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Abstract. Stoichiometric conditions have been shown to in-
fluence substantially the dispersion characteristics of birefrin-
gent crystals. We have investigated a temporal method using
ultrashort pulse propagation to determine the dispersion con-
stants in the visible spectrum, and the method was applied
to the characterization of an AgGaS2 crystal. This method,
based on group velocity measurement, allows the determin-
ation of the principal axes, the indices, the group velocities
and the group velocity dispersion (GVD).

PACS: 42.70; 42.80

For parametric processes involving ultrashort light pulses, it
is important to have not only a precise knowledge of both ex-
traordinary and ordinary indices (for uniaxial crystals) of the
medium, because of the phase-matching condition require-
ments, but it is also necessary to estimate precisely the group
velocitiesVg(ω) = (dk/dω)−1. These determine the interac-
tion length of the pulses and the group velocity dispersion
(GVD) k′′(ω) = (

d2k/dω2
) = −(1/V2

g )× (
dVg/dω

)
which

gives rise to the self-temporal broadening of pulses during
propagation.

The determination of these characteristics can be achieved
in two different ways: First, a precise knowledge of the re-
fractive index is sufficient as a rule to obtain an estimation
of the group velocity and the GVD. The experimental data
fitted by Sellmeier equations for silver thiogallate (AgGaS2)
given in most references provide different values (discrepan-
cy of the order of0.3%), although each of them offer a good
relative precision on the fit (about0.01%). We are not able to
define clearly the origin of these differences but it appears that
the stoichiometric composition might be different from one
crystal to another [1]. In this context, it is difficult to speak
about relevant data for the group velocity and the GVD (re-
spectively the first and second order derivatives of the index
with respect to wavelength) without direct measurements of
the actual crystal sample.

Usually, index measurements are performed with contin-
uous wave (cw) light sources. The index can be determined
by a spatial method using prism light deviation [1, 2]; but this
method implies a particular cutting of the sample. So, the

“measured crystal” cannot be the crystal used in actual ex-
periments.

Interference in the spectral domain with a white light
source has also been used recently [3, 4]. It is a very precise
method (absolute accuracy of the order of 10−5) for index re-
trieval of isotropic crystals. However, it is not obvious here
how to apply this method to birefringent crystals, because it
does not allow a direct determination of the principal axes
and it requires a crystal surface quality of better thanλ/2 [3].
Moreover, one could think of applying this method with
standard femtosecond sources by using the techniques usu-
ally devoted to pulse features characterization [5]. However,
the “narrow” bandwidth (4–20 nm) of standard femtosecond
sources (50–100 fs) would only provide local spectral infor-
mation on the dispersion characteristics and it would be diffi-
cult to retrieve reliable index coefficients from such a narrow
interferogram.

Finally, the index can be retrieved [6, 7], or at least im-
proved [8–12] from an analysis of phase-matching conditions
in a particular parametric process. Realistic and relevant data
can also be obtained by a correct weighting of data provided
by different types of measurements [13].

We suggest a second complementary approach which con-
sists of using ultrashort pulses for a direct group velocity
measurement by a temporal method following the pioneering
work of Hirlimann et al. [14] on group delay measurements.
This method requires the use of an autocorrelator (modified
Michelson interferometer) and a monochromator (spectrom-
eter).

This will permit the following :
(i) easy determination of the orientation of the ordinary and
extraordinary axes;
(ii) direct measurement of group velocities;
(iii) easily retrieval of the refractive indices;
(iv) derivation of the GVD from the group velocities.

1 The temporal method

1.1 Experimental device

The idea for measuring group velocity consists of compar-
ing the propagation time of ultrashort pulses (about100 fs)
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through the crystal with the propagation time along the same
length in air. For this purpose, we use a standard autocorre-
lator using a KDP doubling crystal in a “background free”
intensimetric configuration (Fig. 1). The carrier wavelength
is measured with a monochromator that has a0.1 nm wave-
length precision. The pulses are produced by aβ-barium-
borate (BBO) Type I optical parametric amplifier (OPA), op-
erating in the0.5–0.7 micronrange and pumped with micro-
joule400-nm-wavelength pulses from a200-kHz Ti:sapphire
regenerative amplifier system. A diffraction-limited white-
light continuum produced in sapphire is used as a low-energy
signal seed. The amplified signal pulses have a Gaussian
shape with a typical energy of100 nJ, a mean temporal width
(FWHM) of 100 fs and a bandwidth that ranges from 5 to
10 nm. The beam intensity has been attenuated by one order
of magnitude to avoid any eventual two-photon absorption of
the crystal in the visible range (this is the reason why the in-
tercorrelation trace in Fig. 2 is noisy).

First of all, the zero delay between both arms is adjusted
without the sample by optimizing the autocorrelation signal.
Figure 2 shows a typical intensimetric autocorrelation func-
tion obtained with100 fstransform-limited Gaussian pulses.
The sample is a1.29 mmthick AgGaS2 crystal cut atθc = 90◦
for use in non-critical phase-matching (NCPM) frequency

photomultiplier

Monochromator

Fig. 1. Schematic experimental layout for compensation length measure-
ment

Fig. 2. Typical experimental intensimetric autocorrelation trace

mixing experiments [15, 16]. The focusing of a small-range
microscope allows an accurate measurement of the crystal
thickness with a5 micronprecision. Besides, the actual value
has been confirmed numerically by seeding the thickness as
a varying parameter in the nonlinear fit procedure. The prin-
cipal axes of the crystal are normal to the wave vector of the
incident field. The crystal is placed perpendicular to the in-
jected beam in arm 2, and its position is optimized by tilting
it, in order to superpose the incident and back-reflected light
from the input face. The pulse coming from arm 2 is delayed
with respect to its twin pulse coming from the other arm. The
first arm length can be adjusted with an accuracy of± 5µm
(∼ 17 fs) in order to find the zero delay. The ordinary (ex-
traordinary) axis can be selected by minimizing (maximizing)
this compensation length on the free arm1 at a given wave-
length (λ = 540 nm) with correct positioning of the crystal
towards the incident wave.

The experimental parameters and uncertainties for the
crystal and compensation lengths are given in Table 1.

Let us now examine the way to find the group velocity, the
index and GVD using the compensation length experimental
measurements.

1.2 Dispersion characteristics

An adjustment of the dispersion parameters is realized using
the standard Levenberg–Marquardt nonlinear fit proced-
ure [17]. As a reference, we considered the experimental
results for the AgGaS2 crystal in [1, 6, 7, 18]. The indices are
given by the following Sellmeier equations for the ordinary
(o) and extraordinary (e) indices:

nref
o,e =

√
Aref

o,e+
Bref

o,e

1−Cref
o,e/λ

2
− Dref

o,eλ
2 . (1)

The reference values of the parameters are given in Table 2.
A specific procedure has been developed for each of the dis-
persion characteristics.

1.2.1 Direct group velocity measurements.It is easy to show,
by examining the time delays, that the “compensated length”
`comp on the free arm is related to the group velocityVg in the
crystal as follows:

`comp(λ) = Leff.

(
Vair

Vg(λ)
−1

)
. (2)

Table 1. Experimental parameters

Quantity Designation Experimental value

AgGaS2 crystal length Lcrystal 1.290 mm

Uncertainty on the length ∆Lcrystal ±5µm

Uncertainty on compensated length ∆`comp ±5µm

Uncertainty on the wavelength ∆λ ±0.1 nm

Scanned spectral range [λmin; λmax] [0.5; 0.7] µm

Cut angle of the crystal θc (π/2) rad
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Parameter Reference I [18] Reference II [6] Reference III [1] Reference IV [7]

Aref
o 2.958 3.3970 4.6187 3.6280

Bref
o 2.770 2.3982 1.3758 2.1686

Cref
o (µm2) 0.08703 0.09311 0.1205 0.1003

Dref
o (µm−2) 0.00210 0.00228 0.2098 0.00229

Aref
e 3.947 3.5873 5.5373 4.0172

Bref
e 1.550 1.9533 0.5685 1.5274

Cref
e (µm2) 0.1307 0.11066 0.1725 0.1310

Dref
e (µm−2) 0.00233 0.00227 0.6704 0.00228

Table 2. Reference parameters for AgGaS2 in-
dices

Hence the experimental measurements of`comp lead to direct
knowledge of the group velocity:

Vg(λ) = Vair · Leff

(`comp(λ)+ Leff)
. (3)

where Leff = 2× Lcrystal is the effective length of the crys-
tal used in the measurements andVair ' C/nair is the group
velocity of the pulses in air.

The experimental compensation lengths for the ordinary
and extraordinary axes are depicted in Fig. 3. The compen-
sation length is a simple function of the wavelength, and in
order to eliminate the points dispersion, it is useful to fit the
compensation length with a third-order polynomial:

`comp= a0 +a1λ+a2λ
2 +a3λ

3 . (4)

The fitted coefficient values and their corresponding uncer-
tainties are given in Table 3 and the corresponding fit curves
are displayed in Fig. 3.

The ordinary and extraordinary curves cross atλ '
620 nm. Therefore, it is necessary to select a wavelength far
away from the crossing point of the curves to discriminate
the ordinary and extraordinary axes by optimizing the com-
pensating length. This is the reason why we have chosen the

Fig. 3. Experimental measurements of the compensation length for ordinary
and extraordinary axes. The fitted values are also displayed

Table 3. Fitted parameters for group velocity retrieval

Parameter Fitted value

ao
0 ±∆ao

0 30.0237± 6.0×10−4 mm

ao
1 ±∆ao

1 −88.486± 1.0×10−3 mm/µm

ao
2 ±∆ao

2 119.308± 1.5×10−3 mm/µm2

ao
3 ±∆ao

3 −54.804± 2.5×10−3 mm/µm3

ae
0 ±∆ae

0 47.972± 5.0×10−4 mm

ae
1 ±∆ae

1 −167.916± 9.0×10−4 mm/µm

ae
2 ±∆ae

2 237.012± 1.5×10−3 mm/µm2

ae
3 ±∆ae

3 −113.308± 2.3×10−3 mm/µm3

lower wavelengthλ = 540 nmfor positioning the ordinary or
extraordinary axes.

The ordinary group velocityVo
g deduced from the com-

pensation length is displayed in Fig. 4. This figure contains
also the group velocities obtained from the reference data.

The uncertainty on the group velocity is calculated ac-
cording to the uncertainty in the fitting coefficients:

∆Vg '
3∑

i=0

(∣∣∣∣∂Vg

∂ai

∣∣∣∣ ∆ai

)
+

∣∣∣∣∂Vg

∂λ

∣∣∣∣ ∆λ+
∣∣∣∣ ∂Vg

∂Leff

∣∣∣∣∆Leff . (5)

Fig. 4. Comparison between the fitted values for the ordinary group velocity
and the reference data derived from Table 2
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The uncertainties of the fitting coefficients∆ai (Table 3) are
computed independently in order to ensure a99% confidence
level.

The relative uncertainty on the ordinary group velocity
(∆Vo

g /Vo
g ) (displayed in Fig. 7) remains below0.1%. This

can be compared with the relative gap (which is greater than
2% for some wavelengths) between the four data sets ob-
tained by first-order derivative calculations of (1). It appears
that it is necessary to measure directly the group velocities of
the sample itself rather than deducing them from precise ref-
erence indices measured for different crystals: the derivation
increases the discrepancy between the various references.

1.2.2 Refractive index calculation.In the normal dispersion
regime(dn/dλ ≤ 0), the group velocity of an optical pulse is
related to the index via a first-order derivative:

Vg(λ) = 1

dk/dω
= C

n(λ)−λ (dn/dλ)
. (6)

The index is then determined by integrating the first-order dif-
ferential equation:

n(λ)−λ

(
dn

dλ

)
= nair

(
`comp(λ)

Leff
+1

)
(7)

where a direct integration provides the solution:

n(λ) = nair + (n0 −nair)

(
λ

λ0

)
−nairλ

λ∫
λ0

`comp(x)

x2Leff
dx . (8)

Of course, the refractive index is only defined to the near-
est constantn0 = n(λ0). If a precise indexn0 is known at
a specific wavelengthλ0, the index at any wavelength is deter-
mined by integration of the compensation length. But this is
not generally the case. However, a solution can be found with-
out any reference constant, by specifying a particular spectral
dependence for the index. In practice, we adopt the classical
Sellmeier expression for the index given in (1). This form is
then derived in the compensation length formulation:

`o,e
comp= Leff

nair

(
no,e−λ

(
dno,e

dλ

)
−nair

)
. (9)

Finally, a fit is performed on the experimental compensa-
tion length by using the preceding expression. This fit yields
the coefficientsAo,e, Bo,e, Co,e displayed in Table 4. The in-
frared parametersDo,e have been neglected in the fit proced-
ure because they are not relevant in the measurement range
(0.5–0.7) µm. The spectral dependence of the ordinary in-
dexno is displayed in Fig. 5 (solid line for the fit and dotted
lines for the reference data). Our fitted curve is in agreement
with the reference data (with a maximum relative discrepancy
equal to0.3%). We have used the same procedure as pre-
viously for computing the relative uncertainty on the index
(∆no/no). Figure 7 shows that this uncertainty remains below
3.0×10−4 for a confidence level of99% on each parameter
Ao, Bo, Co. We obtain accuracies of the same order for the
extraordinary axis.

Fig. 5. Comparison between the fitted values for the ordinary refractive
index and the reference data given in Table 2

Table 4. Fitted parameters for refractive index retrieval

Parameter Fitted value

Ao ±∆Ao 3.917± 1.6×10−3

Bo ±∆Bo 1.905± 5.7×10−4

Co ±∆Co 0.10596± 2.7×10−5 µm2

Ae±∆Ae 4.414± 1.3×10−3

Be±∆Be 1.2288± 3.3×10−4

Ce±∆Ce 0.13833± 3.0×10−5 µm2

1.2.3 Determination of the GVD factors.It is usual to define
a second-order dispersion factor by the quantity:

k′′ =
(

d2k

dω2

)
= −1

V2
g

(
dVg

dω

)
(10)

which can be directly expressed in terms of the experimental
data`comp by the formula:

k′′ = −nair
λ2

2πC2Leff

(
d`comp

dλ

)
. (11)

In this case, the GVD factork′′ is represented by a third-order
polynomial in the spectral domain.

k′′ = α+βλ+γλ2 + δλ3 . (12)

This expression can be integrated using (11) in order to fit the
experimental̀ comp measurements with the following expres-
sion:

`comp= −2πC2Leff

nair

(
−α

λ
+β ln(λ)+γλ+ δ

2
λ2

)
+ ε . (13)

The numerical values of the fitting parameters are gath-
ered in Table 5. The deduced GVD factorsk′′

o and the
corresponding relative accuracies are shown respectively
on Figs. 6 and 7 for the ordinary axis. The maximum
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Fig. 6. Comparison between the fitted values for the ordinary GVD factor
and the reference data derived from Table 2

Fig. 7. Calculated relative uncertainties of the fitted group velocity, index,
and Group Velocity Dispersion factor for the ordinary axis

Table 5. Fitted parameters for GVD factor retrieval

Parameter Fitted value

αo ±∆αo 7.1931×10−23 ± 1.0×10−28 s2/m

βo ±∆βo −3.02344×10−16 ± 4.2×10−22 s2/m2

γo ±∆γo 4.3879×10−10 ± 2.0×10−15 s2/m3

δo ±∆δo −2.1533×10−4 ± 1.9×10−8 s2/m4

αe±∆αe 3.21740×10−22 ± 3.0×10−28 s2/m

βe±∆βe −1.44400×10−15 ± 1.0×10−22 s2/m2

γe±∆γe 2.19029×10−9 ± 1.1×10−15 s2/m3

δe±∆δe −1.11583×10−3 ± 4.2×10−9 s2/m4

relative accuracy (∆k′′
o/k′′

o) is of the order of0.6%; it is
larger than the relative accuracy obtained for the indices
and group velocities. Moreover, the results obtained with
the reference data strongly diverge (about40% at λ '
500 nm).

2 Discussion and conclusion

The temporal method provides a good scheme for the deter-
mination of indices, group velocities and GVD constants of
any crystal. In addition, it allows a direct determination of
the principal axes of a birefringent medium by maximizing
or minimizing the compensation length. As an application,
we have studied the dispersion features of an AgGaS2 crys-
tal and obtained relative accuracies respectively of the order
of 3.0×10−4 for the indices, below 1.0×10−3 for the group
velocities, and about 6.0×10−3 for the GVD factors. This
method is more suited for group velocity and GVD meas-
urements than the second-order derivation of indices which
generally amplify the errors.

Some technical improvements are achievable for increas-
ing the accuracy. First of all, the accuracy for the determin-
ation of the zero delay position in the Michelson interferome-
ter can be considerably enhanced by using an interferometric
method, rather than an intensimetric one. In this way, a first-
order autocorrelation would be well suited if the compensa-
tion length measurement and the signal-to-noise ratio are also
improved.

Secondly, a knowledge of the crystal thickness can be
improved by using the internal reflections in the crystal and
measuring the corresponding compensation lengths. Finally,
this method can be applied for longer crystals, but cannot be
applied for very thin media: the lower limit is determined by
the pulse length which is about30µm for a100 fsduration.
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