (24). Following the analysis of multi-frequency intracav-
ity up-conversion [10], we simplify our stability analysis by
settingσj = σ . We consider only the linear terms in the devi-
ations from the steady state, given that for small perturbations
the system is dominated by these linear terms. Such a linear
analysis yields a parabolic Liapunov function:

VM = τp

µ
∑

j

δPp j

2

+ (1−µ)
∑

j

δP2
p j

/P0
p j (43)

+ τsF (1+µ(M−1)) δP2
s /δP

0
s + τu

∑
j

δN2
j

/
xN0

j .

The time derivative of (43) is

V̇M =−2δN2
j σ/xN02

j . (44)

As for the single-frequency caseVM ≥ 0 and V̇M ≤ 0. So
linear asymptotic stability is ensured when the ICSRO is
pumped above threshold.

We have extended this analysis to include multiple sig-
nal frequencies, which interact independently with the pump
field. As for the single-frequency signal case, we find no evi-
dence of an unstable pulsing mode. However, the steady-state
solution tends to collapse to the single-frequency signal case
if any one mode experiences a lower threshold than the others.
This is in agreement with the experimental evidence in [1, 3].
Additionally, we have shown that the use ofétalons in the
OPO cavity can ensure single-frequency signal operation [3].
We thus conclude that a single-frequency signal field is a suf-
ficient, practical condition for stable ICSRO operation.

This result is quite different from that of intracavity up-
conversion, where other requirements for stability exist [10],
giving rise to the so-called “green problem”. The Liapunov
function and its time derivative for that system are

VSHG= τc

∑
δ İ 2

k/2Is+Gs(1−β− gεγ/G2
s)
∑

δI 2
k/2τf

+Gs(β+2gεγ/G2
s)
[∑

δIk

]2
/2τf , (45)

V̇SHG= (gε− τcγ/τf IsGs)
∑

δ İ 2
k −2gε

[∑
δ İk

]2
,

(46)

whereδIk= Ik− Is and all other notation is as defined in [10].
Clearly, forVSHG≥ 0 andV̇SHG≤ 0 we require

g< τcγ/τfεIsGs , (47a)

g< (1−β)G2
s/εγ (47b)

to be satisfied. These are the stability conditions of (9)
and (10) in [10]; if not fulfilled, the system will exhibit large
amplitude fluctuations.

The erratic pulsing behaviour of the green problem re-
sults from a combination of sum-frequency-mixing and cross-
saturation of different axial modes. While the ICSRO also
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exhibits gain cross-saturation, it does not feature any direct
nonlinear coupling of laser modes. Instead each laser fre-
quency interacts only with a common signal mode, which
may then interact with another laser mode. So it appears that
the signal field acts as a buffer between laser modes to prevent
unstable fluctuations.

It is important to highlight that for the case of the multi-
mode laser we have demonstrated stability only to small per-
turbations, and not (as with the single-frequency case) to any
perturbation. For a more general statement of stability it will
be necessary to employ either a numerical or experimental
investigation. Nevertheless we note that the other intracav-
ity systems which do show fluctuations are unstable even
to small perturbations. The contrasting linear stability of the
multi-laser-mode-, and complete stability of the single-laser-
mode-, ICSROs show promise for general stability in the
multi-mode system.

6 Transient power analysis: relaxation oscillations

Having established that the ICSRO is stable for any pump-
ing level, it is now useful to quantify the practical extent of
that stability. For we have so far shown that the system will
always evolve towards the steady state in response to a pertur-
bation, but not the manner of the evolution. If the system takes
longer to settle than the time between perturbations, it will
never reach a true steady state; different applications of the
system will require different degrees of amplitude stability.

So to address this issue of practical stability, we study the
transient dynamics of the ICSRO. We consider only a sys-
tem with the relatively simple dynamics of a single-frequency
laser-pump field. This allows the derivation of quite simple
expressions which describe the characteristic time scales of
the transients.

We first examine the case where the laser upper-state life-
time is small, and make the approximation thatτu≈ 0. Equa-
tions (20) and (21) are reduced to

τpṖp = Pp

(
σ

1+ xPp
−1− FPs

)
. (48)

We now re-express (19) and (48) in terms of perturbations
δPp, δPs from P0

p , P0
s :

τsδṖs= δPp
1

F

(
σ

1+ x
−1

)
+O(δP2) , (49)

τpδṖp=− xσ

(1+ x)2
δPp− FδPs+O(δP2) , (50)

whereO(δP2) includes all terms involving products ofδPp,
δPs.

For small perturbations, where equations (49) and (50) are
dominated by the terms linear inδPp, δPs, the system shows
relaxation oscillations described by

δP∝ exp(−γt) cos(ωt+ϕ) ,
γ = σ

2τpσth−OPO

(
1− σth−L

σth−OPO

)
ω=

√
1

τsτp

(
σ

σth−OPO
−1

)
−γ 2 , (51)

when (σ/σth−OPO−1)/τsτp > γ
2. As with the optimisation

conditions, we choose to expressγ , ω explicitly in terms of
the experimentally measurable thresholds. These relaxation
oscillations arise from the dynamics of the SRO alone since
the approximationτu ≈ 0 disallows any laser relaxation os-
cillations. Equation (51) describes the dynamics of dye-laser
based ICSROs such as the one described in [2] where usually
τu� τs, τp.

The form of (51) is similar to that for laser relaxation os-
cillations where the lifetimesτp, τs in the ICSRO take the
place ofτu, τp in the laser. The expressions differ with the ex-
tra factor inγ in (51) which depends on the ratio of laser and
OPO thresholds. The relaxation oscillations in an ICSRO also
differ from those in an external-cavity pump-enhanced OPO,
originally proposed in [25] and recently demonstrated in [26].
In the external-cavity OPOγ is independent of pumping level
and depends solely onτp.

We now repeat our analysis, this time allowing for inde-
pendent dynamics in the laser population inversion. First we
rewrite (20) and (21) in terms of linear perturbationsδPp, δPs,
δN from P0

p , P0
s , N0:

τp
∂δPp

∂t
= δN− FδPs+O(δX2) , (52)

τu
∂δN

∂t
=− xσ

1+ x
δPp− (1+ x)δN+O(δX2) , (53)

whereO(δX2) includes all terms involving products ofδPp,
δPs, δN.

The linear terms in (49), (52), and (53) may be combined
to form a third-order differential equation with solution

δP=
3∑

r=1

αr exp(λr t) , (54)

whereλr are the roots of the cubic

0= τpτuτsλ
3+ (1+ x)τpτsλ

2

+ τsxσ+ τu(σ−1− x)

1+ x
λ+σ−1− x . (55)

In general the solution will be a superposition of an ex-
ponential decay and a pair of quadrature-phased, exponen-
tially damped sinusoidal oscillations. For the special case
τu≈ 0, (54) and (55) reduce to the OPO oscillations of equa-
tion (51), whereas forτs� τu, τp (54) becomes

δP∝ exp(−γt) cos(ωt+ϕ) ,
γ = σth−OPO

2σth−Lτu
,

ω=
√
σth−OPO/σth−L−1

τuτp

σ

σth−OPO
+ 1

τsτp

(
σ

σth−OPO
−1
)
−γ 2

(56)

which describes relaxation oscillations which are dominated
by the laser’s dynamics. Forσ = σth−OPO (56) reduces to the
standard expression for laser relaxation oscillations. At higher
pumping levels, the pump-clamping effect controls the damp-
ing term, while the frequency combines terms characteristic
of both the laser and OPO oscillations.
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Equations (54) and (55) may be used to observe the tran-
sition from laser-dominated to OPO-dominated relaxation os-
cillations. Figure 5 shows the characteristics of the under-
damped component of (54), where we have normalised the
time constants toτs. The top graph shows damping coeffi-
cientsγτs for different values ofτu/τs, asτp/τs is varied; the
bottom graph shows the corresponding oscillation frequen-
ciesωτs. The curves represent relaxation oscillations for IC-
SROs when pumped at a level for optimum down-conversion.
From (22) we note thatx is related to the laser saturation flow
Fsat∝ 1/τu; we arbitrarily choose to setx= τu/τs.

For small values ofτp/τs the damping depends only on
τu/τs which is characteristic of laser oscillations. The magni-
tude of the damping term will be discussed below. For large
values ofτp/τs, we find thatγ ∝ 1/τp, as in (51). The change
in the oscillation frequency is most obvious forτu/τs= 0.1,
where there is an over-damped region of operation between
the laser- and OPO-dominated oscillations. For other values
of τu/τs the difference inωτs between (51) and (56) is clear
as the system passes through its transition.

We now analyse numerically the stability of practical sys-
tems based onTi:sapphire andNd:YVO4 lasers. Figure 6
shows the relaxation oscillations of aTi:sapphire-based sys-
tem similar to [1], where the transients were calculated using
(49), (52), and (53) withM = 1, for a pumping level of
twice OPO threshold. The laser and OPO thresholds are1 W
and4 W of argon-ion laser power, respectively;τu = 3.2µs,
τs= 0.3µs, andτp= 0.2µs. The damping and frequency for
the ICSRO are found to beγ = 0.13µs, ω = 2.3 radµs−1.
This damping time is significantly longer than that of the
Ti:sapphire laser, but is still rapid compared withNd-based
lasers.
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Figure 7 shows the damping time-constant of the relax-
ation oscillations for aNd:YVO4 system, similar to theNd-
based ICSROs in [4, 5], which is calculated from (55). This
system has a laser threshold of0.5 W and an OPO thresh-
old of 4 W; τu= 98µs, τs= 1µsandτp= 1µs. The damping
time-constants for both the basic laser, and the ICSRO are
shown, together with the damping predicted from the ap-
proximation of (56). As the diode pumping level increases,
we find that while the laser damping time drops, the IC-
SRO damping time rises from its OPO threshold value. The
ICSRO curve diverges from the predicted damping of (56) be-
cause the approximationτs� τp, τu does not hold. Instead we
find that, at high powers, the damping time settles to a level
roughly ten times longer than that of the laser at OPO thresh-
old. In practice, however, this is still only≈ 100µs since the
laser is pumped well above threshold.

Figure 8 shows the damping times for this system at high
pump powers as we now increaseτs. These clearly converge
to the level predicted in (56) asτs approachesτu. We find
that the value ofτp has little effect on the damping, in agree-
ment with Fig. 5. So the expression forγ in (56) represents
the strongest damping that may be achieved, by optimising
τs andτp, in ICSROs based on most solid-state lasers. A di-
rect solution of (55), meanwhile, is more useful for predicting
experimental transients of specific ICSRO systems.
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Naturally, to optimise the power stability of the ICSRO it
is most important to minimise the size and frequency of the
perturbations. These may arise through axial mode-hopping,
or fluctuations in the transverse modes (arising from the spa-
tial variation in gains and losses within the system). Such
perturbations may be minimised through careful mechanical
and optical design of the ICSRO cavities. Stability may then
be further optimised by maximising the system’s response to
the perturbation. We find that this may be done principally by
maximising the signal cavity lifetime, particularly when using
Nd-based lasers.

7 Conclusions

We have described the steady-state and transient power char-
acteristics of cw ICSROs. The operation characteristics of
recently demonstrated ICSROs are reviewed, and a rate-
equation model has been derived which forms the basis for
a steady-state and transient analysis. The model embodies
the key characteristics of the experimental systems [1–7]
of multi-frequency, cross-saturated laser fields which couple
through a single-frequency signal.

The steady-state behaviour of the device is detailed. In
addition to the steady-state features previously reported from
theory and experiment, we find a new threshold condition for
individual laser modes which causes a narrowing of the laser
linewidth. We derive the conditions under which signal and
idler output powers are maximised. With these simple expres-
sions, we propose schemes for optimising ICSRO output.

A Liapunov analysis tests the high-power stability of the
system. We find that ICSROs do not suffer from the prob-
lems of instability which are characteristic of other intracav-
ity frequency-mixing schemes, and as such represent practi-
cal continuous-wave sources capable of high output powers
and conversion efficiencies. Finally, we quantify the level of

practical stability through an analysis of the novel transient
behaviour of the ICSRO. Equations describing relaxation os-
cillations are derived. We find that, to maximise the power
stability, the signal cavity lifetime should be made as large as
possible.
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