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Abstract. We reanalyze the pulse width in synchronously
pumped lasers. With experimental results from a color cen-
ter laser, corresponding numerical simulations, and data from
the literature, we investigate the dependence of the laser pulse
width as a function of the most important parameters without
making assumptions about pulse shape stability. We derive an
empirical unified fomula that allows us to predict the opti-
mum achieveable pulse width and the required parameter val-
ues such as tuner selectivity. It also gives information about
pulse properties for other than the optimum choice of param-
eters. Moreover, it provides information about pulse stability.
The formula is also applicable to synchronously pumped op-
tical parametric oscillators.

PACS: 42.60

The generation of tunable ultrashort pulses has relied, through
the seventies and eighties, on synchronous pumping of a tun-
able laser (most often a dye laser) with a train of pulses
from a fixed-wavelength pump laser. This useful technique
has fallen out of favor with researchers in the nineties be-
cause advanced techniques of passive modelocking appear
more elegant and allow shorter pulses. Nevertheless, a consid-
erable installed base of synchronously pumped lasers perform
in laboratories around the world. Recently, there has been
renewed interest in synchronous pumping because passive
modelocking is not universally applicable, or practical. Syn-
chronously pumped optical parametric oscillators (OPOs) are
a case in point.

In the seventies, theoretical models for the process were
worked out. Most of these models, however, assumed self-
consistency of the generated pulse. With such an ansatz it is
ruled out a priori that the model can predict regimes of un-
stable pulsing. This was not lost on all researchers: as early
as 1970, Pike and Hercher [1] pointed out that the concept of
a smooth, periodically repeated pulse shape might be illuso-
ry, and argued that possibly the pulses resemble thermal noise
within some temporal envelope. In 1979 van Stryland [2]
pointed out that in the case of a noisy pulse train the interpre-
tation of autocorrelation signals to deduce the pulse duration

could be severely misleading, and that typical observed au-
tocorrelation shapes might be more indicative of noise than
of the actual pulse shape. Subsequently, several other authors
realized the insufficiency of a self-consistency approach [3–
5]. McDonald, Rossel, and Fleming [6] concluded from their
experiments that the concept of a noise burst put forward by
Pike and Hercher [1] was correct and that the concept of the
pulse width as a single quantity was insufficient; rather, they
emphasized a strict distinction between the coherence time
and the total duration of the pulse.

A large number of experimental and theoretical reports
from those years created the impression, however, that a sta-
ble regime of operation is always easy to find and that irregu-
larities of the pulse train do not normally occur or do not pose
a problem. Such behavior would indeed be hard to detect with
standard experimental techniques such as autocorrelation, be-
cause these techniques average over many pulses. That does
not prove that it does not exist, however, and certainly in some
applications such as nonlinear spectroscopy those instabilities
would pose severe unexpected and unexplainable problems.

Meanwhile, numerical procedures became more sophisti-
cated, and it became feasible to include realistic fluctuations.
In such simulations researchers found instabilities more of-
ten than a stable train of pulses [7–10]. New and Catherall
went so far as to warn that smooth pulses might actually be
impossible to obtain [11].

In the 1990s, new fascinating techniques of passive mod-
elocking were found that have advanced the state of the
art considerably. As a side effect, synchronous pumping
ceased to be a topic of great current interest. Therefore,
many promising lines of research were discontinued at a time
when truly realistic concepts were just beginning to emerge.
More recently, however, it has been realized that synchronous
pumping still has its place in some situations, especially if
OPOs are taken into account. Therefore, an unbiased reexam-
ination of the pulse formation process in synchronous pump-
ing is warranted.

Some of the existing knowledge requires close scrutiny.
Consider, for example, the output pulse widthτ which may be
expected to depend, among other things, on the pump pulse
durationτp. A theoretical result published in 1978 [12, 13]
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predictedτ ∝ (τp)
1/2. This result was tested experimental-

ly by several groups [14–17], and the expected square root
dependency was seemingly confirmed. Unfortunately, experi-
ments were restricted to the rather small range of pump pulse-
width variation available at the time. In spite of its indepen-
dent confirmation and subsequent widespread acceptance, the
result was doubted early on [3]. It was shown only recent-
ly to be erroneous; even experimental data that supposedly
‘confirmed’ this relation, make a better fit to a revised theo-
ry which has the additional benefit of being more physically
intuitive [18].

1 Reexamination

In our reexamination we make no assumptions about pulse-
to-pulse stability. We draw on three sources of information:
(1) Our own numerical simulations, because we have refined
theoretical models to render simulations more realistic than
was feasible before, (2) our own experiments, because we
recently studied a laser system which constitutes a particular-
ly clean case of modelocking dynamics, and (3) a literature
survey of experimental data on a broad range of laser types.
The combined results lead us to a unified description for the
output pulse width in terms of a simple formula that covers
a wide range of situations including synchronously pumped
OPOs. In fact, we question the concept of ‘the’ pulse width.
In accord with [1, 6, 11] and others cited already, we come
to the conclusion that over wide segments of the parameter
regime there is no such thing as a well-defined pulse width.
We therefore distinguish several characteristic times (all de-
fined as FWHM): The ‘bright’ timeτ denotes that time inter-
val during which appreciable laser emission takes place, and
the coherence timeτc is the time scale over which the emitted
light is coherent. These quantities are not normally accessi-
ble directly in an experiment. The quantity directly measured
is the width〈τa〉 of an autocorrelation trace where the an-
gled brackets remind us that normally an average over many
pulses is measured. However, since the autocorrelation may
be not just bell-shaped but consist of a pedestal and a co-
herence spike, we further distinguish〈τap〉 and 〈τac〉 where
applicable.

The calculation of the autocorrelation widths from sim-
ulated pulses presents no difficulties. To do the inverse op-
eration requires knowledge of the pulse shape function; it
also requires that the average autocorrelation shape is repre-
sentative of the individual pulse autocorrelation (no fluctua-
tions inτ). Nevertheless it is common practice to estimateτ
throughτ = CDEC〈τap〉, where the deconvolution factorCDEC
occasionally is the result of a reasonable guess.

We will avoid making such assumptions. In an ideal case
of a train of identical Fourier-limited bell-shaped pulses,
〈τap〉 = 〈τac〉, and there is no coherence spike in the autocor-
relation. In less clear-cut cases, we can state safely only that
(i) τc ≤ τ, (ii) τc equals the inverse spectral width of the pulse
train, and (iii)τc is proportional to the width of a coherence
spike in the autocorrelation,〈τac〉. The goal for most peo-
ple presumably is to make ‘the’ pulse width small. Restated,
the goal should then be to minimize bothτ and the shot-to-
shot fluctuations simultaneously, while staying in the regime
where〈τap〉 ≈ 〈τac〉.

This paper is organized as follows. We first outline the
numerical model and our experimental setup. Next, experi-
mental data will be compared to results of our numerical
computations. We will combine the influence of the most im-
portant parameters in an extended version of the description
given in [18]. Then, in a survey of different laser materials
we quantify the influence of the gain cross section on the
minimum achievable pulse width. It will turn out that one
can include even the somewhat special case of synchronously
pumped OPOs. Finally, we arrive at the full equation which is
the central result of this paper. It allows assessment of various
factors influencing the pulse formation in a very transpar-
ent way, and, with the knowledge of certain coefficients for
this laser, its performance in terms of stability and achievable
pulse width can be calculated. An application is given, and
limits of validity are addressed.

2 The numerical model

We implemented a numerical model of the synchronously
pumped laser based on the approach of New and collaborators
[4, 8, 11] that contains gain, loss, spectral filtering, and spon-
taneous emission noise. We augmented the model with the
addition of dispersion and a realistic modeling of the tuning
element. Details of the algorithm are given in the Appendix.
This extended model allows a detailed comparison with ex-
perimental data. In order to simulate typical experimental
procedures as realistically as possible, we performed two-
parameter scans in spite of their considerably higher com-
putational cost. This means that whenever one parameter is
varied, the cavity length mismatch is continuously adjusted
so as to track a required optimum situation, for example, the
shortest possible average autocorrelation width〈τap〉. (The
choice of optimum cavity length is not trivial, and there is
no complete theory to guide in the choice. We found some
interesting insights on this matter which will, however, be
presented elsewhere).

3 Experimental setup

The laser considered in our experiments is aNaCl:OH−(F+
2 )H

color center laser. This material lases from 1.47 to1.7µm, in
a bandwidth of∆ν = 25 THz, and is pumped by aNd:YAG
laser at1.064µm. The fluorescence lifetime was determined
to be t1 = 150 ns[19], and the gain cross section follows as
σ = 8.5×10−17 cm2. The pulse duration of the color center
laser and the inclination to form satellite pulses can be signifi-
cantly reduced by the use of shorter pump pulses [20], as will
become clear.

To obtain compressed pulses from theNd:YAG pump
laser, we chose the concept of additive-pulse modelocking
(APM; for a general overview see [21]). Atλ = 1.064µm this
laser delivers nearly transform-limited pulses with a width of
6 to10 psand an average output power up to5 W [22]. Using
such pulses as pump pulses, the color center laser produces
output pulses of down to〈τap〉 ≈ 1 psduration.

The color center laser is arranged in the doubly fold-
ed astigmatically compensated five-mirror setup (see Fig. 1).
The color center crystal, oriented at the Brewster angle, is
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Fig. 1. Experimental setup of theNaCl:(F+
2 )H color center laser. Mi : mir-

rors, BTP: birefringent tuner plate,LN2: liquid nitrogen tank

mounted on a liquid nitrogen cold finger in a vacuum cham-
ber. It is collinearly pumped by the APMNd:YAG laser;
pump absorption in the crystal is60%. An optical diode pre-
vents retroreflection into the pump laser. An argon ion laser
beam with about50 mWcw auxiliary light atλ = 488 nmis
collinearly adjusted with the pump beam to prevent orienta-
tional bleaching of the crystal. For tuning of the laser and
for spectral filtering we use various Brewster-angled quartz
birefringent tuner plates (thickness ranging from0.325 mm
to 5.2 mm). Best performance is reached with an output cou-
pler with 22% transmission. At6 W pump power, the laser
delivers average output powers of900 mW.

Pulse width is measured by a standard non-collinear au-
tocorrelator. We routinely measure pulse widths by least
square fit of digitized data using a Levenberg-Marquardt al-
gorithm [23] to fit a sum of two sech2 functions. This im-
mediately yields〈τap〉 and 〈τac〉 in cases when these differ,
and does no harm when they do not. The same procedure is
applied to numerically generated simulation data as well.

4 Towards a systematical treatment of parameter
dependence

In [18] we concluded that the laser output pulse widthτ can
be calculated from the pump pulse widthτp and the filter time
τf with the expression

τ =
√

(Cfτf)2 + (Cpτp)2 , (1)

with two empirical coefficientsCf andCp. Additionally, there
was evidence for a proportionality of the coherence time to
the available bandwidth:τc = Cfτf . It implies that the pulse
width is proportional to one of the characteristic timesτf or
τp as long as the other is small, and describes the smooth
crossover when both are comparable. This expression follows
quite naturally from analytical theory and is corroborated by
both experiment and numerical simulations. Quite obviously,
it is strongly simplified and does not hold when other factors
influencing the pulse width begin to become noticeable. We
will show how such further influences can be incorporated in
a straightforward manner.

To avoid assumptions about the pulse shape we reformu-
late (1) for autocorrelation widths as

CDEC〈τap〉 =
√

(Cfτf)2 + (Cpτp)2 . (2)

As already pointed out, care should be taken in calculatingτ
from this.

4.1 Intracavity dispersion

For state-of-the-art passively modelocked lasers with output
pulses in the ten-femtosecond range, intracavity dispersion is
one of the most crucial factors determining the pulse width.
Here we are concerned with somewhat longer pulses so that
the impact of dispersion is not quite as dominant. We can
therefore restrict ourselves to a discussion of second-order
dispersionB2 = β2l (l is the cavity length) [24], and neglect
higher-order corrections.

In our laser,B2 is determined mainly by the Brewster win-
dows of the vacuum chamber, and to a lesser extent by the
gain material and other components in the beam path. A real-
istic estimate isB2 = −500 fs2. Just how much influence this
amount has on pulse shaping depends on the bandwidth of
that pulse. We therefore used different combinations of tuner
plates to vary the filter time and in each case measured the
autocorrelation traces. The result is shown in Fig. 2 for both
〈τap〉 (circles) and〈τac〉 (crosses). (For the solid line, see the
penultimate paragraph of this section). Remarkably,〈τac〉 is
proportional toτf over the whole range. For〈τap〉 the relation
is more complicated. For sufficiently largeτf , the autocorrela-
tion shape is smooth (〈τap〉 = 〈τac〉 = τa ∝ τf ), and we may as-
sume that the pulse shape is stable and reasonably well known
so that we can deconvolute withCDEC = 0.65 and obtain the
slopeCf . For very smallτf , 〈τap〉 rises again. Even though
only one tuner plate was available in this regime, the increase
was reproducible and unmistakable. Let us point out that it
is a well known (but badly documented) fact that judicious
choice of the tuner is required for optimum performance;
neither too much nor too little selectivity is desirable. The
minimum of 〈τap〉 corresponds to the ‘best’ pulses because,
also in this regime,〈τap〉 and〈τac〉 are not very different, so the
autocorrelation shape is still reasonably smooth. The short-
est pulse is thus characterized by〈τap〉 = 1.6 pswhich would
commonly be interpreted asτ = 1.0 psafter deconvolution.
There is an increase of pulse width for too much bandwidth
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Fig. 2. Measured autocorrelation widths (circles, pedestal widthτap; crosses,
coherence widthτac) as a function of filter timeτf . The solid line is a fit
of (4)
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which is not described by (1) as it stands; we interpret this
increase as a consequence of intracavity dispersion.

We performed numerical simulations to check whether
a similar behavior is predicted by the model. Figure 3 shows
the calculated pulse width (again, both pedestal width and
coherence time are shown) as a function of filter time with
B2 = −500 fs2. The qualitative similarity is striking. The co-
herence time is obviously unaffected by dispersion. The min-
imum pedestal width is found for the data point atτf = 20 fs,
just as in the experimental data. Also, a minimum achiev-
able pedestal width of〈τap〉 = 1.3 psis predicted, which is in
reasonable agreement with the experimental value of1.6 ps.
Again, for the solid line, see the end of this section.

In a complementary approach we variedB2 and comput-
ed the effect on the pulse width for several birefringent tuner
plates. The results are shown in Fig. 4. For a given tuner
element the achieveable pulse width is constant as long as
dispersion is low enough. In this region the pulse width is af-
fected mainly by the bandwidth limiting effect of the filter
and the effect of pump pulse width.

Beyond a ‘cross-over’ value of dispersionBXO, 〈τap〉 in-
creases with increasing dispersion. Well beyondBXO, 〈τap〉
increases linearly with increasing dispersion with a certain
slope inversely proportional toτf . BXO itself increases with
increasing filter time. The combination of these observations
can be incorporated into (1) by the addition of a new term that
is motivated by the following consideration. It is well known
(see for example [24]) that (unchirped) Gaussian pulses of
width τ0 (FWHM) propagating through a dispersive medium
of lengthz are spread out toτ1 given by

τ1 =
√

τ2
0 +

(
κβ2z

τ0

)2

, (3)

with κ a pulse-shape-dependent constant of 4 ln 2 for a Gaus-
sian. In the case at hand, photons interact with the cavity
dispersive elements for one photon lifetime which we write
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Fig. 3. Calculated autocorrelation widths (circles, pedestal widthτap; cross-
es, coherence widthτac) as a function of filter timeτf under influence of
intracavity dispersion. A pump pulse width ofτp = 10 pswas assumed. The
solid line is a fit of (4)
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Fig. 4. Calculated autocorrelation widthτap as a function of intracavity dis-
persionB2 for several tuner plates. A pump pulse width ofτp = 5 ps was
assumed, short enough not to noticeably affect the curves shown. The solid
lines are fits of (4) to the calculated data points which are not shown for
clarity; scatter of points around the line is minimal. The dashed lines are
continuations of the fit curves outside the range of data points

asml with m = 1/| ln R| (R is the output coupler reflectivi-
ty). Thus we can identifyβ2z= mB2. In the case where other
contributions are small,τ0 could be identified withCfτf if
the pulses were indeed unchirped Gaussians, which in general
they are not. Therefore, a numerical correction factor (gen-
eralized time-bandwidth product)ξ is required. With a new
coefficientCd = 4κ2mξ/Cf , this yields an extended version
of (1):

CDEC〈τap〉 =
√

(Cfτf)2 + (Cpτp)2 +
(

Cd
B2

τf

)2

. (4)

Again, the estimation of the real pulse widthτ = CDEC〈τap〉 is
only justified if 〈τap〉 ≈ 〈τac〉.

Equation (4) has been fitted to the data in Figs. 2 and 3
and is shown as solid lines. From Figs. 2, 3, and 4 we obtain
Cd ≈ 20, 6.5, and 7, respectively. The agreement is satisfacto-
ry, considering that the fits depend on very few data points.

We argue that further factors influencing the pulse width
can be incorporated into such a model. They will either con-
tribute another term in the sum of squares, or affect one of
the coefficients. In the next section we will investigate the in-
fluence of the gain cross section and extend (4) with another
term.

4.2 Gain materials for synchronous pumping

The pulse-shaping mechanism in synchronously pumped
lasers involves a balance between pulse shortening due to
gain saturation, and pulse broadening through bandwidth lim-
itation. Once gain modulation has formed an initial broad
pulse, dynamic gain saturation takes over and, with the
stronger gain in the leading part of the pulse, the trailing part
is compressed. The resulting forward shift has to be com-
pensated by cavity length mismatch. Self-consistent theories
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assume that the correct mismatch is chosen and that the pulse
shaping reaches a steady state in which bandwidth limitation
and dispersion balance the pulse compression force.

Arguably the most important parameter that quantifies the
process of gain saturation is the gain cross sectionσ . It de-
termines the amount of the gain depletion caused by the laser
pulse. It is closely related (in fact, inversely proportional) to
the fluorescence lifetimet1 of the gain material. The largerσ ,
the stronger is the saturation effect and thus the pulse short-
ening. In the seventies researchers believed that only media
with fluorescence lifetimes shorter than the cavity round-trip
time make good synchronously pumped lasers. However, it
was pointed out in [25, 26] that much longer lifetimes are
well suited. This fact is now the basis of synchronous pump-
ing of many solid-state laser materials. Still, some degree
of saturation is indeed necessary for efficient synchronous
pumping: both pulse shortening and pulse positioning in re-
lation to the pump pulse temporal position depend on it.
If saturation becomes too weak, synchronous pumping be-
comes inefficient. The following data will show just where
the limit is.

Table 1 shows reported pulse widths as a function of the
inverse gain cross section obtained from the literature for
several different gain media. Most of these were actually
measured as an autocorrelation width times a deconvolution
factor. We reverse the deconvolution by dividing with the de-
convolution factorCDEC = 0.65; Fig. 5 shows the〈τap〉 data
thus recovered. To display these disparate data from differ-
ent sources in a meaningful way we found it helpful to group
them into two categories according to the pump pulse width
used. Data from most solid-state lasers tend to rise in propor-
tion to 1/σ for not too small values of 1/σ . In this regime
we fit a linear function to the data. Again, on the assump-
tion that in this regime pulses fluctuate not too much, we
deconvolute to obtainCs/σ with Cs ≈ 0.40×10−20 ps m2. By
this procedure we have avoided making any assumption about
fluctuations, or the lack thereof, for the shortest pulses in-
volved. If one extrapolates the linear trend towards large 1/σ ,
at some point the pulse duration becomes longer than the
repetition time, which is an obvious impossibility. Pulses of
about a nanosecond duration mark the end of useful mode-
locking; note that for typical cavity round-trip times of10 ns,
only 10 modes would be coupled in such a case. Towards
small 1/σ the data level out. The achievable pulse duration
is ‘clamped’ by the effect of pump pulse width, and certainly
by bandwidth limitation. As expected, the shortest pulses are

Table 1. Pulse widths and gain cross sections for different laser materials

τ/ps τ/ps
Gain Material σ(10−16 cm2) τp ≈ 80 ps τp < 20 ps Source

Cr:Fosterite 0.0014 260 [31]
Ti:Sapphire 0.0032 200 [32]
Cr:YAG 0.004 25 [33]
KCl:Tl 0.13 8 [25]
Na:Cl 1.7 6 0.6 [34]
KCl:Na+O−

2 1–2 6 0.9 [35]
Rhodamine 6G 1.8 3.5 0.3
26HFB 13500 3 0.3 [17]
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Fig. 5. Dependence of the autocorrelation width (obtained from reported
pulse widths in Table 1, see text) on the gain cross sectionσ . The pulse
widths displayed as open circles are obtained withτp ≈ 80 ps, the solid
circles belong to short pump pulses withτp = 5–20 ps. Solid lines: fits
with (5)

obtained with dyes, and also with some color centers. For the
fitted lines see the next section.

As an extreme limiting case we consider gain media that
have no energy storage at all, namely OPOs (for an over-
wiew of OPOs see for example [27]). This limit is obtained
here formally by lettingt1 → 0 or 1/σ → 0. This implies
that best performance is reached without any cavity length
mismatch. Fig. 6 and Table 2 show the dependence of the
reported pulse widthτ of different OPOs as a function of
the pump pulse width, obtained from the literature. We dis-
tinguish cases with and without compensation of intracavity
group velocity dispersion.〈τap〉 rises linearly for largeτp;
only for the non-dispersion-compensatedcases does the curve
level out at smallτp. After deconvolution in the regime of
〈τap〉 ∝ τp we obtainCp ≈ 0.5. For the fitted lines see the next
section.
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Fig. 6. Synchronously pumped OPOs: Dependence of the autocorrelation
width (obtained from reported pulse widths in Table 2, see text) on the
pump pulse width. Open circles: data were obtained without compensation
of intracavity dispersion. Solid circles: dispersion compensated(B2 = 0).
Solid lines: fits with (5) with 1/σ = 0, Cp = 0.5, andCd(B2/τf) ≈ 500 fs
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Table 2. Pulse widths and pump pulse widths for synchronously pumped
optical parametric oscillators

τp/ps τ/ps (B2 6= 0) τ/ps (B2 = 0) Source

1.2 1.4 [36]
≤ 0.1 0.3 0.039 [37]
≤ 0.1 0.98 0.067 [37]

1.8 0.72 [38]
0.08 0.04 [39]
1.1 0.5–1 [40]
0.11 0.325 [41]

30–40 12–14 [42]
100 45–80 [43]

5 The unified equation

The combination of all the previous findings can be written as

CDEC〈τap〉 =
√

(Cfτf)2 + (Cpτp)2 +
(

Cd
B2

τf

)2

+
(

Cs
1

σ

)2

,

CDEC〈τac〉 = Cfτf .
(5)

This set of equations gives both〈τap〉 and the coherence time
〈τac〉. Note that the ratio〈τap〉/〈τac〉 gives an indication of
the quality of the pulse, or the pulse structure. Knowledge of
the following laser properties is required: the filter timeτf ,
the pump pulse widthτp, the intracavity dispersionB2, and
the gain cross sectionσ . The model also requires four coef-
ficients:Cf describes the fraction of the given bandwidth of
the filter that is filled by the pulse,Cp the ratio of pulse width
to pump pulse width, andCd is the ratio of dispersive round-
trip time delay across the filter bandwidth to pulse width.Cs is
the gain cross section coefficient, and indicates the ratio of the
pulse width to the characteristic time for gain depletion due to
stimulated emission.

Fits of (5) are shown in Figs. 5, 6 along with the data
points for various lasers and for OPOs. A very reasonable fit
is obtained in either case, even though the pulse-shaping pro-
cess in OPOs is not quite comparable to that in synchronously
pumped lasers.

5.1 Limits and application

Of course, (5) is a simplified description of reality and does
not take every conceivable factor of influence into account.
The limits of validity are reached in the presence of mani-
fest propagation effects of pump or laser pulse in the gain
medium. This means that a walk-off between these pulses
as commonly encountered in OPOs, or any kind of addition-
al shaping processes, such as solitary pulse shaping or Kerr
lensing, cannot be described properly. It may be argued that
another fundamental limit forτ exists when all terms under
the square root in (5) tend to zero, given by spontaneous emis-
sion [28]. However, due to the scarcity of available data it
does not seem warranted to include this mechanism. Also,
this description is only applicable in the case of optimum cav-
ity length mismatch; let us repeat that we ensured this in our
numerical work through two-parameter scans. A cavity length
mismatch results in a timing mismatch and leads to very com-
plex phenomena. In the strict sense of the term, ‘synchronous
pumping’ would be a misnomer in such a case.

To apply (5), one first has to have knowledge of the coeffi-
cients. From the previous evaluation of widely differing lasers
it seems that the values of the coefficients do not vary very
much, perhaps by a factor of three. Thus, one certainly has
a good initial guess even if nothing else is known about the
particular laser. A few experiments will then quickly narrow
down the range of values because the functional form of (5) is
so apparent. We also believe that future determination of the
coefficients for a couple of laser types will reveal trends that
further help narrow down the initial guesses.

As an example for an application, we choose our color
center laser. We already have advance knowledge about its
coefficients from experiment and numerical simulation, see
Table 3. As pointed out, this laser presents a particularly clean
case of modelocking dynamics in the sense that effects of the
pump pulse width do not swamp everything, so the other de-
pendencies become plainly visible. Not only can one predict
the minimum obtainable autocorrelation pedestal width and
the most appropriate tuner plate, but also the pulse width for
different tuner plates. The filter with the shortest pedestal is
found fromd〈τap〉/dτf = 0. We find

τf,opt(B2) =
√

Cd

Cf
|B2| . (6)

The resulting widths for our laser are then (1/σ is negligible)

〈τap,opt〉(B2) = 1

CDEC

√
2CfCd|B2|+ (Cpτp)2

〈τac,opt〉(B2) = 1

CDEC
Cfτf,opt . (7)

Specifically, using the coefficientsCd = 20,Cf = 30 from
Table 3 we find an optimum filter time ofτf,opt = 18 fs. Re-
call that in the experiment (compare Fig. 2),τf = 20 fs was
best. With Cpτp = 1 ps the optimum autocorrelation width
comes out as〈τap,opt〉 = 1.9 ps, and the coherence time as
〈τac,opt〉 = 0.8 ps. The ratio〈τap,opt〉/〈τac,opt〉 gives an indica-
tion of the quality of the pulse, and in this ‘optimum’ parame-
ter regime one would expect a pulse train with unsatisfactory
stability. If a tuner plate of larger thickness (largerτf ) were
used, one would expect somewhat broader pulses of better
quality. A compromise between pulse shortness on one hand,

Table 3. Complete set of parameters required for (5) for the example of our
color center laser. Exp: from our experiments. Num: from the numerical
model. Note that data in [14] were actually taken on a dye laser but can be
used here as well

Value Source

τp 8 ps measured
τf several from10–180 fs from plate thickness [30]
B2 −500 fs2 from specs of components
σ 8.5×10−17 cm2 [19]

Cf 30 Exp.
13 Num.

Cp 0.02–0.07 [14–16]
0.12 Num.

Cd 20 Exp.
7 Num.

Cs 0.4×10−20 ps m2 Fig. 4
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and smoothness and stability on the other, is found when the
Cfτf term is equal to the largest of the other terms in (5).
This turns out to be the regime where experimentalists oper-
ated their lasers after trial and error; our description casts into
a definitive form what experimentalists have felt intuitively. It
is also clear that pulse quality suffers when the pump pulse
width is increased, all other quantities being kept constant.
Hence the particularly clean operation of our laser due to its
unusually short pump pulses.

6 Conclusion

We presented our investigation of the pulse shaping mecha-
nisms in a synchronously pumped laser. The use of picosec-
ond pump pulses reduces the complexity of experimental per-
formance and allows a comparison with a numerical model.
The results of the simulation are in excellent agreement with
experimental data. As a central result we presented a simple
empirical formula which provides a unified description in-
cluding the influence of pump pulse width, bandwidth filter,
second-order dispersion and gain cross section on the laser
pulse width. It allows an at-a-glance overview of dependen-
cies on various parameters, information previously thought
accessible only through extensive numerical modeling. Also,
it allows immediate prediction of achievable pulse width,
structure, and limiting factors once certain coefficients are
known. Limits of validity have been indicated.

Appendix

The algorithm consists of modules for gain and loss, sponta-
neous emission noise, spectral filtering, dispersion, and cavity
length mismatch which are now described in turn.

A.1 Gain and loss

The gain process is described by

V(out)(t) = exp

[
1

2
(A(t)− L)

]
V(in)(t) , (A.1)

whereL is the power loss coefficient. The resulting complex
electric fieldV(out)(t) is obtained as a funtion of the incoming
field V(in)(t). All sources of loss, including output coupling,
are lumped intoL. The power gain coefficientA(t) is given by
the rate equation:

dA

dt
= Ppump(t)− (exp(A(t))−1)

∣∣V(in)(t)
∣∣2 − A(t)

t1
, (A.2)

wherePpump(t) determines the pump pulse power andt1 the
fluorescence decay time [8, 29].

The last term in (A.2) will be neglected within the time
windowTw due to the long upper state lifetimet1 � Tw. Stor-
age of inversion between successive passes through the gain
medium must not be neglected, however. It is taken into ac-
count by initializingA(t) = A(t − Td) exp(−Td/t1), whereTd

gives the temporal delay between the two successive pass-
es. Continuous timet is replaced by i∆T, and the differential
equation (A.2) is solved numerically by a 4th order predictor–
corrector method [23]. In a linear cavity the pump power
Ppump is set to zero when the pulse passes through the gain
medium for the second time during every round-trip.

A.2 Spontaneous emission noise

We include noise by addition of a stochastic termSi to the
field amplitudeVi . This term is generated by the formula

Si = Si−1e−∆T∆ν + VSE(t)e
iϕi (A.3)

with random phasesϕi and noise amplitudeVSE. It yields
Gaussian noise with a coherence bandwidth∆ν [11]. A re-
alistic value forVSE can be estimated from the spontaneous
photon flux in the interaction volume in the laser material as
VSE ≈ 10−5 W1/2.

A.3 Spectral filtering, dispersion, and mismatch

Gain, loss and noise are directly modeled in the time domain.
Spectral filtering, length mismatch and the effect of residual
dispersion in the cavity are calculated in the frequency do-
main using the fast Fourier transformF , V = F (V):

V(out)(ω) = Tf(ω)ei(Tmω+ 1
2 B2ω2)V(in)(ω) (A.4)

with the complex spectral filter functionTf(ω), the second
order dispersionB2 and the temporal mismatchTm. To facili-
tate a direct comparison to the experimental data, we imple-
mented a detailed model of a single-stage birefringent tuner
from [30].

The intracavity effects described so far can now be com-
bined to simulate a cavity in a modular manner. For a detailed
comparison of numerical calculations and experimental re-
sults we used realistic parameters for theNaCl:OH− color
center laser as a starting point. The evolution of the pulse
profile in an array of 4096 complex values in a time win-
dow of Tw ≈ 100 pswas observed for 8000 round-trips. After
the transient phase had died out, the average autocorrelation
function of 5000 pulses was calculated.
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