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Abstract. A possibility of the formation of polarization- fibers with their dielectric constant periodically varying along
squeezed light in the case of interaction of two orthogonallyhe direction of propagation of light, and also fibers with two
polarized modes in a spatio-periodically nonlinear Kerr-liketunnel-coupled cores [4]. On the other hand, the DFB sys-
medium is considered. It is shown that the fluctuations of théem is obtained in atomic optics for a collection of ultracold
Stokes parameters of light could be less than their fluctuatiorte/o-level atoms via nonlinear Bragg diffraction in a periodic
in a coherent state at the output of the medium. An analysistructure being a standing wave of a laser field [5, 6]. In this
shows that the light polarization degree is not fixed in such aase, the formation of nonclassical states for boson-like atoms
nonclassical state of light. We also introduce a new nonlineasccurs, and the analogy with the light travelling in the above
parameter of light polarization associated with the fluctuamentioned optical fibers takes place.

tion variances of three Stokes parameters. The value of the Another aspect of the quantum states under study is the
parameter is examined for different quantum states of lightpolarization quantum state of light. Recently, a quantum an-
A procedure for the quantum nondemolition (QND) measurealysis of such a state has been intensively developed [7—
ment of the Stokes parameters of light is described for the first0]. The discussion has generally focused on calculations of
time. We show that the precision measurement of the Stokdke Stokes parameters, which are associated with Hermitian
parameter depending on phase could be used for the QNBtokes operators and have an explicit physical interpretation.
measurement of the phase difference of two orthogonally po- From the standpoint of wanting to apply the use of
larized modes. The general description of the measuremequantum-squeezed light in high-precision polarimetry and el-
procedure under study allows us to propose also a schentipsometry, the polarization-squeezed light has a special inter-
for the QND measurement of angular momentum of atomiest. In fact, for such a state, the level of quantum fluctuations

systems. of one of the Stokes parameters is smaller than in the coher-
ent state. It has been shown in [10] that polarization-squeezed
PACS: 42.50 Dv light can be generated in cubic nonlinear anisotropic media

when there is an anisotropy of the nonlinear correction to its

refractive index.
At present, the generation of squeezed states, nonclassical In the present paper, we consider another possible method
statistics of photons and the realization of quantum nondema{ generating polarization-squeezed light in a spatially peri-
lition (QND) measurements is prompting the study of manyodic nonlinear medium [11]. It is shown that both the linear
nonlinear systems, which typically result from the energyand nonlinear energy exchange between orthogonally (along
exchange and quantum interference between two (or moré)e x- andy-axis, angor two circularly) polarized modes re-
conjugated modes [1]. That leads to suppression of fluctuasults in the formation of a nonclassical polarization of light in
tions of one of the observable variables of the field while,such a DFB system.
for another variable, the fluctuations are enhanced. In fact, Atthe same time, to observe this new nonclassical state of
the competition and energy exchange between travelling arigjht, it is necessary to select an appropriate quantum meas-
scattered waves become possible in the case of Bragg diffragrement procedure. The QND measurement method [12]
tion in a spatially periodic structure, that is, in a system ofseems to be a suitable procedure for that (see [13-15]).
distributed feedback (DFB) [2]. But earlier analysis has shown that the QND measurement

The high-efficiency systems of nonclassical light genermethod cannot be directly applied to our problem because

ation, based on a different type of DFB system, have beepertain conditions have to be satisfied for it to be valid (see
described on a number of occasions to data [3]. The be$t, 13, 14]).
method of obtaining such DFB in optics can be established We describe herein the procedure of QND measurement
by use of nonlinear optical fibers of two special types, namelgspecially for the Stokes parameters of light developed by us
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(see also [16]). In general, this presentation could be appliedave functions) as a linear combination of the states for two
to any other observables of SU(2) algebra (for example, torthogonally polarizated modes. In this case, any transfor-
the angular momentum of an atomic system); however, thmation of the light polarization state could be geometrically
phase sensitivity of the Stokes parameters of light under studgpresented by the Poinéasphere as a rotation in a 3D-
allowed us to consider the measurements of the phase differenfiguration space of thg, &, S parameters.
ence between two polarization modes by the QND procedure Another way to describe the polarization state of light
(cf. [17]). in quantum optics is to introduce the measurable (observ-
The same technique is proposed by us for detection adible) quantities associated with the operators of the Stokes
angular momentum in atomic systems as well. AuxiliaryparametersS, where j =0, 1, 2, 3 (see for example [20]).
questions concerning the polarization light formation in anThe presence of fluctuations, which are unavoidable in quan-
anisotropic nonlinear medium are shown in an Appendix. tum theory, results in uncertainty for these characteristics of
the light polarization. Moreover, the uncertainty product for
1 Classical and quantum description of the polarization ~ variances of the Stokes parameters fluctuations occurs (see
states of light below) in contrast to the classical description. In fact, in quan-
tum optics, an exact and simultaneous measurement of the
In classical optics, one way to describe light polarization isStokes parameters is absolutely impossible: the situation is
linked with the theory behind the Stokes parameters (seéhe same as for momentum (orbital, angular, /amdspin)
for example, [18]). In principle, the Stokes parameters couléh the traditional quantum mechanics of particles. So, we
be simultaneously and exactly measured by a set of opticalre dealing with, principally, the quantum fluctuations of the
elements, for instance two photodetectors, polarization anight vector. Thermal fluctuations, which exist in the classi-
a phase plate [19]. A clear geometrical interpretation of theal description as well, are outside our consideration because
Stokes parameters makes this method of light polarizatiothey can usually be associated with technical fluctuations, in
even more attractive. From a mathematical point of view, thgarticular due to the quality of the polarizer device used to
polarization state of a light can be given using the Poi@carproduce the polarization state of optical field.
sphere in the Stokes space@f S, S;. Each point on the The description of the partial polarization of light using
sphere corresponds to a definite polarization state, whosge real Stokes parameters corresponds to the close relation-
variation is characterized by movement of the image point. ship between the classical and quantum approaches for given
In classical optics furthermore, in order to describe quanpolarization properties. However, a quantum theory results in
titatively the polarization state of light, we introduce thethe existence of specific nonclassical polarization states, for
degree of polarizatios, which is equal to the ratio of the in- which a general analysis is presented in the next section.
tensity of the polarized part of the radiatidgy to the total
intensity lyot thus: 2 Polarization-squeezed states of light

VS22 + ()2 + ()2

S Let us characterize the polarization state of the two-mode
where$ is the Stokes parameter that determines the total infield under consideration by the Stokes operators:
tensity of the modes; sigh..) denotes here and below the
average value. For completely polarized light= 1, while &= ajax+a;;ay, (2a)
for partially polarized light O< & < 1, and a transition to un- S —a‘a—ata (2b)
polarized light corresponds to compression of the Pomcar™ ~— “x“*  “y %>
sphere to zero radius (see also [9]). S = ajaye") + a;“axe*'g , and (2¢)
From a quantum physics standpoint, the difference bes . _+_ __is  _+. o
tween polarized (elliptically in the general case) monochro—SB =i@yae™" —acaye’), (2d)

matic light and unpolarized light is that the polarized Cas§, pare the parameteris the classical phase (see below) and

results in a “pure state, In other W(_)rds a coherent mIXJ.[uredj (a;h) is the photon annihilation (creation) operator, respec-
of two components which are polarized in two perpendicus

s . tively, for the j-th polarized component of light. The opera-
lar directions (where the amplitudes of these components %E‘Brsa- (a+) obey the well known commutation relations:
summed), whereas unpolarized light represents a “mixe 15 '
state, in other words an incoherent mixture (where the intenr, . _+7_ «. o
sities of the components are summed) [18, 20]. Taj: & =i, with jk=x.y 3)
_In the language of wave functions (with photons exist- e gtokes operators obey the commutation relations of
ing only in the momentum representation [21]), for “pure” . SU(2) algebra:

states we have linear combinations, which can be used to cap '

culate the total probability of the photon polarization state S: S =2iS. [S: S] =2, [S: S =2iS (4a)

and for mixed states we can sum the squares of the absolu{tg)’ o e

values of the wave functions, i.e. the individual probabili-[ 1§1=0 (J=123). (4b)
ties. Moreover, although no type of polarization is dominant
right- and left-circularly polarized photons are the most easil
defined in the terms of spin operators. It is well known [22]
that to characterize in general the photon polarization state,
we can define an arbitrary polarization state (in terms O?A%Z(Z)HAS%(Z)) > [(Sn(@)17/1-1. ()

2.1 Nonclassical polarization states

@

P = |po|/|tot=

he relationships given in (4a) reduce to the so-called
Schrédinger—Robertson uncertainty relation [23]:
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with  j,km=121,23 but | #k=#m  where The physical properties of squeezed light with suppres-
(ASf(z)) = (A%z(z))—(ﬁ(z))2 is the variance of the fluctu- sion of the fluctuations ofAS3(2)) or (ASi(2)) can be
ations of thej-th Stokes parameter, angl is the correlation elucidated in the simplest case by assuming that the field of
coefficient between the Stokes parame&m@ndS,, whichis  one of the modes is classical. Then, for example, replaaing
defined by by the classical quantityAx| explipx), Wheregpy is the phase,

we have (see also (2c), (2d)):
o (§S+H(&S) -2A§) ()

=T AR agHE © 50 =Q@lA (10a)
S(2) = Py(2)| A« (10b)
According to the form of (5), the Stokes parameters cannot be _io _io o
simultaneously and exactly measured in a quantum optics. Wherng@ =ePay(2+e'aj(2), andPy =i[€“ay (2)
We assume that the interacting waves are initially in—€"'“ay(2)], with © = ¢y — 6, are the Hermitian quadrature
a coherent state at the input of the nonlinear medium¢omponents for the mode described d&y It is seen from

i.e. (10a) and (10b) that polarization-squeezed light is closest

to quadrature-squeezed states of a field in this case. Experi-
ajlaj) =ajlej) (j=x,y), and (7a) ments devised to obtain light with such characteristics are
1£) = lox) |aty) (7b) well known (see, for example, [1]).

When polarization-squeezed light is compared with
where; and|q;) is the eigenvalue and the eigenstate of thdluadrature-squeezed light, the specific features associat-

aj operator, andé) is the state of the total field containing €4 With the &/e('::tor characlteri_stics ofb_the fiel_ld must g.e
two modes. If we take the definitions in (2) it is easy to obtai?®'€ in mind. For example, in a cubic nonlinear medi-

that um, quadrature-squeezed states can be obtained in practice
only in processes involving the self-interaction and cross-
<A512> — a2+ |ay|2’ k=0, (j=123). 8) interaction of waves [26], while polarization-squeezed light

can form in such media only when there is anisotropy

It follows from the expressions in (8) that the level of the fluc-In the nonlinear correction to the refractive index [10].
tuations of the Stokes parameters is defined by the sum of tH the latter case, there is no power conversion between

averaae photon numb — lav2 and(ny) = lavl2inthe  Polarization modes propagating in the nonlinear medium.
cohergentpmodes. elfSx) = o Ny) = layl Therefore, both the total number of photons and the dif-

Taking into account (5), we can write conditions for the férénce between the numbers of photons in the modes are
squeezed states of light in terms of the Stokes parameter vafiaintained (see Appendix). In contrast, the main purpose

ances: of the present paper is to demonstrate the possibility of
obtaining a new class of polarization-squeezed light, in
(A§(z)) < I(Sn(Z))I/(l—fﬁ()l/z, and which there is an energy exchange between the polarization
modes.
(AS@) 2 (Sn@)l/A—rf)™?
with j,k,m=1,2,3butj Zk#m. 9
Thus, in quantum optics, the state of polarization may ASs

be presented on the Poinéasphere with coordinatd$;),
(), (S8) (see Fig.1). Here a fluctuational uncertainty
can be associated with a particular region of uncertain-
ty in the Stokes parametel§ >3 around their mean val-
ues [10, 11]. From the physical point of view, the inequal- )
ities in (9) mean that the ball-shaped region of uncertainty
(for coherent states, (7) and (8)) of the Stokes parame-
ters is transformed to the ellipsoid of the uncertainty for
squeezed states (9). This type of nonclassical polariza -
tion state has been called the polarization-squeezed (P )//
state [11].
Let us now discuss which nonclassical states under stu
have the properties that are similar to those of light with
squeezed fluctuations of the Stokes parameters. First of al
we consider the paramete$s(z) and S;(z), which are de-
fined by the relations (2a) and (2b). It is well known that
fluctuations in these parameters can be suppressed to values S
below the level corresponding to the coherent state, owing
to a correlation or anticorrelation among the photons in the
two modes. Such a situation is obtained, for example, in para-
metric processes and four-wave mixing [24], as well as for
other schemes of multiwave scattering [25], where correlatefig. 1. Transformation of a coherent state (1) into a polarization-squeezed
photons are created in pairs. state (2) on the Poincarsphere
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2.2 Basic equations and quantum fluctuations

We describe here the propagation of polarized modes in the
periodically-inhomogeneous nonlinear optical fiber (see [27,
28]) by Heisenberg equations for the evolution of the an-
nihilation operatorsay and ay related to the two orthog- o3
onal components of the polarization of light [11]. We
have

ihdaj/dt = [aj; Hint] (j =X, ), (11)

with the interaction Hamiltonian
Hint = (hc/n) (& ay + pajax +
0.5R(@; a2 +a; a2) + (R/3)a; axay ay) (12) @

whereh is the Planck constant,is the light velocity in a vac-
uum andg is the linear coefficient of the mode coupling.
Further, R = 4rhwkonz/n1sepV is the nonlinear coefficient
(with ko = w/c), n1 andn; are the linear and nonlinear refrac-
tive index respectively, the parameteis determined by the o3
field distribution over the fiber area, aldis the quantization
volume.

The solutions of the equations (11) can be found in the
form [3]:

ay,y(2) = (c1(2) exp(ipz) £ c2(2) exp(—iﬁz))/«/ﬁ, (13)

where timet is replaced by-zm /c, andcy 2(2) are the slow-
ly varying operators that are determined by the foIIowingb
expressions:

Fig.2a,b. 3D dependences for normalized variane® = (A§2(2)>/(n)

_ i + + (j =2, 3) of the Stokes parametera: Sy(z) plotted against the effective
C12(2) = eXp{IU(SCLZCl’Z_'_602,102’1)/6} €12 (14) nonlinear parametet and phase; b S3(z) plotted againsk and 6. The

. value 2 =1 corresponds to the coherent level of the Stokes parameter
Here and belowg 2 = ¢1.2(z= 0) is the operator value at variances

the input of the nonlinear medium, aad= Rz It is easy to

show that the commutation relations (3) are valid for opera-

torsay.y. 6. Specifically, whenxk =2 and 6 = 1.2rad the mini-
Let us now consider the fluctuations of the Stokes parammal value of 022 corresponds to maximum value 0f32

eters$ and S (2¢) and (2d), at the output of the Kerr-like Thys, if the value ofo2 or o2 is smaller than the coher-

nonlinear medium. Taking into account the relations (13) ang,nt oise |eve|6223: 1, then polarization-squeezed light

(r1]4)' and Islfginan) Eb(n.> #ho far|1|d(n_y) =0Oatthe inpfut of is formed. The Stokes parameter variances given in (15a)
the optical fiber, we obtain the following expressions for vari- 4 (15 are the same as for coherent states at the out-

2\
ancesas, 3): put of the medium when the effective nonlinear parameter
_ 2 i ; k| = 0.
<A§> - (n>(l+K2 SmZ@JFKS'_” ) and (153) Expressions (15a) and (15b) reach their limiting values
(AS) = (N)(1+«%cog 0 —ksinD), (15b)  when tan26) = —2/«. The minimum and maximum values
are:

where we have introduced an effective nonlinear parame-

ter k = Wesf = ¥ c09B22). Within these expression®d = 2

o(n)/6 = Rz(n)/6, andd = ¢ — koz, and together they rep- (AS)min = (n) (\/ 1+x2/4— |K|/2> and (16a)
resent the initial phase difference between two orthogonally )

polarized waves that is determined $yand the phase shift _ / 2

koz due to wave number differences in two modes, on the as(—Ag)maX_ (Y 1+ws/atlcl/2) (16b)

sumption that?(n) < 1 (see Appendix). In the general case,
the variance$AS§)3) in (15a) and (15b) depend on thepa-  and in this case the product
rameter, in other wordg and 28z, and on phase.
The 3D dependences of the variances given in (15a)AS5)min(AS)max = (n)? (17)
and (15b) are shown in Fig.2. In general, it is obvi-
ous from Fig.2a and Fig.2b that the normalized vari-is minimal and we have an ideal squeezing.
ances of the Stokes parameteg = (AS§3)/(n) demon- Let us now consider the fluctuations of the Stokes param-
strate the oscillation behavior with parameferand phase eter S;. The expression forAS?l) obtained under the same
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approximation as (15a) and (15b) has a form: where this formula (20) differs from expression (1) by the
renormalization factor only. However, the difference is major
(AS) = (n) <1+ w? sin2(2,32)) (18)  and results in a quantum correction of the introduced nonlin-

ear parameter (20). Indeed, in contrast to the classical optics
It is easy to see thatAS}) is also greater than the vari- approach (see for example [18]), where
ance for the coherent state excluding the value of dis-
tancez which satisfies the conditionf2z = n(1+m) (m=

3
0,1,2...). Y §<5. (21a)
j=1

3 A nonlinear parameter to describe the light we now have an opposite inequality
polarization state in quantum optics
3
The parametes, introduced above at (1), characterizes the 512 =9(9+2 > . (21b)
degree of polarization and needs to be discussed separafes
ly in quantum optics. Indeed, a recent study in [7,10,11] o

the problem showed the nonlinear behavior of the quantity, 5 quasiclassical approximation for a large photon num-
for nonclassical states of light. The result can be recognizeger, that is, whenSy) = ng = (ny) + (ny) > 1, the nonlinear

taking into account, first, the definitions in (2); secondly, theéyarameter (20) can be associated with the light polarization
relations (13) and (14); and also, thirdly, the fact that the iNigegree thus:

tial modes are in a coherent state. Then we obtain for the

degree of polarization (1) the following expression: 3 3
2
= )<, 22
P =e W12 1 (n)o?/72. (19) J.Z:;S’z) ;@ (22)
The fact that the value of the polarization degree (19)P ~ # (23)

could be different from unity in principle is a purely quan-
tum effect (see also [7, 8, 10, 11]). The dependefcen the It is useful to introduce the depolarization degree parameter
average photon numbemy) = (n) of a polarization mode at D as follows:
the input of an optical fiber (whetny) = 0) is a nonlinear

. " ; . 1/2
quantum effect in contrast to the traditional interpretation of 3 3

the light polarization degree as a fixed parameter (cf [7,10D = /1 — P2 = Z(A%Z)/ Z(%Z) , (24)
and ;18,20,21]). But in a real experiment, we have found =1 =1

(n)o“ <« 1, and this means that, to the same degree of accura-

cy as obtained for (15) and (16), we hae= 1. We obtained and by this means the nonlinear parameter of depolarization
a similar result foeP for the nonlinear optical process consid- (24) is coupled with the normalized variance of fluctuations
ered in the Appendix (see also [10]). for the three Stokes parameters.

It is important to note that although the determination of | et us examine the definitions (20) and (24) for different
the polarization degre® via (1) is considered for many cases quantum states of two orthogonally polarized modes of light.
[8—11], the formulain (1) cannot be directly applied for someFirstly, for the coherent state we obtain:
quantum states of light. An alternative determinationsof

in terms of the coherence matrix elements [7] corresponds P2 —no/(no+3), and (25a)
formula (1) and in the terms of the Stokes parameter opera-;
tors. DEoh=3/(no+3), (25b)

The main problem to introduce the polarization degree ) .
into quantum theory is determined by the vacuum states d¥heréno = (nx) + (ny) is the total number of photons in two
light. In fact, for the two-mode vacuum stajg = |0)x|0)y, polarized modes together. In the quasiclassical approximation
the average values of the Stokes parameters for polarizéfo > 1), we have
modes (given by (7b)) are equal to z&(&) = 0), and so )
the expression (1) is not applied to describe the state of lighPeon~ 1, (26)
On the other hand, the determination of the polarization de-
gree for a vacuum as a limit value for coherent (@vd=ock)  and so, in the coherent state, the nonlinear polarization pa-
states, with the average number of photons being zero, resuti@meter of light differs from unity for quantum optics but is
in a completely polarized light, i.6P,ac= 1. This fact cannot, almost identical to the quasiclassical approximation. For an-
however, be physically interpreted. other limit,ng = O (the case of vacuum polarized modes), we
Let us now define the nonlinear parameter for light polar-have:
ization in the quantum case by the following modification of
expression (1): P2.=0, and (27a)
. . 1/2 DZ,.=1, (27b)
P= Z(S 2/ . <512> ’ (20) and this means that a vacuum state of light is completely un-
=1 =1 polarized.
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For the Fock state of two polarized modes (see (7b)), i.econditions to obtain QND measurements for the case under

whenl&) = [ny)|ny), we have: consideration can be formulated as follows. We define the
parameteiSy as a nondemolished measured (signal) Stokes
P2 = ((nx) — (ny))?/(n42ng) , and (28a) parameter, but the parametgy as a measuring (probe) pa-

rameter, and finally the parametgras an auxiliary parame-
ter, wherem, p,i =1,2,3, butm#£ p#i.

In general for QND measurement, it is supposed that
& measured Stokes paramefgrinteracts with the probe pa-
rameterS, in some physical system (we will call it a QND
apparatus) [12]. For this type of quantum measurement, it is
necessary to fulfill the following basic conditions [16]:

2

F’,:2 = (nx)/(2+(nx)), and (292) 1. the measured Stokes parame&§Bmust be conserved, in

DE =2/(2+(ny)). (29b) other words a process of measurement has to add the min-

o ] ] imum noise to the output Stokes param@&‘;

In the limit of a vacuum field(nx) = 0) the expressions (292) 2  the detected value of the probe Stokes parangtémust

and (29b) are reduced to the same result as above in (27a) gntain “full information” about the measured values¥

and (27b). On the other hand, in a quasiclassical approxima- 4t the QND apparatus input; and

tion for a linearly polarized optical fieldny) > 1), we have 3 any observable (in our case thgandS operators) must

a result similar to the coherent state giver] in (26). In sum- ~ommute with the operators of measured and probe quan-

mary then, the polarization parameters of light (20) and (24)  tjties, and from the physical point of view, this condition

density from our work lead to physically reasonable results.  neans that the measurement process must be separated
Let us now calculate the parameters (20) and (24) for = from any destructive feedback from these observables.

polarization-squeezed light. In the case of an anisotropic We introduce the following correlation coefficients be-

medium of cubic nonlinearity, where such a non-clas.sma{ween the Stokes parameters to describe the abovementioned
state of light can be generated (see Appendix), we have: QND conditions (see also [3, 13, 16]):

DZ = 2(2(nx)(ny) 4+ No)/(Ng+2ng) . (28b)

In the case whergny) = (ny), the polarization parameter
given by (28a) corresponds with the vacuum state (27a). F
a linearly polarized light, wherény) = 0, we obtain:

PZ,= P&n—8(nx) (ny)W/(n§ +3ng) , and (30a) Ko (G Souty 4 (sputgny _ oGy (puty|2 (318)
D2, = DZon-+8(n) (Ny) W/ (N3 +3n0) , (30b) (A2 (AFH2) :

in ut+ utqn ) in uty 2
where the first terms on the right-hand side of the equationk, = [(Sn S ﬁ; Zsm> iS;H% ) , (31b)
are described by expression (25a) and (25b), and the parame- HAFDN(AS H?)
terW is determined within the Appendix at (A.4). The second
terms in (30a) and (30b) determine the quantum addition ut couty _ (.out 2
due to the redistribution of quantum fluctuations for a polar—ﬁl(sout’ Sﬁ‘ut) - (r'g;t)z’ (323)
ization squeezing (see also (A.4)). Thus for squeezed lighR (S, ™ = (rjy"*, and (32b)
the value of the polarization nonlinear paramefgy is less Ra (U1, $ut) — (r,%“é)z, (32¢)

than for the coherent state. This result corresponds to the un-

certainty product given at (17) because the suppression ¢fi an ideal case of QND measurement, it is clear that

fluctuations for one of the Stokes parameters is accomp&gh = SV, %”‘:AZS{{} (wherexz is the QND gain) and thus,

nied by an enhancement of fluctuations for another parametef; » = 1, Ry 2 = 0, andRs = 1. However, experimentally it is

The nonlinear parameter of depolarizatidiincreases for the  difficult to satisfy the criteria (31a), and (31b) simultaneous-

same reason as a result (see Fig. 1). In practice, the magnitugeTherefore such a type of QND measurement turns out to

of W is much less than unity (see (A.4)), and so the differencée always nonideal (see below).

of the P andD parameters for the two cases, i.e. for coherent

and squeezed light, is very small (see also [11]). 4.2 QND measurement for the parameSgr

The principal result obtained from our analysis reduces , ,

to the fact that a completely polarized light cannot be gene™ow we assume that the Stokes paramé&@e= S can be

ated in quantum optics, as shown by (19). At the same timeneasured by a probe with parameggHt = %“t (§S=9)

nonclassical states of optical fields can be described by nomvithout any demolition. To obtain the necessary linear coup-

linear parameters of polarization (at (20)) and depolarizatiofing between the measured Stokes parame8frsand the

(at (24)) associated with the total variances of fluctuations foprobe parameter, for exam;@”t, we consider, for example,

the Stokes parameters of light. using two elements, namely a phase platand a linear
spatio-periodical optical fiber. The propagation of the two or-
thogonally polarized modes in such a system is described by

4 Quantum nondemolition measurements for the Stokes the equations in (11) and the Hamiltonian (12), where non-

parameters linear terms are omitted. For the case of a special selection

of phase combination wheh= 0, a coupling of the Stokes

4.1 General description of the SU(2) algebra observables operators in (2) is given by the following expressions:

measurement .
_ u=9g,, and (33a,b)
Here we formulate the general principles for the SU(2) al- ’ut_/\ in 45,9 33c.d
gebra observables using the Stokes parameters from (2). The1 = 1% £ 429 (33c,d)
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wherei1 = cogQ), and for this casg, = sin(g) and the value  of the field through an anisotropic nonlinear medium—in other
of gtherein is Bz and defines an efficiency of the linear trans-words,Sjp = S

formation of the Stokes paramete®. andS*! (j =1, 2, 3) Using the limiting value of the varianqu%”)2> of the
are the Stokes parameters at the input and the output of tipeobe Stokes parameter (see (A.5)), we can rewrite the in-
QND apparatus, respectively. equality in (35a) as a condition for nonlinear phase shift, thus:
Let us consider the coefficients given in (31) and (32) for
the casen =1, p = 3, which characterizes the perfomance of¥,1 > 2ctg(2g) ~ 1/g. (36)
QND apparatus in a linear system. For the case> 0 with
(|r2] =sin(g) ~ g « 1), from the expressions (33b,c) therel-  The expression (36) has a simple physical meaning. The
evant correlation coefficient€; » and Ry > are obtained in efficiency of the nonlinear interaction of the orthogonally po-
the form: larized modes, which is defined by the nonlinear phase shift
W1 in the NL region, must be greater than the correspond-
Kia1, (34a) ing efficiency of the energy exchange between the two modes
L2y, N 1 described by the paramefgof the linear systen.
2 1V3 1 For an ideal squeezing, the decrease of varidfads ac-
Ko~ rig+ <1+ 22V * Z)L_zrl?’V V3/Vl> > and - (340) companied by an increase of variangsfor conjugate Stokes

2 parameterS (cf. (17)). Thus, precise measurement of the
Ri~ Re~ri;. (34¢)  stokes parameteS, = S is obtained through a prelimi-
_ nary redistribution of quantum fluctuations from the probe
Here, V13 = ((A4S]'5)?); andrs, 11, are the correlation co- parameteB}' to the conjugate paramet8f in an anisotropic
efficients of (6) betweerS' and Sj', and betweerS]' and  medium of cubic nonlinearitiL. The latter is isolated from
S}, respectively, at the input of the QND apparatus. It followsthe measuring process (see expression (33b)) occuring in the
from relation (34a) that we have an approximately nondemotinear systent. (Fig. 3).

lition value of theS" parameter. The 3D-dependencies (see (31a) and (31b)) of the correla-
However, at the same time we must require the followingion coefficientsK1 and K, against both the nonlinear phase
inequalities to be fulfilled for its measurement: shift ¥n1 (in anisotropic mediuniNL) and the linear coupling
coefficientg (in linear systenlL) are shown in Fig. 4a and
Va < (A2/A1)%V1 ~ g?Vy, (35a)  Fig. 4b. We also assume that the conditions of (35b) and (35c)

(35b) are valid, i.er_lg =r1p= 0, and so the varia_nce of the Stokes

5 parameteB]' is determined by the expression (A.5) at the en-

<l (35¢) trance to linear system. Comparing Fig. 4a with Fig. 4b, we

can see that the correlation coefficieltsandK2 do not take

Sinceg® « 1, the condition (35a) means that the probe Stokesa value of unity at the fixed magnitudes gfand ¥;1, and

parameter varianc¥s must be essentially less at the inputthis, as we mentioned above, is as a result of imperfections

to the linear system than the variande of the measured in the measurement procedure. However, with an increase in

guantity. We also should require the absence of correlatiothe nonlinear phase shif,1, we have that thé<; and K»

betweenS" andS]' and also betwee8" and S} for obtain-  curves become steeper as a functiorgoFor example, for

ing a “good” QND measurement. It is easy to show that, to1 ~ 9.5 andg = 7/6 (when condition (36) still holds true),

fulfill the conditions of (35), we have to satisfy the demand ofthe numerical magnitudes of the correlation coefficients are

an ideal measuremeriRz = 1, at the same time. Thus, the co- K1 ~ 0.99 andK2 ~ 0.97 (see Figs. 4a,b). Thus, the accura-

efficientRs does not have any relevance to the introduction oty of the measurement of tH8 Stokes parameter appears

any new limitation in the measurement procedure, and so thecceptably high.

coefficientRz can in practice be ignored. ' It should be pointed out that a QND measurement cannot
The setup for QND measurement of tif parameter be obtained for the Stokes parame$grby a QND apparatus

is shown in Fig. 3. The procedure consists of several step#cluding a single linear system only. In fact, whép; = 0,

First, the radiation has to propagate through the medium witthe correlation coefficient&; ~ 1, Ko — 0 when the value

an anisotropic cubic nonlinearifilL) to generate squeezed 1> — 0, andK1 — 0 andK2 ~ 1 wheni; — 0, for the limit

light. Secondly, thes, and S are the values of the Stokes

parameters at the input of the QND apparatus, being formed

before the process of measurement. Finally, a linear sylstem o — 1

has to be included in the process of measurement as well, in |

order to control the energy exchange between the two modes |

in the system. _ _ S |
The propagation of the two orthogonally polarized modes—— 5@ I

r’;« 1, and

|
bx and B in the nonlinear optical medium under consid- —
eration is analyzed in the Appendix. It is shown that theSs
polarization-squeezed (PS) light is exactly formed in the
anisotropic nonlinear medium NL (Fig. 3), and the light sat- L
isfies the QND measurement conditions (31) and (32) for thEig. 3. Setup of QND measurement of tlﬁ!{%‘ Stokes parameter. The pa-

StOk?S paramgteﬁl”. At the same time, thé value, i.e. rameterSjp, (j = 1, 3) is the input Stokes pafameter at the input of the QND
the difference in the photon numbers for the two orthogonadpparatus and consists of nonlinear medNinand linear systerh; Uis

modes, is a conserved value during the process of propagatiee Stokes parameter at the output of the linear system
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medium. As a result, we have

0.8 Sip= Sgc, and (37b)

K, 06 Sb=—Sic- (37c)
0.4 Then the values, can be measured without destruction ac-
02 cording to the procedure considered above, and we have
00| S = Sip = Ssc. (38)
0.00

In an ideal case of QND measurement, the transformation
of the Stokes parameters produced by the linear sy&2m
results in the expressions

ut _ Sl” = S¢, and (39a)
SU=9 = S (39b)

Itis easy to show that the condition for a “high-quality” QND
measurement procedure for tBg Stokes parameter consid-
ered here is the same as for t8g parameter measurement
of (35) and (36) (see also [16]). Thus, the conditions in (31)
and (32) for the QND measurement of tBg Stokes param-
eter are dependent upon the linear transformation coefficient
g arising in the systenh?2 and also on the redistribution of
fluctuations in an anisotropic medium of cubic nonlinearity.
Finally, we discuss an opportunity to carry out the QND
measurement for th& Stokes parameter. Such a measure-
ment has to be obtained within the framework of the Fig. 5
scheme, but using a property of symmetry for the Stokes pa-
rametersS and S at their rotation governed by the phase
Fig.4a,b. Correlation coefficients K a and K b plotted, respectively, paramete# (see (2)).
against the nonlinear linear phase shiffj and linear coupling parameter
g. The magnitudes of the parameters used for calculations are the limit-

ing phase valuep = —0.5arctarf2/¥y), and the coefficient of nonlinear .
medium anisotropy = (y1 +y2)/2 (see Appendix for the definitiopy and 5 The QND measurement of the phase difference of two

72 modes

In the past few years, the problem of phase measurement
cases considered above (see Fig. 4a and Fig. 4b). Moreover, quantum optics has been the subject of intensive study
the conditions of (35) are not satisfied in the case when thef many authors [29]. But different aspects of the problem
nonlinear medium has no anisotropy of a cubic nonlinearity30—33] can be solved by physical interpretation of the meas-
type and so the PS light does not even arrive at the input tarement procedure only. One general conceptin that direction
a linear system. has been recently discussed by Braginsky et al. [17]; such

an approach is preferable for many cases in comparison with

other methods [34, 35]. On the other hand, the theoretical
4.3 QND measurements for tig and S parameters and experimental results obtained by Mandel et al. [36] are

Now let us briefly consider the QND measurement for the
Stokes paramete®s (and/or S). For this purpose the linear e ;
coupling between the measur&d and probeS; parame-
ters is obtained by the linear spatio-periodically optical fiber
(see (33c,d)). Therefore, we can offer a scheme for QN

t

|

}

. . SC : Slb S]i.n ! ng
measurement of th& Stokes parameter by modifying the = b @ 5 detector

. J X R

| b b b

|

i

1

scheme of th&; measurement.
The corresponding setup is shown in Fig. 5. The QND ap-Ssc
paratus consists of two linear systeirik andL2 and also
the anisotropic medium of cubic nonlinearML placed be-
tween them. The schematic in Fig. 5 differs from the earlier_
one in Fig. 3 due to existence of an additional linear devicéj'g_-51- 3??:2”\"/3“‘;?0?5‘]2 ggs:sr;;‘:;tegréﬁgftséﬁﬁi tp;r;rgeée,\l%cappa
L1. Such a preliminary linear SyStem ‘,‘rOtateS” the measure tus E:onsisting of a nonlinear mediuki and two linear systemis1 and
Stokes parameteds: and transforms it into the photon num- 2. the %’Ut are the Stokes parameters at the output of the linear system
ber difference (i.e. into paramet8&p) at the input of the NL L2
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more physically appropriate because their approach is bas@thase difference only, and not the amplitudes of two polarized
on the phase difference between two quantum modes, whighodes. Thus, the fluctuations of the Stokes paransstdsee
is an observable quantity. The latter approach is principallyalso (39b)) can contribute to fluctuations of the phase differ-
the same as that considered by us herein for a precise measce. The conditions for obtaining such a QND measurement
urement procedure of the Stokes parameters. So, our analy$is the phase difference will be written below.
could be useful to carry out also phase-sensitive measure- First of all, let us represent both the photon number and
ments in quantum optics. We will discuss the procedure fothe phase difference operators in the form (see [26, 37]):
that below.

Let us consider the Susskind—-Glogower (SG) cosine andy y = (nx) + Any y, and (45a)
sine phase operators for two orthogonally polarized modes (ig, — (®_)+ AD_ (45b)
particular, along the- andy-axis respectively):

tion (42) is satisfiedAny y < ny y), the following expression
for the fluctuations of the measured Stokes parameters could
(40a) be written down thus:

) whereAny y and A@_ are only the operators. When condi-
, and

. ) 1 1
Sin(@y,y) = 0.5i <a§fy\/nx — - N 1ax,y

ASse=2((ny) (ny)Y2AD_ + ((ny) /(nx)) 2 Any
+((nx)/{(ny) 2 Any . (46)

1 1
cog Py y) = 0.5 (aJr

+ a . (40b
W il ¢nx,y+1”> o

These obey the standard commutation relations (see e.g. [30Pkus, for the variance of the fluctuations of the measured
Stokes parameter given in (43b) (see also Fig. 5), we have:

coq®jj); ni.j | =idij sin(®;.j), 4la
[costij): m.j] =8 sin(@ij), (12 A2y —ama iy ae?) + ™ an) + 0 a2y a7)
[nij: sin(®i )] =i6ij cos @i j), i, j=xy (41b) (nx) (ny)
In a quasiclassical approximation when the photon numh (47), the first term on the right-hand side corresponds to
bers the QND measurement procedure of the phase differénce
But the last two terms in (47) describe the quantum fluc-
(Nx,y) > 1, (42) tuations of the polarized modes at the input of the QND

apparatus (although we can ignore them for nonclassical de-
we can rewrite the operators of the Stokes param&easid  scriptions of light). In fact, in the case where input radiation

S in the form (see [14, 16]): is present for amplitude-squeezed light, we have
S ~2,/MxnycogP_), and (43a) (Anf(’y) < (Nygy) (48)
S~ 2,/Nxnysin(@_), (43b)

and so these terms are valid in practice. As a result, the phase
where cosd_) = cogPy — Px) and sid_) =sin(@y—  difference of two modes is measured by a “pure” method.
@) are the cosine and sine of the operators of the phase Thus, the appropriate scheme for QND measurement
difference for two polarized modes. But for such an ap-of the S Stokes parameter can be proposed as a phase-
proximation as (42), we have some difficulties with the SGdifference measurement procedure for two orthogonally po-
operators [14, 30]. So, a more accurate formulation should itarized modes, but only for the case where the amplitude-
principle be attempted, and one way to do that has been esqueezed light (with sub-Poissonian photon statistics) has
tablished by the Pegg—Barnett formalism described in [31]oeen prepared before the measurement procedure [14]. In
Nevertheless, we still discuss further below the problem othe classical approximation for one of two modes, a above-
phase-sensitive measurement in the framework of the SG agescribed procedure for QND measurement corresponds to
proach. the phase measurement (cf. [17]) in terms of the Hermitian

In the simplest case wheb_ « 1, only theS; operator quadratures (see also (10)).

depends on the phase difference, thus:

S~ 2,/Mxny, (443) 6 The QND measurement of the angular momentum of
S~ 2, /NxNyd_ . (44b) atomic systems

We could obtain the information about the phase difference dRapid progress has recently been achieved in the investigation
two polarized modes by QND measurement of 3@aram-  of the nonclassical characteristics of atomic systems [38—40].
eters. The appropriate procedure for such a parameter nondehe subject of a recent major study has been the interac-
molition measurement (we denote it a&s parameter) has tion of two-level boson-like atoms with an electromagnetic
been considered by us in Sect. 4.3 above (see also Fig. 5). Tfield [5, 6]. For these systems, the QND detection of atom-
main difficulties in obtaining the measurement are connectic states [41], the coherent effects [6, 42], and the formation
ed with an exact correspondence between the detected Stoldsatomic squeezed states [43] have all been under intensive
paramete@th and the measured value of the phase differencetudy. One significant problem encountered has been the ex-
@_. That means that the QND apparatus should measure tiperimental observation of predicted nonclassical effects.
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We now consider the problem of QND measurement oby Agarwal, Schleich et al. in [43]. The conclusion is that the
the angular momentum in atomic systems. In general, the ogtomic squeezed statgg m), can be generated from the so-
erators of the angular momentum of atomic systems obey thealled coherent Dicke statég m) (see for example [42]) or
SU(2) algebra commutation relations in (4) and so the abovehe Dicke ground statgj, m) = |j, —]) (wherem= —j) by
considered QND measurement procedure can still apply ithe following transformation of the wave function:
this case.

We define, for example, the paramefigias a nondemoli-  |¢, m) = Ay exp(9J;) exp(—imdy/2)|j, m), (54)
tion-measured angular momentum component, in contrast to
the parametedy as a measuring (probe) component. Accordwhere A, is the normalization constant, and the parameter
ing to general principles of the QND measurement procedurg determines the squeezing effect in the system (see below).
(see Sect. 4), we suppose that a measured compdpémt  The variances of the fluctuations of the angular momentum
teracts with a probe component in some physical measuringpmponents before the measurement are these:
device (a QND apparatus) and that linear coupling between
these components takes place. For such a case let us consig-m|(AJM?|¢, m) = 0.5tank®) (s, m[I"|c, m),  (55a)
er the Hamiltonian of the interaction of the atomic system d

with classical magnetic field (directed along traxis) in the an o in
form: (g, M(AJN) s, m) = 0.5coth) (s, mJ;'[s,m).  (55D)

H=—xJHy (49) We can see that the variance of the probe angular mo-
mentum fluctuations is smaller than a standard quantum limit

where coefficienty describes the magnetic momentum ofdetermined by the levelJ)")/2 (see also (9)), in contrast

atomic system andiy is the classical magnetic field compo- with the variance for the component of angular momentum

nent. The corresponding Heisenberg equations are: ((AJ'“) )y and it is important that the last componed)l,“) is
|solated from the measuring procedure (see equation (51c)). It

dJxz/dt = (xHy/h) I x, and (50a) s clear from (55a) and (55b) that in this case we have an ideal

dJy/dt=0. (50b)  squeezing effect for the angular momentum probe component

before measurement, in other words
The following solutions of (50a) and (50b) for the angular

momentum components could be written in the form: (AT (AINH?) = (IM)?/4. (56)
R = 30— Ik, (51a)  This results in the QND measurement of the angular mo-
Jout— J'”A1+ J'”)LZ, and (51b) mentum component being obtained from the squeezed probe
Jout Jm (51¢) component)y’. But the fluctuations of another angular mo-

mentum((AJ'”) increases as expected — a similar situation
occurs in quantum optics when a Stokes parameter of light
is measured by another one using the polarization-squeezed
states.

wherex; = cogg), 2 = sin(g) andg = ¥ Hyt/h, butJ" and
J°U are thei-th component of the angular momentum be-

fore (att = 0) and after (> 0) the measurement procedure, The basic scheme for QND measurement of the angular

respectively. momentum componer®" is shown in Fig. 6. In general, the

urement of the angular momentum of ah atomic system angf\ 3pParalUs contains the squeezed sigua) prepara-
9 Y r (SP) and a “measuring box” B1, where the atomic beam

the corresponding measurement of theStokes parameter
(see (33)) pm factgwe declare the foI%wmg replgcement bemteracts with a classical magnetic field, and then the probe
(39U component is detected. Experimentally, the squeezed-

tween parameters: state preparation can be obtained by the N two-level atomic
system interacting with the broadband squeezed-photon en-
S~ 2, S Yy, andS = (52)  cemble that can be presented as a cavity in a degenerate

According to previous work in this study, the inequalites ~ tWO-photon down-conversion effect [43, 44]. In this case, the
squeezing parametér characterizes the squeezed bath (i.e.

<(AJ)i(n)2) < (/\g//\f)((AJ;”)Z) ~ 92<(A3;n)2) ’ (53a) the average photon number).

r’;« 1, and (53b)

r2, <1 (53c)

should be fulfilled (cf. (35)), where;3 andry» are the cor- » pu

relation coefficients of the angular momentum componenty  , |:> sp Temy 1 B1 ’

before measurement. Jim) -m> ’
The first condition (53a) requires that the atomic system * *

has to be especially prepared as a system being in atomic
squeezed state, i.e. the fluctuations of the probe angular mB'gnfu jcé‘feg“ne ;‘t)(;n?l’g‘Zy”;teeﬁzgefgﬁgtjoguttﬂircé"t"h%ogigtu?;ra”mg:rfénTuom

in - Z,X
mentum componen.II before the QND measurement pro tEyﬁmponents at the input and the ouput respectively, of the QND appara-
cedure should be smaller than the measured one. Recentiys. The box SP denotes the statem) preparator before the measurement

such a type of quantum state has been theoretically propose@cedure
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The special nature of these results encourages the study of Conclusion
the quantum nature of an atomic system that is coupled with
spin QND measurement. In general, some information about
the spin momentum can be obtained for a quantum systein the present paper, an opportunity to generate the polariza-
being in the state describing by an orbital quantum numbetion-squeezed state of light in a spatio-inhomogeneous non-
¢ =0. Letus consider the scheme (Fig. 6) for angular momenkinear medium with high efficiency of the energy exchange
tum QND measurement when the input value foe 1/2.  between two linearly polarized modes has been discussed.
It is well known that for this case we deal with two states,The expressions obtained for the variances in the Stokes pa-
11/2,1/2) and|1/2, —1/2), of the atomic system (where the rameters of light have shown an ability to redistribute the
latter is precisely the Dicke ground state) when an externajuantum fluctuations between different polarization compo-
magnetic field is applied to an atomic beam to split it into twonents of the optical field. We also presented two methods for
parts withm = +1/2. According to the foregoing procedure, QND measurement of the Stokes parameters: One of them
we can carry out QND measurement of the component of arcan be applied to QND measurement for the phase difference
gular momentum of the atoms (in this case the initial statepf a two-mode field in quantum optics; the other gives a gen-
before the state preparator, is a Dicke ground state) whegral approach to the SU(2) algebra observables measurement
the requirement for additional interaction between the atomideveloped by us, and has resulted in a procedure for QND
beam and the classical magnetic field is satisfied. When thimeasurement of the angular gondspin momentum in atomic
occurs, the Dicke ground state is formed at the entrance alystems.
the squeezed-state preparator SP. Then, after the generation of Finally, we will discuss the main directions of possible
squeezing in the SP device, the atomic beam is detected lapplication of the results we have obtained. First, the QND
the interaction procedure with a second magnetic field. Theneasurements under consideration could have a wide-ranging
QND measurement is achieved by detection of an angulaffect, especially using a polarization peculiarity of light
momentum component for the atomic system. fields, where we are dealing with precise measurements of ex-

Itis important to note, however, that the proposed methodremely high accuracy for fundamental physical processes in
of measurement without the squeezed-state preparator ésder to obtain unique information about the objects under
identical to the well known Stern—Gerlach experiment [45].study. For example, measurements of the Stokes parameters
In quantum optics such an experiment corresponds to the dean be useful for observations related to such major topics in
termination of the light polarization component by a lineargeneral physics as the quantum polarization instabilities and
system, i.e. by polarizer apdr analyzer. But as discussed chaos of light — a specific method for that could probably be
above, the QND measurement procedure for the Stokes passociated with tunnelly-coupled or twisted birefringent opti-
rameters of light adds a new optical element (namely awal fibers (see [27, 37]).
anisotropic medium of cubic nonlinearity) placed between Secondly, the polarization QND measurements are very
two linear systems (polarizer and analyzer) in this setupelevant for quantum computers (using non-classical logic
— see Sect. 4. Thus, the quantum properties of the spin ielements (see for instance [48])) and for optical data pro-
an atomic system could be obtained by modification of theessing and pattern-recognition systems [26]. In forthcoming
Stern—Gerlach experiment by adding the squeezed-atompapers, we will show how the information could be stored by
state preparator. Alternatively, the optical Stern—Gerlach ethe Stokes parameters of light so, that a truly logical table
fect has recently been proposed in [41] to detect the atomicould be constructed.
state by the QND procedure. Thirdly, the QND measurements are interesting within the

The analysis carried out above has established a usefguantum cryptography problem [49]. For example, the intro-
analogy between quantum and atomic optics and has showeuction of an additional channel (using the procedure for the
that the method proposed by us for the Stokes parameteolarization QND measurement) in common communication
QND measurement (see Fig. 5) corresponds to a modifiechannels which connect two correspondents can result in the
Stern—Gerlach experiment for the measurement of the spimossibility of third person assembling information without its
states in an atomic system. destruction.

In addition we should emphasize that polarization- The physical basis of such an approach is established
squeezed light could be useful for the measurement of then the fact that a quantum-mechanical measurement of one
P-odd rotation of atomic spin [46,47]. In fact, the effect of variable should change the state of the system and should in-
rotation of the atomic spin vectdt around the wave vector troduce uncertainty into the value of other variables [50]. So
k in an optical field arises when the quantized left- and rightthe problem is directly related to the subject under discussion
hand polarized components of the optical field interact withn our paper. Moreover, the first demonstrations [49-51] of
hyperfine components of M1-transition, for examps —  quantum cryptography have been carried out directly using
3p, for the Pb atoms placed in a resonator. In such a casepolarization approach, in other words the system has provid-
the angle of the spin rotation depends on the combination afd secure communications between two correspondents using
two operators, namely the photon creation operator and theesequence of linearly polarized photons. Complete analysis
photon annihilation operator. For two orthogonally polarizedof such a polarization approach has not yet been carried out,
modes, such a combination directly corresponds to one of trethough at present there seems to be no doubt that quantum
Stokes parameter, i.& (see (2c)). Thus, precise measure-cryptographic systems (and especially the polarization ones)
ment of the spin rotation angle for an atomic system becomesill soon be capable of reliable operation in practical use.
possible when fluctuations of the Stokes parameters are sufpecific schemes for the systems under discussion are based
pressed. This fact means that the quantum states of atoms aam different kinds of interferometric approach with optical
be controlled by polarization-squeezed light. fibers (namely two-photon interferometry, a series of interfer-
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ometers etc) and have been investigated repeatedly (see fald [6]. In this case, the Stokes parameters of light describe
example [52]). the polarization states of an atomic system. At the same time,
Fourthly, let us discuss a specific power requirement fothe QND measurement of angular momentum could be use-
use with polarization-squeezed light in the devices considful for observation of nonclassical atomic states, including
ered herein. According to the problem, it seems to be thadqueezed states [43]. The rapid progress that recently has
a fiber system of a special type is the best candidate, arfieen achieved towards the manipulation of quantum states of
the question is exactly the same as that which applies farooled atoms makes this problem soluble.
quadrature-squeezed light (see Introduction). There is a re-
quirement to generate a nonclassical light by means of afccknowledgementhis work was supported in part by the Russian Foun-
extremely low-powerd laser, and this has become possibfétion of Basic Research and by the Soros Foundation.
through a special type of optical fiber fabricated recently (we
discussed some of them in [3, 28]). In fact, among nonlineal
devices, the chalgogenide-glass fibers (as third-order nonli
ﬁg:ﬂ?neg ;Crej()av?ggs;h;g rggg écct%rg St?l r:g)vgershi(grs] ;%?g:t?aﬂ%f[are we consider the method of preparation of an optical field

\ppendix

n ¢
actual applications [53]. With respect to the subject of th or t?]ND mee:jsurer;_ent of tggl SltgkeLs {)arameter of I;ﬂh:

present paper, DFB-fibers of spatial grating including twisted??, € Procedure discussed in [10]. Let us suppose that an
birefringent optical fibers [27] an@r the dual-core tunnel- optical field propagates through an anisotropic medium with

coupled fibers fabricated on the basis of such a material a{‘_@rdéorgﬁr nOﬂhﬂEﬁl’lty (a Iﬁerr—lllke_m%dlumd), as(;ndme_lgec(ij 'B
very relevant for experimental verification of the quantum hlg- - 1he tgvo or(tjbogona y pofanzed m(? es, described by
phenomenadiscussed herein. The possibility of using a shor{—e operatorsy andby, are transformed as:

long (about a few centimetres long) device is very important ;. pip (pin )

and gives a good advantage to suppress a number of nonlinéar = * v™¥’bx and

optical effects (for instance stimulated scatterings, etc) whiclin _ di(vzbyby+ybibx) py (A.1)
compete with the effects considered by us in this paper. More’ v

detailed discussion of a valid experimental setup with somghere the coefficients; » andy are proportional to the com-
mathematical calculations and simulations need to be carrigsbnents of nonlinear susceptibility and to the length of the
out separately, but to conclude our brief review let us discusgedium. It can be shown that the mode photon number re-
qualitatively an expected efficiency of the effects in such sysmains constant, i.e(a‘;‘ )+a‘>?y — biybx.y and that therefore
tems. , _ _ the conditionSy, = S fulfilled (see Sect. 4.2).

As to the fibers on the basis of chalgogenide glasses, for as we have mentioned in Sect. 4, it is necessary to sat-
example, the high nonlinear absorption has been obtainggfy two conditions for the QND measurement of the Stokes
for a laser intensity of about0 W/cn¥ for a fiber length parameterS. First, theS; parameter fluctuations must be
of 20cm and this results in a remarkable nonlinear phasgyppressed, that is, PS light has to be generated. Secondly,
modulation for traveling light in such an optical fiber underthe absence of correlations between the Stokes parameters is
He-Ne (A= 0.63 }.Lm) laser (the diameter of the fiber core be- also requiredrls =r1p= 0) Tak|ng into account the formu-

ing 100-250um) [54]. This nonlinear effect should give rise |5 (6) and (A.1) for the correlation coefficients; andr1,, we
to the development of the phenomena discussed in a amougktain:

paper.
Besides the high nonlinearity of the material itself, the 2e~W(n) sin¥ cosp

dual core optical fibers have a principal advantage due o3 ™~ {(A(SS“)Z)/Z(m}l/T (A-2)
a special regime of switching (self-switching) existing two- _ _
coupled modes of orthogonal polarizations in birefringent 2e"(n) sin¥ sing (A.3)

(screwed) waveguides [28]. The effect results in the possi-t? "~ {<A(S'2n)2>/2(n>}1/2’
bility of inducing a gigantic change of the intensity of the
output mode by a very weak variation of input intensity unde ; N2\ e -
specific conditions (the so-called “optical transistor eﬁect").zgzrflég? variancdA(Sg)%) is given by the expression
For example, for a multilayer optical fiber core fabricated on '
the basis of MQW structure (i.€&5aAs G@ 3Alg.7As) with N2y o .
a cubic nonlinear coefficient 104 esu, the necessary in- (ASHY =2(n) {1+ (n)(4Wcos?-¢>— Ay sin 2¢)] (A-4)
put light intensity is about mW (» ~ 0.9 um) for the fiber : . . .
length~ 1.5 mmand for core diameter 2 um[28]. Natural- Here we denoten) = ((b{)"bY) = ((bJH*b]), ¥ =y —
ly, such an effect results in dramatical change of the fluctuad.5(y1 4+ y2), W = 0.5(n) {(y —y1)°+(y — yz)z}, and¢ =
tion behavior in the system as well. In addition, we have tap+ ¥h1, Ay = y2—y1, where ¥ = (nNYAy is the ef-
mentioned that the setup discussed above is a very sensitifective nonlinear phase shift, and is the phase-mode
interferometric scheme but, in contrast to ordinary fibers, thelifference at the input of the medium. The expressions
dual-core optical fiber is not sensitive to external destabiliz{A.2) and (A.3) are obtained under approximation, with
ing factors and this is very important for such delicate stateg1 2, v, (n)ylz2 and(n)y? all « 1.
of light as those relating to quantum polarization. It follows from (A.2) and (A.3) thatrj3=r12=0 for

The theory of quantum polarization light presented by ushe case¢ = n/2 and¢p =7m (m=0,1,2...) or ¥ =0,
can be also applied to solve the problem for N identical twoi.e. y = (y1+ y2)/2. The latter condition is more preferable
level Boson-like atoms that interact with an electromagnetibecause we can regulate the level of quantum fluctuations,



(A(S1?), by adjusting phase andg. For example, from
(A.4) we get a minimum value ofA(S])?) for y = (y1+
y2)/2 and the limiting phase valug= —0.5 arctan2/¥ns),
so that

(A =2(m) [1-05¢m | @+¥2) 2 —vnl]  (A5)

The expression (A.5) shows the possibility of suppression obe.

the Stokes parameter fluctuations, which may be lower than
unity for a coherent state. _

It seems essential to emphasize that the valujaoﬂsn)z)
from (A.4) corresponds to the case of an ideal squeezing,
when the uncertainty relation (5) is minimal and the correla-

tion coefficient 13 = 0. Thus, under certain conditions for the 28.

parameters; 2 andy there is no correlation for the Stokes
parameters, i.e13=r12 =0, at the output of an anisotrop-
ic cubic-nonlinearity medium. At the same time the ideal PS
light is formed.

32.

References

21.

25.

27.

31

65

V.B. Berestetskii, E.M. Lifshitz, L.P. PitaevskiRelativistic Quantum
Theory(Pergamon Press, Oxford 1971)

. R. GlauberFrontiers in Quantum Opticdalvern Series in Physics 2;

ed. by E.R. Pike, S. Sarkar, (Adam Hilger, Bristol, Boston 1986)

. V.V. Dodonov, V.I. Man’ko: Trudy FIAN 183, (1987)
. C. Fabre, E. Giacobino, A.Heidmann et al.: Quantum Qpt59

(1990); P.J. Horowics: Europhys. Left0, 537 (1989)

A.P. Alodjants, S.M. Arakelian, G.Yu. Kryuchkyan: Kvantovaya Elec-
tron. 20, 689 (1993) (Sov. J. of Quantum Electron23 596 (1993))
S.A. Akhmanov, A.V.Belinskii, A.S. Chirkin:New Physical Prin-
ciples For Optical Proceeding Dataed. by S.A. Akhmanov and
M.A. Vorontsov (Nauka Publishing, Moscow 1990)

B. Daino, G. Gregory, S.Wabnitz: J. Appl. Phys3, 4512 (1985);
S. Trillo, S. Wabnitz: Appl. Phys. Let49, 752 (1986); A. Mecozzi,
S. Trillo, S. Wabnitz, B. Daino: Optics Lett&2, 275 (1987); S.F. Feld-
man, D.A. Weinberger, H.G. Winful: JOSA B0, 1191 (1993)

A.A. Maier: Russian Uspekhi Fizicheskikh Natk5 1037 (1995);
ibid 1996, v.166, p.1171

29. Phys. Scr. 1993. vol. T 48 (special issue)
30. R. Loudon:The Quantum Theory of Ligh{Clarendon Press, Oxford

1973)

D.T. Pegg, S.M. Barnett, J.A. Vaccaro: Quantum Optics V. Springer
Proc. in Physics vol41, 122 (1989)

W.P. Schleich, R.J. Horowicz, S. Varro: Quantum Optics V. Springer
Proc. in Physics vol41 (1989); Phys. Rev. A0, 7405 (1989)

33. A. Luks, V. Perinova: Quantum Opti€s 125 (1994)
34. V.P. Belavkin, C. Bendjaballah: Quantum Opt&$69 (1994)
1. J. Opt. Soc. Am. B4, No 10, (1987); J. Mod. OpB4, (1987) (special 35. J.H. Shapiro, S.R. Shepard: Phys. Re¥i3A3795 (1991)
issues) 36. J.W. Noh, A. Fougeres, L. Mandel: Phys. Rev3\ 424 (1992)
2. S.M. Arakelian, Yu.S. ChilingariariNonlinear Optics of Liquid Crys-  37. A.P. Alodjants, S.M. Arakelian: Zhur. Eksp. i Teor. Fii07, 1792

tals (Nauka, Moscow 1984)

3. A.P. Alodjants, S.M. Arakelian, Yu.S. Chilingarian: Quantum Optics, 38.

4, 209 (1992); A.P. Alodjants, S.M. Arakelian: Zhur. Eksp. i Teor. Fiz.
103 910 (Sov. JETR6, 446 (1993))

. A.P. Alodjants, S.M. Arakelian: Laser Physis765 (1994)

. W. Zhang, D. Walls: Phys. Rev. A7, 626 (1993); Phys. Rev. A9,
3799 (1994)

. G. Lenz, P. Meystre, E.M. Wright: Phys. Rev.58, 1681 (1994)

G.S. Agarwal, R.R. Puri: Phys. Rev.40, 5179 (1989)

. R. Tanas, S. Kielich: J. Mod. Opti&, 1935 (1990)

. V.P. Karassiov, V.I. Puzyrevsky: J. Sov. Reseafdh 229 (1989);
V.P. Karassiov E-print: QUANT-PH/9503011, (1995)

[N

©oo~No»

(Sov. J. of Quant. Electror23, 870 1993)
11.
108 63 (1995) (Sov. JETB1, 34 (1995))
V.B. Braginsky, F.Ya.Khalili: Quantum measuremen{Cambridge
University Press 1992)
A.N. Chaba, M.J. Collett, D.F. Walls: Quantum Optids.19 (1992)
M. Dance, M.J. Collett, D.F. Walls: Phys. Rev.48, 1532 (1993)
N. Imoto, H.A. Haus, Y. Yamamoto: Phys. Rev.3%&, 2287 (1985);
N. Imoto, S. Watkins, Y. Sasaki: Opt. Comn&, 159 (1987)
S.F. Pereira, Z.Y.Ou, H.J. Kimble: Phys. Rev. L&®, 24 (1994);
J.Ph. Poizat , P. Grangier: Phys. Rev. Lé@, 271 (1993)
A.P. Alodjants, S.M. Arakelian, A.S. Chirkin: Izvestia RAN, Ser.

12.

13.

14.

15.

16.

Fizicheskaya59, 46, (1995) ( Bulletin of Russian Academy of Sci- 50.
ence, Ser. Physics); Quantum Semiclass. Og8, 811 (1997) 51.
17. V.B. Braginsky, F.Ya.Khalili, A.A.Kulaga: Phys. Lett. 202 1 52.

(1995)

E.L. O'Neill: Introduction to Statistical Optics (Addison-Wesley,
Reading Mass 1963)

V.P. Karassiov, A.V. Masalov: Optika i Spectroskopid 928 (1993)
(Sov. J. Opt. Spectrosc.)

F.A. Kaempffer:Concepts in quantum mechaniqé&\cademic Press,
New York, London 1965)

18.

19.

20.

39.
40.

41.
42,
43.
. A.S. Chirkin, A.A. Orlov, D.Yu. Paraschuk: Kvant. Elektron. 20 999 44.
A.P. Alodjants, S.M. Arakelian, A.S. Chirkin: Zhur. Eksp. i Teor. Fiz. 45.
46.

47.

48.

49.

53.

54.

(1995) (Sov. JETRO0, 995 (1995)); Laser Physids 812 (1995)

J. Krause, M.O. Scully, H. Walther: Phys. Rev.38, 1915 (1989);

G. Rempe, H. Walther: Phys. Rev.4%, 1650 (1990)

O. Carnal, J. Mlynek: Phys. Rev. Ledt, 2689 (1991)

D.J. Wineland, J.J. Bollinger, W.M. Itano, F.L. Moore, D.J. Henzen:
Phys. Rev. A6, 6797 (1992)

S.M. Tan, D.F. Walls: Phys. Rev. 47, 663 (1993)

F.T. Arecchi , E. Courtens, R. Gilmore, H. Thomas: Proc. of Third
Rochester Conf. on Coherence and Quantum Optics. ed. by L. Mandel,
E. Wolf, p.191 (Plenum Press, New York, London 1973)

G.S. Agarwal, R.R. Puri: Phys. Rev.48, 4968 (1994); J.P. Dowling,
G.S. Agarwal, W.P. Schleich: Phys. Rev.4A, 4101 (1994)

G.S. Agarwal, R.R. Puri: Opt. Commusi, 267 (1988); Phys. Rev. A
41, 3782 (1990)

R. Zare:Angular Momentun{Wiley, New York 1988)

V.G. Barshevsky: Phys.Lett. A77, N1, 38 (1993); V.G. Barshevsky,
D.V. Barshevsky: J.Phys. B7, 4421 (1994); N. Fortson: Phys. Rev.
Lett. 70, N16, 2383 (1993)

G.F. Grom, A.M. Kuzmich:Atomic and Quantum Optics: High-
Precision Measuremened. by S.N. Bagayev and A.S. Chirkin, Proc.
of SPIE, v.2799 255 (1995)

A. Ekert: Proceedings of the 14th International Conference on Atomic
Physics, ed. by D. Wineland et al (AIP Press, New York, 1995) p.450
M.J. Werner, G.J. Milburn: Phys. Rev.4x, 639 (1993); C.H. Bennett,

F. Bessette, G. Brassard et al: J. Cryp®I3 (1992)

J.D. Franson: Optics and Photonics N&y80 (1995)

P. Muller et al: Europhys. LetR3, 383 (1993)

C.H. Bennett: Phys. Rev. Le@i8, 3121 (1992); P.D. Townsend et al:
Electron. Lett.29,1291 (1993)

I. Yokohama, H. Itoh, M. Asobe et al: CLEO/QELS'95 in Advance
Programm p.70 (1995)

V.V. Ponomarev: Kvantovaya Elektron. (Sov. J of Quant. Electron.)
18, 142 (1991); Avtometriya 1, 102 (1989); A.V. Vasil'iev, G.G. De-
viatykh, E.M. Dianov et al: Kvantovaya Elektron. (Sov. J Quantum
Electron.)20, 109 (1993)



