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Abstract. A possibility of the formation of polarization-
squeezed light in the case of interaction of two orthogonally
polarized modes in a spatio-periodically nonlinear Kerr-like
medium is considered. It is shown that the fluctuations of the
Stokes parameters of light could be less than their fluctuations
in a coherent state at the output of the medium. An analysis
shows that the light polarization degree is not fixed in such a
nonclassical state of light. We also introduce a new nonlinear
parameter of light polarization associated with the fluctua-
tion variances of three Stokes parameters. The value of the
parameter is examined for different quantum states of light.
A procedure for the quantum nondemolition (QND) measure-
ment of the Stokes parameters of light is described for the first
time. We show that the precision measurement of the Stokes
parameter depending on phase could be used for the QND
measurement of the phase difference of two orthogonally po-
larized modes. The general description of the measurement
procedure under study allows us to propose also a scheme
for the QND measurement of angular momentum of atomic
systems.

PACS: 42.50 Dv

At present, the generation of squeezed states, nonclassical
statistics of photons and the realization of quantum nondemo-
lition (QND) measurements is prompting the study of many
nonlinear systems, which typically result from the energy
exchange and quantum interference between two (or more)
conjugated modes [1]. That leads to suppression of fluctua-
tions of one of the observable variables of the field while,
for another variable, the fluctuations are enhanced. In fact,
the competition and energy exchange between travelling and
scattered waves become possible in the case of Bragg diffrac-
tion in a spatially periodic structure, that is, in a system of
distributed feedback (DFB) [2].

The high-efficiency systems of nonclassical light gener-
ation, based on a different type of DFB system, have been
described on a number of occasions to data [3]. The best
method of obtaining such DFB in optics can be established
by use of nonlinear optical fibers of two special types, namely

fibers with their dielectric constant periodically varying along
the direction of propagation of light, and also fibers with two
tunnel-coupled cores [4]. On the other hand, the DFB sys-
tem is obtained in atomic optics for a collection of ultracold
two-level atoms via nonlinear Bragg diffraction in a periodic
structure being a standing wave of a laser field [5, 6]. In this
case, the formation of nonclassical states for boson-like atoms
occurs, and the analogy with the light travelling in the above
mentioned optical fibers takes place.

Another aspect of the quantum states under study is the
polarization quantum state of light. Recently, a quantum an-
alysis of such a state has been intensively developed [7–
10]. The discussion has generally focused on calculations of
the Stokes parameters, which are associated with Hermitian
Stokes operators and have an explicit physical interpretation.

From the standpoint of wanting to apply the use of
quantum-squeezed light in high-precision polarimetry and el-
lipsometry, the polarization-squeezed light has a special inter-
est. In fact, for such a state, the level of quantum fluctuations
of one of the Stokes parameters is smaller than in the coher-
ent state. It has been shown in [10] that polarization-squeezed
light can be generated in cubic nonlinear anisotropic media
when there is an anisotropy of the nonlinear correction to its
refractive index.

In the present paper, we consider another possible method
of generating polarization-squeezed light in a spatially peri-
odic nonlinear medium [11]. It is shown that both the linear
and nonlinear energy exchange between orthogonally (along
thex- andy-axis, and/or two circularly) polarized modes re-
sults in the formation of a nonclassical polarization of light in
such a DFB system.

At the same time, to observe this new nonclassical state of
light, it is necessary to select an appropriate quantum meas-
urement procedure. The QND measurement method [12]
seems to be a suitable procedure for that (see [13–15]).
But earlier analysis has shown that the QND measurement
method cannot be directly applied to our problem because
certain conditions have to be satisfied for it to be valid (see
[4, 13, 14]).

We describe herein the procedure of QND measurement
especially for the Stokes parameters of light developed by us



54

(see also [16]). In general, this presentation could be applied
to any other observables of SU(2) algebra (for example, to
the angular momentum of an atomic system); however, the
phase sensitivity of the Stokes parameters of light under study
allowed us to consider the measurements of the phase differ-
ence between two polarization modes by the QND procedure
(cf. [17]).

The same technique is proposed by us for detection of
angular momentum in atomic systems as well. Auxiliary
questions concerning the polarization light formation in an
anisotropic nonlinear medium are shown in an Appendix.

1 Classical and quantum description of the polarization
states of light

In classical optics, one way to describe light polarization is
linked with the theory behind the Stokes parameters (see,
for example, [18]). In principle, the Stokes parameters could
be simultaneously and exactly measured by a set of optical
elements, for instance two photodetectors, polarization and
a phase plate [19]. A clear geometrical interpretation of the
Stokes parameters makes this method of light polarization
even more attractive. From a mathematical point of view, the
polarization state of a light can be given using the Poincaré
sphere in the Stokes space ofS1, S2, S3. Each point on the
sphere corresponds to a definite polarization state, whose
variation is characterized by movement of the image point.

In classical optics furthermore, in order to describe quan-
titatively the polarization state of light, we introduce the
degree of polarizationP , which is equal to the ratio of the in-
tensity of the polarized part of the radiationIpol to the total
intensityItot thus:

P = Ipol/Itot =
√〈S1〉2 +〈S2〉2 +〈S3〉2

〈S0〉 , (1)

whereS0 is the Stokes parameter that determines the total in-
tensity of the modes; sign〈. . . 〉 denotes here and below the
average value. For completely polarized light,P = 1, while
for partially polarized light 0< P < 1, and a transition to un-
polarized light corresponds to compression of the Poincaré
sphere to zero radius (see also [9]).

From a quantum physics standpoint, the difference be-
tween polarized (elliptically in the general case) monochro-
matic light and unpolarized light is that the polarized case
results in a “pure” state, in other words a coherent mixture
of two components which are polarized in two perpendicu-
lar directions (where the amplitudes of these components are
summed), whereas unpolarized light represents a “mixed”
state, in other words an incoherent mixture (where the inten-
sities of the components are summed) [18, 20].

In the language of wave functions (with photons exist-
ing only in the momentum representation [21]), for “pure”
states we have linear combinations, which can be used to cal-
culate the total probability of the photon polarization state,
and for mixed states we can sum the squares of the absolute
values of the wave functions, i.e. the individual probabili-
ties. Moreover, although no type of polarization is dominant,
right- and left-circularly polarized photons are the most easily
defined in the terms of spin operators. It is well known [22]
that to characterize in general the photon polarization state,
we can define an arbitrary polarization state (in terms of

wave functions) as a linear combination of the states for two
orthogonally polarizated modes. In this case, any transfor-
mation of the light polarization state could be geometrically
represented by the Poincaré sphere as a rotation in a 3D-
configuration space of theS1, S2, S3 parameters.

Another way to describe the polarization state of light
in quantum optics is to introduce the measurable (observ-
able) quantities associated with the operators of the Stokes
parametersSj , where j = 0, 1, 2, 3 (see for example [20]).
The presence of fluctuations, which are unavoidable in quan-
tum theory, results in uncertainty for these characteristics of
the light polarization. Moreover, the uncertainty product for
variances of the Stokes parameters fluctuations occurs (see
below) in contrast to the classical description. In fact, in quan-
tum optics, an exact and simultaneous measurement of the
Stokes parameters is absolutely impossible: the situation is
the same as for momentum (orbital, angular, and/or spin)
in the traditional quantum mechanics of particles. So, we
are dealing with, principally, the quantum fluctuations of the
light vector. Thermal fluctuations, which exist in the classi-
cal description as well, are outside our consideration because
they can usually be associated with technical fluctuations, in
particular due to the quality of the polarizer device used to
produce the polarization state of optical field.

The description of the partial polarization of light using
the real Stokes parameters corresponds to the close relation-
ship between the classical and quantum approaches for given
polarization properties. However, a quantum theory results in
the existence of specific nonclassical polarization states, for
which a general analysis is presented in the next section.

2 Polarization-squeezed states of light

2.1 Nonclassical polarization states

Let us characterize the polarization state of the two-mode
field under consideration by the Stokes operators:

S0 = a+
x ax +a+

y ay , (2a)

S1 = a+
x ax −a+

y ay , (2b)

S2 = a+
x aye

iθ +a+
y axe−iθ , and (2c)

S3 = i(a+
y axe−iθ −a+

x aye
iθ ) , (2d)

where the parameterθ is the classical phase (see below) and
aj (a+

j ) is the photon annihilation (creation) operator, respec-
tively, for the j -th polarized component of light. The opera-
torsaj (a

+
j ) obey the well known commutation relations:[

aj ; a+
k

] = δjk, with j, k = x, y (3)

The Stokes operators obey the commutation relations of
the SU(2) algebra:

[S2; S3] = 2iS1, [S1; S2] = 2iS3, [S3; S1] = 2iS2 (4a)
[S0; Sj ] = 0, ( j = 1, 2, 3). (4b)

The relationships given in (4a) reduce to the so-called
Schrödinger–Robertson uncertainty relation [23]:

〈∆S2
j (z)〉〈∆S2

k(z)〉 ≥ |〈Sm(z)〉|2 /1− r 2
jk , (5)
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with j, k, m = 1, 2, 3 but j 6= k 6= m, where
〈∆S2

j (z)〉 ≡ 〈∆S2
j (z)〉− 〈Sj (z)〉2 is the variance of the fluctu-

ations of thej -th Stokes parameter, andr jk is the correlation
coefficient between the Stokes parametersSj andSk, which is
defined by

r jk = 〈Sj Sk〉+ 〈SkSj 〉−2〈Sj 〉〈Sk〉
2(〈∆S2

j 〉〈∆S2
k〉)1/2

. (6)

According to the form of (5), the Stokes parameters cannot be
simultaneously and exactly measured in a quantum optics.

We assume that the interacting waves are initially in
a coherent state at the input of the nonlinear medium,
i.e.

aj |αj 〉 = αj |αj 〉 ( j = x, y) , and (7a)
|ξ〉 = |αx〉|αy〉 (7b)

whereαj and|αj 〉 is the eigenvalue and the eigenstate of the
aj operator, and|ξ〉 is the state of the total field containing
two modes. If we take the definitions in (2) it is easy to obtain
that

〈∆S2
j 〉 = |αx|2 +|αy|2, r jk = 0, ( j = 1, 2, 3) . (8)

It follows from the expressions in (8) that the level of the fluc-
tuations of the Stokes parameters is defined by the sum of the
average photon numbers〈nx〉 = |αx|2 and〈ny〉 = |αy|2 in the
coherent modes.

Taking into account (5), we can write conditions for the
squeezed states of light in terms of the Stokes parameter vari-
ances:

〈∆S2
j (z)〉≶ |〈Sm(z)〉|/(1− r 2

jk)
1/2 , and

〈∆S2
k(z)〉≷ |〈Sm(z)〉|/(1− r 2

jk)
1/2

with j, k, m= 1, 2, 3 but j 6= k 6= m . (9)

Thus, in quantum optics, the state of polarization may
be presented on the Poincaré sphere with coordinates〈S1〉,
〈S2〉, 〈S3〉 (see Fig. 1). Here a fluctuational uncertainty
can be associated with a particular region of uncertain-
ty in the Stokes parametersS1,2,3 around their mean val-
ues [10, 11]. From the physical point of view, the inequal-
ities in (9) mean that the ball-shaped region of uncertainty
(for coherent states, (7) and (8)) of the Stokes parame-
ters is transformed to the ellipsoid of the uncertainty for
squeezed states (9). This type of nonclassical polariza-
tion state has been called the polarization-squeezed (PS)
state [11].

Let us now discuss which nonclassical states under study
have the properties that are similar to those of light with
squeezed fluctuations of the Stokes parameters. First of all,
we consider the parametersS0(z) and S1(z), which are de-
fined by the relations (2a) and (2b). It is well known that
fluctuations in these parameters can be suppressed to values
below the level corresponding to the coherent state, owing
to a correlation or anticorrelation among the photons in the
two modes. Such a situation is obtained, for example, in para-
metric processes and four-wave mixing [24], as well as for
other schemes of multiwave scattering [25], where correlated
photons are created in pairs.

The physical properties of squeezed light with suppres-
sion of the fluctuations of〈∆S2

2(z)〉 or 〈∆S2
3(z)〉 can be

elucidated in the simplest case by assuming that the field of
one of the modes is classical. Then, for example, replacingax
by the classical quantity|Ax| exp(iϕx), whereϕx is the phase,
we have (see also (2c), (2d)):

S2(z) = Qy(z)|Ax|, (10a)
S3(z) = Py(z)|Ax| (10b)

whereQy(z) = e−iΘay(z)+e−iΘa+
y (z), andPy = i[eiΘa+

y (z)
−e−iΘay(z)], with Θ = ϕx −θ, are the Hermitian quadrature
components for the mode described byay. It is seen from
(10a) and (10b) that polarization-squeezed light is closest
to quadrature-squeezed states of a field in this case. Experi-
ments devised to obtain light with such characteristics are
well known (see, for example, [1]).

When polarization-squeezed light is compared with
quadrature-squeezed light, the specific features associat-
ed with the vector characteristics of the field must be
borne in mind. For example, in a cubic nonlinear medi-
um, quadrature-squeezed states can be obtained in practice
only in processes involving the self-interaction and cross-
interaction of waves [26], while polarization-squeezed light
can form in such media only when there is anisotropy
in the nonlinear correction to the refractive index [10].
In the latter case, there is no power conversion between
polarization modes propagating in the nonlinear medium.
Therefore, both the total number of photons and the dif-
ference between the numbers of photons in the modes are
maintained (see Appendix). In contrast, the main purpose
of the present paper is to demonstrate the possibility of
obtaining a new class of polarization-squeezed light, in
which there is an energy exchange between the polarization
modes.

S1

S2

S3

(1) (2)

Fig. 1. Transformation of a coherent state (1) into a polarization-squeezed
state (2) on the Poincaré sphere
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2.2 Basic equations and quantum fluctuations

We describe here the propagation of polarized modes in the
periodically-inhomogeneous nonlinear optical fiber (see [27,
28]) by Heisenberg equations for the evolution of the an-
nihilation operatorsax and ay related to the two orthog-
onal components of the polarization of light [11]. We
have

ihdaj/dt = [
aj ; Hint

]
( j = x, y) , (11)

with the interaction Hamiltonian

Hint = (hc/n1)
(
βa+

x ay +βa+
y ax +

0.5R(a+2

x a2
x +a+2

y a2
y)+ (R/3)a+

x axa+
y ay

)
, (12)

whereh is the Planck constant,c is the light velocity in a vac-
uum andβ is the linear coefficient of the mode coupling.
Further,R≡ 4πhωk0n2/n1sε0V is the nonlinear coefficient
(with k0 = ω/c), n1 andn2 are the linear and nonlinear refrac-
tive index respectively, the parameters is determined by the
field distribution over the fiber area, andV is the quantization
volume.

The solutions of the equations (11) can be found in the
form [3]:

ax,y(z) = (c1(z) exp(iβz)±c2(z) exp(−iβz))/
√

2, (13)

where timet is replaced by−zn1/c, andc1,2(z) are the slow-
ly varying operators that are determined by the following
expressions:

c1,2(z) = exp
{

iσ(5c+
1,2c1,2+6c+

2,1c2,1)/6
}

c1,2 . (14)

Here and below,c1,2 ≡ c1,2(z = 0) is the operator value at
the input of the nonlinear medium, andσ = Rz. It is easy to
show that the commutation relations (3) are valid for opera-
torsax,y.

Let us now consider the fluctuations of the Stokes param-
etersS2 and S3 (2c) and (2d), at the output of the Kerr-like
nonlinear medium. Taking into account the relations (13) and
(14), and setting〈nx〉 ≡ 〈n〉 6= 0 and〈ny〉 = 0 at the input of
the optical fiber, we obtain the following expressions for vari-
ances〈∆S2

2,3〉:
〈∆S2

2〉 = 〈n〉(1+κ2 sin2 θ +κ sin 2θ) and (15a)

〈∆S2
3〉 = 〈n〉(1+κ2 cos2 θ −κ sin 2θ) , (15b)

where we have introduced an effective nonlinear parame-
ter κ ≡ Ψeff = Ψ cos(β2z). Within these expressions,Ψ =
σ〈n〉/6 ≡ Rz〈n〉/6, andθ = φ −k0z, and together they rep-
resent the initial phase difference between two orthogonally
polarized waves that is determined byφ and the phase shift
k0z due to wave number differences in two modes, on the as-
sumption thatσ2〈n〉 � 1 (see Appendix). In the general case,
the variances〈∆S2

2,3〉 in (15a) and (15b) depend on theκ pa-
rameter, in other wordsΨ and 2βz, and on phaseθ.

The 3D dependences of the variances given in (15a)
and (15b) are shown in Fig. 2. In general, it is obvi-
ous from Fig. 2a and Fig. 2b that the normalized vari-
ances of the Stokes parametersσ2

2,3 ≡ 〈∆S2
2,3〉/〈n〉 demon-

strate the oscillation behavior with parameterβ and phase

Fig. 2a,b. 3D dependences for normalized varianceσ2
j ≡ 〈∆S2

j (z)〉/〈n〉
( j = 2, 3) of the Stokes parameters:a S2(z) plotted against the effective
nonlinear parameterκ and phaseθ; b S3(z) plotted againstκ and θ. The
value σ2 = 1 corresponds to the coherent level of the Stokes parameter
variances

θ. Specifically, whenκ = 2 and θ = 1.2 rad, the mini-
mal value of σ2

2 corresponds to maximum value ofσ2
3 .

Thus, if the value ofσ2
2 or σ2

3 is smaller than the coher-
ent noise levelσ2

2,3 = 1, then polarization-squeezed light
is formed. The Stokes parameter variances given in (15a)
and (15b) are the same as for coherent states at the out-
put of the medium when the effective nonlinear parameter
|κ| = 0.

Expressions (15a) and (15b) reach their limiting values
when tan(2θ) = −2/κ. The minimum and maximum values
are:

〈∆S2
2〉min = 〈n〉

(√
1+κ2/4−|κ|/2

)2

and (16a)

〈∆S2
3〉max = 〈n〉

(√
1+κ2/4+|κ|/2

)2

, (16b)

and in this case the product

〈∆S2
2〉min〈∆S2

3〉max = 〈n〉2 (17)

is minimal and we have an ideal squeezing.
Let us now consider the fluctuations of the Stokes param-

eter S1. The expression for〈∆S2
1〉 obtained under the same
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approximation as (15a) and (15b) has a form:

〈∆S2
1〉 = 〈n〉

(
1+Ψ 2 sin2(2βz)

)
(18)

It is easy to see that〈∆S2
1〉 is also greater than the vari-

ance for the coherent state excluding the value of dis-
tancez which satisfies the condition 2βz = π(1+m) (m =
0, 1, 2, . . . ).

3 A nonlinear parameter to describe the light
polarization state in quantum optics

The parameterP , introduced above at (1), characterizes the
degree of polarization and needs to be discussed separate-
ly in quantum optics. Indeed, a recent study in [7, 10, 11] of
the problem showed the nonlinear behavior of the quantity
for nonclassical states of light. The result can be recognized
taking into account, first, the definitions in (2); secondly, the
relations (13) and (14); and also, thirdly, the fact that the ini-
tial modes are in a coherent state. Then we obtain for the
degree of polarization (1) the following expression:

P = e−〈n〉σ2/72 ≈ 1−〈n〉σ2/72. (19)

The fact that the value of the polarization degree (19)
could be different from unity in principle is a purely quan-
tum effect (see also [7, 8, 10, 11]). The dependenceP on the
average photon number〈nx〉 ≡ 〈n〉 of a polarization mode at
the input of an optical fiber (when〈ny〉 = 0) is a nonlinear
quantum effect in contrast to the traditional interpretation of
the light polarization degree as a fixed parameter (cf [7, 10]
and [18, 20, 21]). But in a real experiment, we have found
〈n〉σ2 � 1, and this means that, to the same degree of accura-
cy as obtained for (15) and (16), we haveP = 1. We obtained
a similar result forP for the nonlinear optical process consid-
ered in the Appendix (see also [10]).

It is important to note that although the determination of
the polarization degreeP via (1) is considered for many cases
[8–11], the formula in (1) cannot be directly applied for some
quantum states of light. An alternative determination ofP
in terms of the coherence matrix elements [7] corresponds to
formula (1) and in the terms of the Stokes parameter opera-
tors.

The main problem to introduce the polarization degree
into quantum theory is determined by the vacuum states of
light. In fact, for the two-mode vacuum state|ξ〉 = |0〉x|0〉y,
the average values of the Stokes parameters for polarized
modes (given by (7b)) are equal to zero(〈Sj 〉 = 0), and so
the expression (1) is not applied to describe the state of light.
On the other hand, the determination of the polarization de-
gree for a vacuum as a limit value for coherent (and/or Fock)
states, with the average number of photons being zero, results
in a completely polarized light, i.e.Pvac= 1. This fact cannot,
however, be physically interpreted.

Let us now define the nonlinear parameter for light polar-
ization in the quantum case by the following modification of
expression (1):

P =
 3∑

j=1

〈Sj 〉2/

3∑
j=1

〈S2
j 〉

1/2

, (20)

where this formula (20) differs from expression (1) by the
renormalization factor only. However, the difference is major
and results in a quantum correction of the introduced nonlin-
ear parameter (20). Indeed, in contrast to the classical optics
approach (see for example [18]), where

3∑
j=1

S2
j ≤ S2

0 , (21a)

we now have an opposite inequality

3∑
j=1

S2
j = S0(S0 +2) > S2

0 . (21b)

In a quasiclassical approximation for a large photon num-
ber, that is, when〈S0〉 = n0 ≡ 〈nx〉+ 〈ny〉 � 1, the nonlinear
parameter (20) can be associated with the light polarization
degree thus:

3∑
j=1

〈S2
j 〉 ≈

3∑
j=1

〈Sj 〉2 , (22)

P ≈ P (23)

It is useful to introduce the depolarization degree parameter
D as follows:

D =
√

1− P2 =
 3∑

j=1

〈∆S2
j 〉/

3∑
j=1

〈S2
j 〉

1/2

, (24)

and by this means the nonlinear parameter of depolarization
(24) is coupled with the normalized variance of fluctuations
for the three Stokes parameters.

Let us examine the definitions (20) and (24) for different
quantum states of two orthogonally polarized modes of light.
Firstly, for the coherent state we obtain:

P2
coh = n0/(n0 +3), and (25a)

D2
coh = 3/(n0 +3) , (25b)

wheren0 ≡ 〈nx〉+ 〈ny〉 is the total number of photons in two
polarized modes together. In the quasiclassical approximation
(n0 � 1), we have

P2
coh ≈ 1, (26)

and so, in the coherent state, the nonlinear polarization pa-
rameter of light differs from unity for quantum optics but is
almost identical to the quasiclassical approximation. For an-
other limit,n0 = 0 (the case of vacuum polarized modes), we
have:

P2
vac = 0, and (27a)

D2
vac = 1, (27b)

and this means that a vacuum state of light is completely un-
polarized.



58

For the Fock state of two polarized modes (see (7b)), i.e.
when|ξ〉 = |nx〉|ny〉, we have:

P2
F = (〈nx〉− 〈ny〉)2/(n2

0 +2n0) , and (28a)

D2
F = 2(2〈nx〉〈ny〉+n0)/(n

2
0 +2n0) . (28b)

In the case where〈nx〉 = 〈ny〉, the polarization parameter
given by (28a) corresponds with the vacuum state (27a). For
a linearly polarized light, where〈ny〉 = 0, we obtain:

P2
F = 〈nx〉/(2+〈nx〉) , and (29a)

D2
F = 2/(2+〈nx〉) . (29b)

In the limit of a vacuum field(〈nx〉 = 0) the expressions (29a)
and (29b) are reduced to the same result as above in (27a)
and (27b). On the other hand, in a quasiclassical approxima-
tion for a linearly polarized optical field(〈nx〉 � 1), we have
a result similar to the coherent state given in (26). In sum-
mary then, the polarization parameters of light (20) and (24)
density from our work lead to physically reasonable results.

Let us now calculate the parameters (20) and (24) for
polarization-squeezed light. In the case of an anisotropic
medium of cubic nonlinearity, where such a non-classical
state of light can be generated (see Appendix), we have:

P2
sq = P2

coh−8〈nx〉〈ny〉W/(n2
0 +3n0) , and (30a)

D2
sq = D2

coh+8〈nx〉〈ny〉W/(n2
0 +3n0) , (30b)

where the first terms on the right-hand side of the equations
are described by expression (25a) and (25b), and the parame-
terW is determined within the Appendix at (A.4). The second
terms in (30a) and (30b) determine the quantum additions
due to the redistribution of quantum fluctuations for a polar-
ization squeezing (see also (A.4)). Thus for squeezed light,
the value of the polarization nonlinear parameterPsq is less
than for the coherent state. This result corresponds to the un-
certainty product given at (17) because the suppression of
fluctuations for one of the Stokes parameters is accompa-
nied by an enhancement of fluctuations for another parameter.
The nonlinear parameter of depolarizationD increases for the
same reason as a result (see Fig. 1). In practice, the magnitude
of W is much less than unity (see (A.4)), and so the difference
of the P andD parameters for the two cases, i.e. for coherent
and squeezed light, is very small (see also [11]).

The principal result obtained from our analysis reduces
to the fact that a completely polarized light cannot be gener-
ated in quantum optics, as shown by (19). At the same time,
nonclassical states of optical fields can be described by non-
linear parameters of polarization (at (20)) and depolarization
(at (24)) associated with the total variances of fluctuations for
the Stokes parameters of light.

4 Quantum nondemolition measurements for the Stokes
parameters

4.1 General description of the SU(2) algebra observables
measurement

Here we formulate the general principles for the SU(2) al-
gebra observables using the Stokes parameters from (2). The

conditions to obtain QND measurements for the case under
consideration can be formulated as follows. We define the
parameterSm as a nondemolished measured (signal) Stokes
parameter, but the parameterSp as a measuring (probe) pa-
rameter, and finally the parameterSi as an auxiliary parame-
ter, wherem, p, i = 1, 2, 3, butm 6= p 6= i .

In general for QND measurement, it is supposed that
a measured Stokes parameterSm interacts with the probe pa-
rameterSp in some physical system (we will call it a QND
apparatus) [12]. For this type of quantum measurement, it is
necessary to fulfill the following basic conditions [16]:
1. the measured Stokes parameterSin

m must be conserved, in
other words a process of measurement has to add the min-
imum noise to the output Stokes parameterSout

m ;
2. the detected value of the probe Stokes parameterSout

p must
contain “full information” about the measured value ofSin

m
at the QND apparatus input; and

3. any observable (in our case theS0 andSi operators) must
commute with the operators of measured and probe quan-
tities, and from the physical point of view, this condition
means that the measurement process must be separated
from any destructive feedback from these observables.
We introduce the following correlation coefficients be-

tween the Stokes parameters to describe the abovementioned
QND conditions (see also [3, 13, 16]):

K1 = |〈Sin
mSout

m 〉+ 〈Sout
m Sin

m〉−2〈Sin
m〉〈Sout

m 〉|2
4〈(∆Sin

m)2〉〈(∆Sout
m )2〉 , (31a)

K2 = |〈Sin
mSout

p 〉+ 〈Sout
p Sin

m〉−2〈Sin
m〉〈Sout

p 〉|2
4〈(∆Sin

m)2〉〈(∆Sout
p )2〉 , (31b)

R1(S
out
i , Sout

m ) ≡ (r out
im )2 , (32a)

R2(S
out
i , Sout

p ) ≡ (r out
i p )2 , and (32b)

R3(S
out
m , Sout

p ) ≡ (r out
m p)

2 , (32c)

In an ideal case of QND measurement, it is clear that
Sin

m = Sout
m , Sout

p = λ2Sin
m (whereλ2 is the QND gain) and thus,

K1,2 = 1, R1,2 = 0, andR3 = 1. However, experimentally it is
difficult to satisfy the criteria (31a), and (31b) simultaneous-
ly. Therefore such a type of QND measurement turns out to
be always nonideal (see below).

4.2 QND measurement for the parameterS1

Now we assume that the Stokes parameterSin
m ≡ Sin

1 can be
measured by a probe with parameterSout

p ≡ Sout
3 (Si ≡ S2)

without any demolition. To obtain the necessary linear coup-
ling between the measured Stokes parametersSin

1 and the
probe parameter, for exampleSout

3 , we consider, for example,
using two elements, namely a phase plateφ and a linear
spatio-periodical optical fiber. The propagation of the two or-
thogonally polarized modes in such a system is described by
the equations in (11) and the Hamiltonian (12), where non-
linear terms are omitted. For the case of a special selection
of phase combination whenθ = 0, a coupling of the Stokes
operators in (2) is given by the following expressions:

Sout
0,2 = Sin

0,2 , and (33a,b)

Sout
3,1 = λ1Sin

3,1 ±λ2Sin
1,3 (33c,d)
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whereλ1 ≡ cos(g), and for this caseλ2 ≡ sin(g) and the value
of g therein is 2βzand defines an efficiency of the linear trans-
formation of the Stokes parameters.Sin

j andSout
j ( j = 1, 2, 3)

are the Stokes parameters at the input and the output of the
QND apparatus, respectively.

Let us consider the coefficients given in (31) and (32) for
the casem= 1, p= 3, which characterizes the perfomance of
QND apparatus in a linear system. For the caseλ2 → 0 with
(|λ2| ≡ sin(g) ≈ g � 1), from the expressions (33b,c) the rel-
evant correlation coefficientsK1,2 and R1,2 are obtained in
the form:

K1 ≈ 1, (34a)

K2 ≈ r 2
13+

(
1+ λ2

1V3

λ2
2V1

+2
λ1

λ2
r13

√
V3/V1

)−1

, and (34b)

R1 ≈ R2 ≈ r 2
12 . (34c)

Here,V1,3 ≡ 〈(∆Sin
1,3)

2〉; andr13, r12 are the correlation co-
efficients of (6) betweenSin

1 and Sin
3 , and betweenSin

1 and
Sin

2 , respectively, at the input of the QND apparatus. It follows
from relation (34a) that we have an approximately nondemo-
lition value of theSin

1 parameter.
However, at the same time we must require the following

inequalities to be fulfilled for its measurement:

V3 � (λ2/λ1)
2V1 ≈ g2V1 , (35a)

r 2
13 � 1, and (35b)

r 2
12 � 1 (35c)

Sinceg2 � 1, the condition (35a) means that the probe Stokes
parameter varianceV3 must be essentially less at the input
to the linear system than the varianceV1 of the measured
quantity. We also should require the absence of correlation
betweenSin

1 andSin
3 and also betweenSin

1 andSin
2 for obtain-

ing a “good” QND measurement. It is easy to show that, to
fulfill the conditions of (35), we have to satisfy the demand of
an ideal measurement,R3 ∼= 1, at the same time. Thus, the co-
efficientR3 does not have any relevance to the introduction of
any new limitation in the measurement procedure, and so the
coefficientR3 can in practice be ignored.

The setup for QND measurement of theSin
1 parameter

is shown in Fig. 3. The procedure consists of several steps.
First, the radiation has to propagate through the medium with
an anisotropic cubic nonlinearity(NL) to generate squeezed
light. Secondly, theS1b andS3b are the values of the Stokes
parameters at the input of the QND apparatus, being formed
before the process of measurement. Finally, a linear systemL
has to be included in the process of measurement as well, in
order to control the energy exchange between the two modes
in the system.

The propagation of the two orthogonally polarized modes
bx and by in the nonlinear optical medium under consid-
eration is analyzed in the Appendix. It is shown that the
polarization-squeezed (PS) light is exactly formed in the
anisotropic nonlinear medium NL (Fig. 3), and the light sat-
isfies the QND measurement conditions (31) and (32) for the
Stokes parameterSin

1 . At the same time, theS1 value, i.e.
the difference in the photon numbers for the two orthogonal
modes, is a conserved value during the process of propagation

of the field through an anisotropic nonlinear medium–in other
words,S1b = Sin

1 .
Using the limiting value of the variance〈(∆Sin

3 )2〉 of the
probe Stokes parameter (see (A.5)), we can rewrite the in-
equality in (35a) as a condition for nonlinear phase shift, thus:

Ψn1 � 2ctg(2g) ≈ 1/g . (36)

The expression (36) has a simple physical meaning. The
efficiency of the nonlinear interaction of the orthogonally po-
larized modes, which is defined by the nonlinear phase shift
Ψn1 in the NL region, must be greater than the correspond-
ing efficiency of the energy exchange between the two modes
described by the parameterg of the linear systemL.

For an ideal squeezing, the decrease of varianceV3 is ac-
companied by an increase of varianceV2 for conjugate Stokes
parameterS2 (cf. (17)). Thus, precise measurement of the
Stokes parameterS1b = Sin

1 is obtained through a prelimi-
nary redistribution of quantum fluctuations from the probe
parameterSin

3 to the conjugate parameterSin
2 in an anisotropic

medium of cubic nonlinearityNL. The latter is isolated from
the measuring process (see expression (33b)) occuring in the
linear systemL (Fig. 3).

The 3D-dependencies (see (31a) and (31b)) of the correla-
tion coefficientsK1 andK2 against both the nonlinear phase
shift Ψn1 (in anisotropic mediumNL) and the linear coupling
coefficientg (in linear systemL) are shown in Fig. 4a and
Fig. 4b. We also assume that the conditions of (35b) and (35c)
are valid, i.e.r13 = r12 = 0, and so the variance of the Stokes
parameterSin

3 is determined by the expression (A.5) at the en-
trance to linear system. Comparing Fig. 4a with Fig. 4b, we
can see that the correlation coefficientsK1 andK2 do not take
a value of unity at the fixed magnitudes ofg andΨn1, and
this, as we mentioned above, is as a result of imperfections
in the measurement procedure. However, with an increase in
the nonlinear phase shiftΨn1, we have that theK1 and K2
curves become steeper as a function ofg. For example, for
Ψn1 ≈ 9.5 andg = π/6 (when condition (36) still holds true),
the numerical magnitudes of the correlation coefficients are
K1 ≈ 0.99 andK2 ≈ 0.97 (see Figs. 4a,b). Thus, the accura-
cy of the measurement of theSin

1 Stokes parameter appears
acceptably high.

It should be pointed out that a QND measurement cannot
be obtained for the Stokes parameterSin

1 by a QND apparatus
including a single linear system only. In fact, whenΨn1 = 0,
the correlation coefficientsK1 ≈ 1, K2 → 0 when the value
λ2 → 0, andK1 → 0 andK2 ≈ 1 whenλ1 → 0, for the limit

χ(3)

S1b

S3b

S1
in

S3
in

S1
out

S3
out

NL

L

detector

Fig. 3. Setup of QND measurement of theSin
1 Stokes parameter. The pa-

rameterSj b ( j = 1, 3) is the input Stokes parameter at the input of the QND
apparatus and consists of nonlinear mediumNL and linear systemL; Sout

j is
the Stokes parameter at the output of the linear systemL
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Fig. 4a,b. Correlation coefficients K1 a and K2 b plotted, respectively,
against the nonlinear linear phase shiftΨnl and linear coupling parameter
g. The magnitudes of the parameters used for calculations are the limit-
ing phase valueφ = −0.5 arctan(2/Ψnl), and the coefficient of nonlinear
medium anisotropyγ = (γ1 +γ2)/2 (see Appendix for the definitionγ1 and
γ2

cases considered above (see Fig. 4a and Fig. 4b). Moreover,
the conditions of (35) are not satisfied in the case when the
nonlinear medium has no anisotropy of a cubic nonlinearity
type and so the PS light does not even arrive at the input to
a linear system.

4.3 QND measurements for theS3 andS2 parameters

Now let us briefly consider the QND measurement for the
Stokes parameterS3 (and/or S2). For this purpose the linear
coupling between the measuredS3 and probeS1 parame-
ters is obtained by the linear spatio-periodically optical fiber
(see (33c,d)). Therefore, we can offer a scheme for QND
measurement of theS3 Stokes parameter by modifying the
scheme of theS1 measurement.

The corresponding setup is shown in Fig. 5. The QND ap-
paratus consists of two linear systemsL1 and L2 and also
the anisotropic medium of cubic nonlinearityNL placed be-
tween them. The schematic in Fig. 5 differs from the earlier
one in Fig. 3 due to existence of an additional linear device
L1 . Such a preliminary linear system “rotates” the measured
Stokes parameterS3c and transforms it into the photon num-
ber difference (i.e. into parameterS1b) at the input of the NL

medium. As a result, we have

S2b = S2c , (37a)
S1b = S3c , and (37b)

S3b = −S1c . (37c)

Then the valueS1b can be measured without destruction ac-
cording to the procedure considered above, and we have

Sin
1 = S1b = S3c . (38)

In an ideal case of QND measurement, the transformation
of the Stokes parameters produced by the linear systemL2
results in the expressions

Sout
1 = Sin

1 = S3c , and (39a)

Sout
3 = Sin

1 = S3c . (39b)

It is easy to show that the condition for a “high-quality” QND
measurement procedure for theS3c Stokes parameter consid-
ered here is the same as for theS1b parameter measurement
of (35) and (36) (see also [16]). Thus, the conditions in (31)
and (32) for the QND measurement of theS3c Stokes param-
eter are dependent upon the linear transformation coefficient
g arising in the systemL2 and also on the redistribution of
fluctuations in an anisotropic medium of cubic nonlinearity.

Finally, we discuss an opportunity to carry out the QND
measurement for theS2 Stokes parameter. Such a measure-
ment has to be obtained within the framework of the Fig. 5
scheme, but using a property of symmetry for the Stokes pa-
rametersS2 and S3 at their rotation governed by the phase
parameterθ (see (2)).

5 The QND measurement of the phase difference of two
modes

In the past few years, the problem of phase measurement
in quantum optics has been the subject of intensive study
of many authors [29]. But different aspects of the problem
[30–33] can be solved by physical interpretation of the meas-
urement procedure only. One general concept in that direction
has been recently discussed by Braginsky et al. [17]; such
an approach is preferable for many cases in comparison with
other methods [34, 35]. On the other hand, the theoretical
and experimental results obtained by Mandel et al. [36] are

S1c

S3c

L1

S1b

S3b

NL

χ(3)

S1
in

S3
in

L2

S1
out

S3
out

detector

Fig. 5. Scheme for QND measurement of theS3c Stokes parameter.Sj c
( j = 1, 3) is a value of the Stokes parameters at the input of the QND appa-
ratus consisting of a nonlinear mediumNL and two linear systemsL1 and
L2 . The Sout

j are the Stokes parameters at the output of the linear system
L2
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more physically appropriate because their approach is based
on the phase difference between two quantum modes, which
is an observable quantity. The latter approach is principally
the same as that considered by us herein for a precise meas-
urement procedure of the Stokes parameters. So, our analysis
could be useful to carry out also phase-sensitive measure-
ments in quantum optics. We will discuss the procedure for
that below.

Let us consider the Susskind–Glogower (SG) cosine and
sine phase operators for two orthogonally polarized modes (in
particular, along thex- andy-axis respectively):

sin(Φx,y) = 0.5i

(
a+

x,y
1√

nx,y +1
− 1√

nx,y +1
ax,y

)
, and

(40a)

cos(Φx,y) = 0.5

(
a+

x,y
1√

nx,y +1
+ 1√

nx,y +1
ax,y

)
. (40b)

These obey the standard commutation relations (see e.g. [30]):

[
cos(Φi j ); ni, j

] = iδi j sin(Φi, j ) , (41a)[
ni, j ; sin(Φi, j )

] = iδi j cos(Φi, j ) , i , j = x, y (41b)

In a quasiclassical approximation when the photon num-
bers

〈nx,y〉 � 1, (42)

we can rewrite the operators of the Stokes parametersS2 and
S3 in the form (see [14, 16]):

S2 ≈ 2
√

nxny cos(Φ−) , and (43a)
S3 ≈ 2

√
nxny sin(Φ−) , (43b)

where cos(Φ−) ≡ cos(Φy − Φx) and sin(Φ−) ≡ sin(Φy −
Φx) are the cosine and sine of the operators of the phase
difference for two polarized modes. But for such an ap-
proximation as (42), we have some difficulties with the SG
operators [14, 30]. So, a more accurate formulation should in
principle be attempted, and one way to do that has been es-
tablished by the Pegg–Barnett formalism described in [31].
Nevertheless, we still discuss further below the problem of
phase-sensitive measurement in the framework of the SG ap-
proach.

In the simplest case whenΦ− � 1, only theS3 operator
depends on the phase difference, thus:

S2 ≈ 2
√

nxny , (44a)
S3 ≈ 2

√
nxnyΦ− . (44b)

We could obtain the information about the phase difference of
two polarized modes by QND measurement of theS3 param-
eters. The appropriate procedure for such a parameter nonde-
molition measurement (we denote it as aS3c parameter) has
been considered by us in Sect. 4.3 above (see also Fig. 5). The
main difficulties in obtaining the measurement are connect-
ed with an exact correspondence between the detected Stokes
parameterSout

1 and the measured value of the phase difference
Φ−. That means that the QND apparatus should measure the

phase difference only, and not the amplitudes of two polarized
modes. Thus, the fluctuations of the Stokes parameterS3c (see
also (39b)) can contribute to fluctuations of the phase differ-
ence. The conditions for obtaining such a QND measurement
for the phase difference will be written below.

First of all, let us represent both the photon number and
the phase difference operators in the form (see [26, 37]):

nx,y = 〈nx〉+∆nx,y , and (45a)

Φ− ≡ 〈Φ−〉+∆Φ− , (45b)

where∆nx,y and∆Φ− are only the operators. When condi-
tion (42) is satisfied(∆nx,y � nx,y), the following expression
for the fluctuations of the measured Stokes parameters could
be written down thus:

∆S3c = 2(〈nx〉〈ny〉)1/2∆Φ− + (〈ny〉/〈nx〉)1/2∆nx

+ (〈nx〉/〈ny〉)1/2∆ny . (46)

Thus, for the variance of the fluctuations of the measured
Stokes parameter given in (43b) (see also Fig. 5), we have:

〈∆S2
3c〉 = 4〈nx〉〈ny〉〈∆Φ2−〉+ 〈ny〉

〈nx〉 〈∆n2
x〉+ 〈nx〉

〈ny〉 〈∆n2
y〉 (47)

In (47), the first term on the right-hand side corresponds to
the QND measurement procedure of the phase differenceΦ−.
But the last two terms in (47) describe the quantum fluc-
tuations of the polarized modes at the input of the QND
apparatus (although we can ignore them for nonclassical de-
scriptions of light). In fact, in the case where input radiation
is present for amplitude-squeezed light, we have

〈∆n2
x,y〉 � 〈nx,y〉 (48)

and so these terms are valid in practice. As a result, the phase
difference of two modes is measured by a “pure” method.

Thus, the appropriate scheme for QND measurement
of the S3c Stokes parameter can be proposed as a phase-
difference measurement procedure for two orthogonally po-
larized modes, but only for the case where the amplitude-
squeezed light (with sub-Poissonian photon statistics) has
been prepared before the measurement procedure [14]. In
the classical approximation for one of two modes, a above-
described procedure for QND measurement corresponds to
the phase measurement (cf. [17]) in terms of the Hermitian
quadratures (see also (10)).

6 The QND measurement of the angular momentum of
atomic systems

Rapid progress has recently been achieved in the investigation
of the nonclassical characteristics of atomic systems [38–40].
The subject of a recent major study has been the interac-
tion of two-level boson-like atoms with an electromagnetic
field [5, 6]. For these systems, the QND detection of atom-
ic states [41], the coherent effects [6, 42], and the formation
of atomic squeezed states [43] have all been under intensive
study. One significant problem encountered has been the ex-
perimental observation of predicted nonclassical effects.
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We now consider the problem of QND measurement of
the angular momentum in atomic systems. In general, the op-
erators of the angular momentum of atomic systems obey the
SU(2) algebra commutation relations in (4) and so the above-
considered QND measurement procedure can still apply in
this case.

We define, for example, the parameterJz as a nondemoli-
tion-measured angular momentum component, in contrast to
the parameterJx as a measuring (probe) component. Accord-
ing to general principles of the QND measurement procedure
(see Sect. 4), we suppose that a measured componentJz in-
teracts with a probe component in some physical measuring
device (a QND apparatus) and that linear coupling between
these components takes place. For such a case let us consid-
er the Hamiltonian of the interaction of the atomic system
with classical magnetic field (directed along they-axis) in the
form:

H = −χ JyHy (49)

where coefficientχ describes the magnetic momentum of
atomic system andHy is the classical magnetic field compo-
nent. The corresponding Heisenberg equations are:

dJx,z/dt = −+(χHy/h)Jz,x , and (50a)
dJy/dt = 0 . (50b)

The following solutions of (50a) and (50b) for the angular
momentum components could be written in the form:

Jout
x = Jin

x λ1 − Jin
z λ2 , (51a)

Jout
z = Jin

z λ1 + Jin
x λ2 , and (51b)

Jout
y = Jin

y , (51c)

whereλ1 = cos(g), λ2 = sin(g) andg ≡ χHyt/h, but Jin
i and

Jout
i are thei -th component of the angular momentum be-

fore (at t = 0) and after (t > 0) the measurement procedure,
respectively.

Here we can discuss the analogy between the QND meas-
urement of the angular momentum of an atomic system and
the corresponding measurement of theS1 Stokes parameter
(see (33)). In fact, we declare the following replacement be-
tween parameters:

S1 → Jz , S2 → Jy , andS3 → Jx . (52)

According to previous work in this study, the inequalities

〈(∆Jin
x )2〉 � (λ2

2/λ
2
1)〈(∆Jin

z )2〉 ≈ g2〈(∆Jin
z )2〉 , (53a)

r 2
13 � 1, and (53b)

r 2
12 � 1 (53c)

should be fulfilled (cf. (35)), wherer13 andr12 are the cor-
relation coefficients of the angular momentum components
before measurement.

The first condition (53a) requires that the atomic system
has to be especially prepared as a system being in atomic
squeezed state, i.e. the fluctuations of the probe angular mo-
mentum componentJin

x before the QND measurement pro-
cedure should be smaller than the measured one. Recently,
such a type of quantum state has been theoretically proposed

by Agarwal, Schleich et al. in [43]. The conclusion is that the
atomic squeezed states|ς, m〉, can be generated from the so-
called coherent Dicke states| j, m〉 (see for example [42]) or
the Dicke ground state| j, m〉 = | j,− j 〉 (wherem = − j ) by
the following transformation of the wave function:

|ς, m〉 = Am exp(ϑJz) exp(−iπJy/2)| j, m〉 , (54)

where Am is the normalization constant, and the parameter
ϑ determines the squeezing effect in the system (see below).
The variances of the fluctuations of the angular momentum
components before the measurement are these:

〈ς, m|(∆Jin
x )2|ς, m〉 = 0.5 tanh(ϑ)〈ς, m|Jin

z |ς, m〉 , (55a)
and

〈ς, m|(∆Jin
y )2|ς, m〉 = 0.5 coth(ϑ)〈ς, m|Jin

z |ς, m〉 . (55b)

We can see that the variance of the probe angular mo-
mentum fluctuations is smaller than a standard quantum limit
determined by the level〈Jin

z 〉/2 (see also (9)), in contrast
with the variance for the component of angular momentum
〈(∆Jin

y )2〉 and it is important that the last component(Jin
y ) is

isolated from the measuring procedure (see equation (51c)). It
is clear from (55a) and (55b) that in this case we have an ideal
squeezing effect for the angular momentum probe component
before measurement, in other words

〈(∆Jin
x )2〉〈(∆Jin

y )2〉 = 〈Jin
z 〉2/4 . (56)

This results in the QND measurement of theJin
z angular mo-

mentum component being obtained from the squeezed probe
componentJin

x . But the fluctuations of another angular mo-
mentum〈(∆Jin

y 〉 increases as expected – a similar situation
occurs in quantum optics when a Stokes parameter of light
is measured by another one using the polarization-squeezed
states.

The basic scheme for QND measurement of the angular
momentum componentJin

z is shown in Fig. 6. In general, the
QND apparatus contains the squeezed state|ς, m〉 prepara-
tor (SP) and a “measuring box” B1, where the atomic beam
interacts with a classical magnetic field, and then the probe
(Jout

x ) component is detected. Experimentally, the squeezed-
state preparation can be obtained by the N two-level atomic
system interacting with the broadband squeezed-photon en-
semble that can be presented as a cavity in a degenerate
two-photon down-conversion effect [43, 44]. In this case, the
squeezing parameterϑ characterizes the squeezed bath (i.e.
the average photon number).

j,m SP εo,m

JZ
in

JX
in

B1

JZ
out

JX
out

detector

Fig. 6. Scheme for QND measurement of theJz component of angular mo-
mentum of an atomic system.Jin

z,x and Jout
z,x are the angular momentum

components at the input and the ouput respectively, of the QND appara-
tus. The box SP denotes the state|ς,m〉 preparator before the measurement
procedure
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The special nature of these results encourages the study of
the quantum nature of an atomic system that is coupled with
spin QND measurement. In general, some information about
the spin momentum can be obtained for a quantum system
being in the state describing by an orbital quantum number
` = 0. Let us consider the scheme (Fig. 6) for angular momen-
tum QND measurement when the input value forj = 1/2.
It is well known that for this case we deal with two states,
|1/2, 1/2〉 and|1/2,−1/2〉, of the atomic system (where the
latter is precisely the Dicke ground state) when an external
magnetic field is applied to an atomic beam to split it into two
parts withm = ±1/2. According to the foregoing procedure,
we can carry out QND measurement of the component of an-
gular momentum of the atoms (in this case the initial state,
before the state preparator, is a Dicke ground state) when
the requirement for additional interaction between the atomic
beam and the classical magnetic field is satisfied. When this
occurs, the Dicke ground state is formed at the entrance of
the squeezed-state preparator SP. Then, after the generation of
squeezing in the SP device, the atomic beam is detected by
the interaction procedure with a second magnetic field. The
QND measurement is achieved by detection of an angular
momentum component for the atomic system.

It is important to note, however, that the proposed method
of measurement without the squeezed-state preparator is
identical to the well known Stern–Gerlach experiment [45].
In quantum optics such an experiment corresponds to the de-
termination of the light polarization component by a linear
system, i.e. by polarizer and/or analyzer. But as discussed
above, the QND measurement procedure for the Stokes pa-
rameters of light adds a new optical element (namely an
anisotropic medium of cubic nonlinearity) placed between
two linear systems (polarizer and analyzer) in this setup
– see Sect. 4. Thus, the quantum properties of the spin in
an atomic system could be obtained by modification of the
Stern–Gerlach experiment by adding the squeezed-atomic
state preparator. Alternatively, the optical Stern–Gerlach ef-
fect has recently been proposed in [41] to detect the atomic
state by the QND procedure.

The analysis carried out above has established a useful
analogy between quantum and atomic optics and has shown
that the method proposed by us for the Stokes parameter
QND measurement (see Fig. 5) corresponds to a modified
Stern–Gerlach experiment for the measurement of the spin
states in an atomic system.

In addition we should emphasize that polarization-
squeezed light could be useful for the measurement of the
P-odd rotation of atomic spin [46, 47]. In fact, the effect of
rotation of the atomic spin vectorF around the wave vector
k in an optical field arises when the quantized left- and right-
hand polarized components of the optical field interact with
hyperfine components of M1-transition, for example3P0 −
3P1 for the Pb atoms placed in a resonator. In such a case,
the angle of the spin rotation depends on the combination of
two operators, namely the photon creation operator and the
photon annihilation operator. For two orthogonally polarized
modes, such a combination directly corresponds to one of the
Stokes parameter, i.e.S2 (see (2c)). Thus, precise measure-
ment of the spin rotation angle for an atomic system becomes
possible when fluctuations of the Stokes parameters are sup-
pressed. This fact means that the quantum states of atoms can
be controlled by polarization-squeezed light.

7 Conclusion

In the present paper, an opportunity to generate the polariza-
tion-squeezed state of light in a spatio-inhomogeneous non-
linear medium with high efficiency of the energy exchange
between two linearly polarized modes has been discussed.
The expressions obtained for the variances in the Stokes pa-
rameters of light have shown an ability to redistribute the
quantum fluctuations between different polarization compo-
nents of the optical field. We also presented two methods for
QND measurement of the Stokes parameters: One of them
can be applied to QND measurement for the phase difference
of a two-mode field in quantum optics; the other gives a gen-
eral approach to the SU(2) algebra observables measurement
developed by us, and has resulted in a procedure for QND
measurement of the angular and/or spin momentum in atomic
systems.

Finally, we will discuss the main directions of possible
application of the results we have obtained. First, the QND
measurements under consideration could have a wide-ranging
effect, especially using a polarization peculiarity of light
fields, where we are dealing with precise measurements of ex-
tremely high accuracy for fundamental physical processes in
order to obtain unique information about the objects under
study. For example, measurements of the Stokes parameters
can be useful for observations related to such major topics in
general physics as the quantum polarization instabilities and
chaos of light – a specific method for that could probably be
associated with tunnelly-coupled or twisted birefringent opti-
cal fibers (see [27, 37]).

Secondly, the polarization QND measurements are very
relevant for quantum computers (using non-classical logic
elements (see for instance [48])) and for optical data pro-
cessing and pattern-recognition systems [26]. In forthcoming
papers, we will show how the information could be stored by
the Stokes parameters of light so, that a truly logical table
could be constructed.

Thirdly, the QND measurements are interesting within the
quantum cryptography problem [49]. For example, the intro-
duction of an additional channel (using the procedure for the
polarization QND measurement) in common communication
channels which connect two correspondents can result in the
possibility of third person assembling information without its
destruction.

The physical basis of such an approach is established
on the fact that a quantum-mechanical measurement of one
variable should change the state of the system and should in-
troduce uncertainty into the value of other variables [50]. So
the problem is directly related to the subject under discussion
in our paper. Moreover, the first demonstrations [49–51] of
quantum cryptography have been carried out directly using
polarization approach, in other words the system has provid-
ed secure communications between two correspondents using
a sequence of linearly polarized photons. Complete analysis
of such a polarization approach has not yet been carried out,
although at present there seems to be no doubt that quantum
cryptographic systems (and especially the polarization ones)
will soon be capable of reliable operation in practical use.
Specific schemes for the systems under discussion are based
on different kinds of interferometric approach with optical
fibers (namely two-photon interferometry, a series of interfer-



64

ometers etc) and have been investigated repeatedly (see for
example [52]).

Fourthly, let us discuss a specific power requirement for
use with polarization-squeezed light in the devices consid-
ered herein. According to the problem, it seems to be that
a fiber system of a special type is the best candidate, and
the question is exactly the same as that which applies for
quadrature-squeezed light (see Introduction). There is a re-
quirement to generate a nonclassical light by means of an
extremely low-powerd laser, and this has become possible
through a special type of optical fiber fabricated recently (we
discussed some of them in [3, 28]). In fact, among nonlinear
devices, the chalgogenide-glass fibers (as third-order nonlin-
ear devices) and the organic-crystal fibers (as second-order
nonlinear devices) are expected to have high potential for
actual applications [53]. With respect to the subject of the
present paper, DFB-fibers of spatial grating including twisted
birefringent optical fibers [27] and/or the dual-core tunnel-
coupled fibers fabricated on the basis of such a material are
very relevant for experimental verification of the quantum
phenomena discussed herein. The possibility of using a short–
long (about a few centimetres long) device is very important
and gives a good advantage to suppress a number of nonlinear
optical effects (for instance stimulated scatterings, etc) which
compete with the effects considered by us in this paper. More
detailed discussion of a valid experimental setup with some
mathematical calculations and simulations need to be carried
out separately, but to conclude our brief review let us discuss
qualitatively an expected efficiency of the effects in such sys-
tems.

As to the fibers on the basis of chalgogenide glasses, for
example, the high nonlinear absorption has been obtained
for a laser intensity of about10 W/cm2 for a fiber length
of 20 cm, and this results in a remarkable nonlinear phase
modulation for traveling light in such an optical fiber under
He–Ne(λ = 0.63µm) laser (the diameter of the fiber core be-
ing 100–250µm) [54]. This nonlinear effect should give rise
to the development of the phenomena discussed in a amount
paper.

Besides the high nonlinearity of the material itself, the
dual core optical fibers have a principal advantage due to
a special regime of switching (self-switching) existing two-
coupled modes of orthogonal polarizations in birefringent
(screwed) waveguides [28]. The effect results in the possi-
bility of inducing a gigantic change of the intensity of the
output mode by a very weak variation of input intensity under
specific conditions (the so-called “optical transistor effect”).
For example, for a multilayer optical fiber core fabricated on
the basis of MQW structure (i.e.GaAs Ga0.3Al0.7As) with
a cubic nonlinear coefficient∼ 10−4 esu, the necessary in-
put light intensity is about1 mW (λ ∼ 0.9µm) for the fiber
length∼ 1.5 mmand for core diameter∼ 2µm [28]. Natural-
ly, such an effect results in dramatical change of the fluctua-
tion behavior in the system as well. In addition, we have to
mentioned that the setup discussed above is a very sensitive
interferometric scheme but, in contrast to ordinary fibers, the
dual-core optical fiber is not sensitive to external destabiliz-
ing factors and this is very important for such delicate states
of light as those relating to quantum polarization.

The theory of quantum polarization light presented by us
can be also applied to solve the problem for N identical two-
level Boson-like atoms that interact with an electromagnetic

field [6]. In this case, the Stokes parameters of light describe
the polarization states of an atomic system. At the same time,
the QND measurement of angular momentum could be use-
ful for observation of nonclassical atomic states, including
squeezed states [43]. The rapid progress that recently has
been achieved towards the manipulation of quantum states of
cooled atoms makes this problem soluble.
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Appendix

Here we consider the method of preparation of an optical field
for QND measurement of theSin

1 Stokes parameter of light
by the procedure discussed in [10]. Let us suppose that an
optical field propagates through an anisotropic medium with
third-order nonlinearity (a Kerr-like medium), as indicated in
Fig. 3. The two orthogonally polarized modes, described by
the operatorsbx andby, are transformed as:

ain
x = ei(γ1b+

x bx+γb+
y by)bx and

ain
y = ei(γ2b+

y by+γb+
x bx)by , (A.1)

where the coefficientsγ1,2 andγ are proportional to the com-
ponents of nonlinear susceptibility and to the length of the
medium. It can be shown that the mode photon number re-
mains constant, i.e.(ain

x,y)
+ain

x,y = b+
x,ybx,y and that therefore

the conditionS1b = Sin
1 fulfilled (see Sect. 4.2).

As we have mentioned in Sect. 4, it is necessary to sat-
isfy two conditions for the QND measurement of the Stokes
parameterSin

1 . First, theS3 parameter fluctuations must be
suppressed, that is, PS light has to be generated. Secondly,
the absence of correlations between the Stokes parameters is
also required(r13 = r12 = 0). Taking into account the formu-
la (6) and (A.1) for the correlation coefficientsr13 andr12, we
obtain:

r13 ≈ 2e−W〈n〉 sinΨ cosφ{〈∆(Sin
3 )2〉/2〈n〉}1/2 , and (A.2)

r12 ≈ − 2e−W〈n〉 sinΨ sinφ{〈∆(Sin
2 )2〉/2〈n〉}1/2 , (A.3)

where the variance〈∆(Sin
3 )2〉 is given by the expression

(see [10]):

〈∆(Sin
3 )2〉 ∼= 2〈n〉

{
1+〈n〉(4W cos2 φ−∆γ sin 2φ)

}
(A.4)

Here we denote〈n〉 ≡ 〈(bin
x )+bin

x 〉 = 〈(bin
y )+bin

y 〉 , Ψ = γ −
0.5(γ1+γ2) , W = 0.5〈n〉 {

(γ −γ1)
2 + (γ −γ2)

2
}
, andφ =

ϕ + Ψn1 , ∆γ = γ2 − γ1, where Ψn1 ≡ 〈n〉∆γ is the ef-
fective nonlinear phase shift, andϕ is the phase-mode
difference at the input of the medium. The expressions
(A.2) and (A.3) are obtained under approximation, with
γ1,2 , γ , 〈n〉γ 2

1,2 and〈n〉γ 2 all � 1.
It follows from (A.2) and (A.3) thatr13 = r12 = 0 for

the caseφ = π/2 and φ = πm (m = 0, 1, 2...) or Ψ = 0,
i.e. γ = (γ1 +γ2)/2. The latter condition is more preferable
because we can regulate the level of quantum fluctuations,
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〈∆(Sin
3 )2〉, by adjusting phaseφ and ϕ. For example, from

(A.4) we get a minimum value of〈∆(Sin
3 )2〉 for γ = (γ1 +

γ2)/2 and the limiting phase valueφ = −0.5 arctan(2/Ψn1),
so that

〈∆(Sin
3 )2〉 = 2〈n〉

[
1−0.5Ψn1

{
(4+Ψ 2

n1)
1/2 −Ψn1

}]
(A.5)

The expression (A.5) shows the possibility of suppression of
the Stokes parameter fluctuations, which may be lower than
unity for a coherent state.

It seems essential to emphasize that the value of〈∆(Sin
3 )2〉

from (A.4) corresponds to the case of an ideal squeezing,
when the uncertainty relation (5) is minimal and the correla-
tion coefficientr13 = 0. Thus, under certain conditions for the
parametersγ1,2 andγ there is no correlation for the Stokes
parameters, i.e.r13 = r12 = 0, at the output of an anisotrop-
ic cubic-nonlinearity medium. At the same time the ideal PS
light is formed.
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