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Abstract. We first give a detailed account of the theory of
atom interferometers based on a sequence of laser pulses pro-
jecting the atomic wave packets onto a spatially separating
dark superposition state. We then describe the experimen-
tal realization of a multiple beam atom interferometer based
on this method. In our experiment, we observe an interfer-
ence signal that shows the sharply peaked Airy-function like
pattern characteristic for multiple beam interference. Besides
this fringe sharpening effect, we observe a further significant
difference compared to the signal of a conventional two-beam
atom interferometer. When the time between the beamsplit-
ting pulses is varied, we observe collapse and revival of the
fringe pattern, which is caused by a recoil phase shift increas-
ing quadratically with the transverse atomic momentum.

PACS: 03.75.Dg; 07.60.Ly; 42.50.Vk; 32.80.Lg

In recent years, we have witnessed much progress in two-
beam interferometry with neutral atoms [1]. Compared to the
field of interferometry with electrons [2] and neutrons [3],
the additional internal structure of atoms allows their efficient
manipulation with resonant laser light. Moreover, quantum
mechanical superpositions with entangled internal and ex-
ternal states, such as velocity dependent dark states can be
realized, which introduces novel possibilities for the manipu-
lation of matter waves.

In this work, we give a theory of atom interferometers
using velocity dependent dark states, and describe the experi-
mental realization of a multiple beam atom interferometer
based on this method. The interferometer has been realized
with a sequence of three laser pulses projecting the atom-
ic wave packets onto such velocity dependent dark states.
Whereas in all previous atom interferometer experiments si-
nusoidal signals resulting from two-beam interference have
been observed, the interference signal of our experiment re-
sembles the Airy function known from optical multiple beam
interference [4], such as e.g. a Fabry-Pérot interferometer.
The peaks are sharper than the sinusoidal fringes observed in
a two-beam atom interferometer, which translates into a high-
er resolution. We have also observed some further effects

intimately connected to multiple beam interference in the
presence of a phase increasing quadratically with transverse
atomic momentum. When the drift time between the beam
splitting pulses is varied, we observe collapse and revival of
the fringe pattern.

In our experiment an atom is coherently split into more
than two atomic wave packets by optical pumping into a dark
velocity dependent multilevel superposition state. The mo-
menta of two adjacent paths differ by two photon momenta.
We use a cesium atomic beam and two counterpropagating
optical beams in aσ+–σ− polarization configuration tuned
to the 6S1/2 (F = 4) – 6P1/2 (F′ = 4) transition of the cesium
D1-line. In a first laser pulse, cesium atoms are optically
pumped into a dark superposition of the five even magnetic
ground state sublevels (mF = −4,−2, . . . , 4). The momenta
of the atoms in these sublevels are 0, 2hk, . . . , 8hk relative to
the momentum of themF = −4 sublevel (Fig. 1). The paths
spatially separate for a timeT, after which a second laser
pulse is applied. By this time, provided that the splitting be-
tween the paths exceeds the atomic coherence length, the
atom can no longer be completely dark for the light field. In
a different basis, each path can be decomposed into a dark
state and several coupled state components. The second pulse
projects again onto a dark state by optically pumping all other
components into theF = 3 hyperfine ground state, which is
not detected. In this way, the second pulse splits each of the
five paths further into five. At timeT after the second pulse
several paths cross. A third optical pulse now closes the in-
terferometer, and the wave packets in the recombined paths
interfere.

Quantum mechanical coherent superpositions with entan-
gled external and internal states have been used in subrecoil
laser cooling with the aim of accumulating atoms in a dark
state (“velocity selective coherent population trapping”) [5].
Marte, Zoller and Hall suggested to coherently split up an
atomic wave packet by adiabatic passage through a velocity
dependent dark state [6], which was followed by demonstra-
tions of momentum transfer with adiabatic passage [7, 8].
Shortly afterwards, an atomic two-beam interferometer based
on a dark state in a three-level system was demonstrated [9].
In that work the “dark state” analogon of an optical Ramsey
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Fig. 1. The inset shows the level scheme for a velocity dependent dark
state using the 6S1/2 (F = 4) – 6P1/2 (F′ = 4) transition of the cesium D1
line, and two conterpropagating optical beams in aσ+–σ− polariza-
tion configuration. The dark state here is a coherent superposition of the
five even magnetic ground state sublevels with the momenta of adjacent
components differing by two photon recoils.Bottom: Scheme of an atom-
ic multiple beam interferometer realized with a sequence of three laser
pulses. The atoms interfere in different families of wave packets numbered:
s= 0, 1, . . . , 8

experiment (or 4π/2 pulse interferometer [10]) was realized.
Here we use a “dark state” analogon of theπ/2–π–π/2 pulse
interferometer [11] with a pulse sequence of NMR spin echo
experiments [12]. Whereas a superposition of spatially sep-
arating wave packets previously was generated by adiabatic
passage, we here are coherently splitting up a path by simply
projecting the atomic wave packets onto a spatially separat-
ing dark superposition state. Note that in contrast to the work
on laser cooling [5], where atoms are accumulated in a dark
state through the use of a closed transition, in our case it is
essential to use an open optical transition at least for the sec-
ond and third laser pulse in order to avoid a large background
to the fringe pattern. Our method is applicable both to three-
and multilevel systems, resulting in two- respectively multi-
ple beam interference.

Recently we have reported on the first realization of
a multiple beam interferometer [13]. Later, longer drift times
between the atomic beamsplitters have been obtained, which
allow the observation of collapse and revival of the fringe

pattern [14]. The purpose of the present paper is mainly to
give a detailed account of the calculation of the fringe pattern
of the interferometer. The theory of interferometers based on
projection onto dark states has previously only been briefly
sketched. We also review the experimental results obtained.

1 Theory

1.1 Dark states and atomic beamsplitters

We begin this section by considering an atom with a transition
from a ground state of total angular momentumF to an excit-
ed state with total angular momentumF′, which is irradiated
with a pair of laser beams ofσ+ respectivelyσ− circular po-
larization. We assume thatF′ = F, since then a single dark
state exists. The light couples levels in one family of states
forming a chain of V-type transitions where no dark state ex-
ists, and a second family of states forming a chain ofΛ-type
transitions, where one dark state exists. We consider here only
the latter family of states. As shown in Fig. 1, the dark state
hasN = F +1 components with only even (or only odd) mag-
netic quantum numbers. We describe a multiple beam atom
interferometer withN paths using such a transition.

The electric field of the two optical beams is assumed to
be

E = E0,+ cos(k+ · r −ω+t) + E0,− cos(k− · r −ω−t) , (1)

where the subscripts + and - refer to theσ+ respectivelyσ−
polarized beams. When including the momentum transferred
to the atoms by the laser light, one finds that – in the ab-
sence of spontaneous emission – families ofmF sublevels
with distinct relative momenta must be considered. Transi-
tions are induced only between the following closed family of
2N −1 (equal to 2F +1) levels with entangled internal and
external states:|g−N+1, p〉, |e−N+2, p+hk+〉, |g−N+3, p+
h(k+ −k−)〉, . . . , |gN−1, p+ Nh(k+ −k−)〉, where|gmF , p〉
and |emF , p〉 denote ground respectively excited states of
magnetic quantum numbermF and momentump. In an in-
teraction picture, where the Eigenenergies of the levels are
factored out (see e.g. [15]), the Hamiltonian for this basis of
levels is

H =− h

2

N−1∑
n=1

(
Ω+ C2n−N

2n−N−1 eit(∆n+δn−1)

×|e2n−N, p+nhk+ − (n−1)hk−〉
×〈g2n−N−1, p+ (n−1)h(k+−k−)|
+ Ω− C2n−N

2n−N+1 eit(∆n+δn)

×|e2n−N, p+nhk+ − (n−1)hk−〉
×〈g2n−N+1, p+nh(k+ −k−)| )

+ h. c.

− ihΓ

2

N−1∑
n=1

|e2n−N, p+nhk+ − (n−1)hk−〉

×〈e2n−N, p+nhk+ − (n−1)hk−| , (2)
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where

Ω+ CmF +1
mF

= e

h

〈
emF+1

∣∣ r · E0,+
∣∣gmF

〉
,

Ω− CmF −1
mF

= e

h

〈
emF−1

∣∣ r · E0,−
∣∣gmF

〉
, (3)

with C
mF′
mF as the Clebsch–Gordan coefficients of the transi-

tion from the ground state|gmF 〉 to the excited state|emF′ 〉.
The factorsΩ+, Ω− denote the Rabi frequencies of theσ+
and σ− polarized waves respectively for a transition with
a Clebsch–Gordan coefficient of unity. We have accounted for
the spontaneous decay of the excited states similarly to [6]
by including non-Hermitian terms−ihΓ /2 into the Hamilto-
nian. Further, withωg,mF andωe,mF as the atomic energies
of a ground respectively excited state with magnetic quantum
numbermF , the detuning factors (Fig. 2) are given by

∆n =− nω+ + (n−1)ω− −ωg,−N+1 +ωe,2n−N

+ 1

2mh

(
(p+nhk+ − (n−1)hk−)2 − p2 )

, (4)

δn = n(ω+ −ω−)+ωg,−N+1 −ωg,2n−N+1

+ 1

2mh

(
p2 − (p+nh(k+ −k−))2 )

,

= n

(
∆ω− (k+ −k−)p

m

)
− n2ωr . (5)

Since the two-photon detuningδn appears in numerous
further formulas, the corresponding expression has been sim-
plified by using∆ω = (ω+ −ω− −ωZ), with ωZ as the (Zee-
man) splitting between two adjacent even (or odd) ground
state mF levels. Further,ωr = h(k+ −k−)2/2m denotes the re-
coil frequency of a single Raman transition.

When solving for the Eigenvectors of the Hamiltonian (2),
one finds one dark state with Eigenvalue zero [16]. The wave
function of that state is

|ϕD(p, t)〉 =
N−1∑
n=0

cn e−iδnt |g2n−N+1, p+nh(k+ −k−)〉 ,

(6)

where the weightscn are related by

cn = c0

(−Ω+
Ω−

)n C−N+2
−N+1 C−N+4

−N+3 · · · C2n−N
2n−N−1

C−N+2
−N+3 C−N+4

−N+5 · · · C2n−N
2n−N+1

, (7)

Fig. 2. Level scheme for a velocity
dependent dark state including the ki-
netic energies of the components, and
the detunings from resonance for two
oppositely circularly polarized laser
beams of frequenciesω+ andω−

andc0 is chosen to normalize|ϕD〉. Note that due to the re-
coil term quadratic in n the detuningsδn cannot be tuned to
zero simultaneously forN > 2 andk+ 6= k−. The dark state
therefore is never completely stationary for a chain of Raman
transitions, and “leaks” slightly [17]. In our experiment the
duration of the optical pumping pulses is sufficiently short (of
the order of aµs), so that the frequency width of the dark
state [18] is larger than the recoil energy of four photons in
frequency units (≈ 120 kHz).

We use here an open optical transition, such that if the
laser fields are switched on the atoms within a closed mo-
mentum family are projected onto the dark state. All other
atoms, after a few fluorescence cycles, are optically pumped
into other hyperfine ground state levels that do not interact
with the laser field any more. We neglect the small fraction of
atoms that fall back into the dark state (of order 1/(2N −1)
of the atoms falling back into the hyperfine state addressed
by the laser field). In this approximation, a short optical pro-
jection pulse arriving at timetp will convert an initial atomic
wave function|Ψi(p)〉 into a final wave function∣∣Ψf (p, t > tp)

〉 = ∣∣ϕD(p, tp)
〉 〈

ϕD(p, tp)
∣∣Ψi(p)

〉
. (8)

This formula is a special case of (11) in [15], where pri-
marily the possibility of an adiabatic variation of the dark
state by a slow change of the Rabi frequencies during a laser
pulse was considered. We have assumed the pulse duration to
be short compared to the inverse of all detuningsδn.

1.2 Atom interferometers with dark states

Several papers have discussed the theory of atom interfer-
ometers based on opticalπ/2 - and π-pulses [10, 19–21].
The theory of atom interferometer based on adiabatic trans-
fer has been discussed in [9] and [15]. In the following, we
describe the calculation of the atomic wave function obtained
after a series of short optical projection pulses using a mo-
mentum basis picture [13, 14]. An atomic interferometer can
be realized with a sequence of three projection pulses with
equal timesT between the first and second, and second and
third optical pulse. For simplicity we assume that the Rabi-
frequenciesΩ+ andΩ− are equal.

1.2.1 Wave function approach.We first derive the interfer-
ence signal for an initial plane atomic wave. The first pulse
arriving at timetA pumps the atoms into the dark state and
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gives|Ψ(p, tA)〉 = |ϕD(p, t+A )〉. At the timet = tA + T of the
second pulse in general the atom is no longer completely dark
for the light field. In the momentum basis picture used for
our calculation this can be understood by the nonzero detun-
ing factorsδn, which make the dark state time dependent.
With the second pulse, the wave function is projected onto
the dark state that has evolved in time, and the resulting wave
function is

∣∣Ψ(p, (tA + T )+)
〉

= |ϕD(p, tA + T )〉 〈ϕD(p, tA + T )|ϕD(p, tA)〉

= |ϕD(p, tA + T )〉
N−1∑
n=0

cn
2 exp[ i δnT ]

= |ϕD(p, tA + T )〉
N−1∑
n=0

cn
2

×exp
[

i
(
n(∆ω− (k+ −k−)p/m) T −n2ωrT

) ]
. (9)

This formula gives the interference signal for a multiple beam
Ramsey experiment performed with two laser pulses and co-
propagating laser beams (k+ = k−, which gives alsoωr = 0).
Such an experiment is described in [13] and is e.g. useful
for measuring magnetic fields. We note that periodic rephas-
ing of different magnetic sublevels was previously observed
in the contrast of a two-beam atom interferometer, where the
atoms in different sublevels formed independent interferom-
eters [22]. One may apply the multiple beam Ramsey tech-
nique not only for measuring magnetic fields with increased
resolution, but also in experiments testing for the permanent
electric dipole moment (edm) of an atom [23] when apply-
ing a strong static electric field. Besides the higher resolution
compared to experiments determining the difference frequen-
cy between two adjacent magnetic hyperfine levels, the multi-
ple beam Ramsey technique can also have benefits in terms of
systematic effects. The quadratic Stark effect, which shifts the
magnetic sublevels by a value proportional to the square of
the magnetic quantum number and is one of the major sources
of systematic uncertainties in most edm experiments based on
the former technique, here does not shift the fringe pattern
since the experiment can be performed symmetrically in the
magnetic sublevel quantum numbersmF and−mF

1.
When using counterpropagating laser pulses unless one

is really using a perfect monochromatic source of atoms, the
fringe pattern at the second pulse will wash out, which in
the momentum basis picture used in this calculation can be
understood by the distribution of different Doppler shifts.
Fringes can only be observed after a third laser pulse. We now
assume that in the third pulse the phase of the light with fre-
quencyω+ is varied by an amountδθ. This is equivalent to
a change of the Raman detuning during the second pulse, so
that ∆ω is replaced by∆ω′ = ∆ω+ δθ/T between the sec-
ond and third pulse. The corresponding dark state is denoted

1We note that, however, a loss of contrast can occur for larger timesT, sim-
ilarly as described below when discussing the effect of the recoil phase on
the fringe pattern of the Doppler-sensitive atom interferometer. If the accu-
mulated quadratic phase between adjacent even (or odd) magnetic sublevels
reaches an integer multiple of 2π, one expects a revival of the fringe pattern.

as|ϕ′
D(p, t)〉. We obtain a wave function after the final pulse∣∣Ψ(p, (tA +2T )+)

〉
= ∣∣ϕ′

D(p, tA +2T )
〉 〈

ϕ′
D(p, tA +2T )

∣∣ϕD(p, tA + T )
〉

×〈ϕD(p, tA + T )|ϕD(p, tA)〉

= ∣∣ϕ′
D(p, tA +2T )

〉 N−1∑
n=0

N−1∑
q=0

cn
2cq

2

× exp
[

i
(
(n+q)(∆ω− (k+ −k−)p/m) T

+qδθ − (n2+q2) ωrT
) ]

. (10)

As stated above, in a real experiment there will be a distri-
bution of different atomic momenta associated with the final
size of the atomic wave packets, or also simply due to an
inhomogeneous atomic velocity distribution. We can derive
the expected interference signal from the plane wave solution
of (10) by integrating over the atomic velocity distribution.
Let us now assume counterpropagating optical beams with
k+ = kez along thez-axis andk− = −kez. The atomic veloc-
ity distribution along this axis will now introduce different
Doppler shifts for the atoms. For simplicity we do not per-
form a momentum integration along thex- andy-axis.

Let us first derive the signal for an atomic wave packet
with an initial momentum spreadf (pz) along thez-axis. The
wave function is derived from the plane wave solution of (10)
using

|Ψfinal〉 =
∫

dpz f (pz) |Ψ(pz, tA +2T )〉 . (11)

For the probability that an atom remains in the dark state after
the final pulse one obtains

| |Ψfinal〉 |2

=
∫

dpz

∫
dp′

z f (pz) f ∗(p′
z)

× 〈
ϕ′

D(p′
z, tA +2T )

∣∣ϕ′
D(pz, tA +2T )

〉
×

N−1∑
n=0

N−1∑
q=0

N−1∑
n′=0

N−1∑
q′=0

cn
2 cq

2 cn′ 2 cq′2

×exp
[

i
(
(n+q−n′ −q′)(∆ω− (2k pz/m)) T

+ (q−q′)δθ − (n2 +q2−n′ 2 −q′ 2) ωrT
)]

. (12)

This double integral reduces to a single integral by noting that
the scalar product of the dark states equals zero unlesspz
equalsp′

z. The remaining single integral can be solved for an
atomic velocity distribution sufficiently broad(2k∆pzT/m�
2π) and smooth, such that the term| f (pz) |2 is approximate-
ly constant over a momentum interval of widthδpz = πm/Tk
and can be drawn before the integral. A sufficiently broad mo-
mentum width is intrinsically present for a wave packet well
enough localized to allow a clear separation of the individual
paths by the time of the second pulse. We only obtain a contri-
bution different from zero whenn+q−n′ −q′ = 0, and one
sum sign can be omitted. We then obtain

| |Ψfinal〉 |2 =
N−1∑
n=0

N−1∑
q=0

N−1∑
q′=0

cn
2 cq

2 cn+q−q′2 cq′2

× exp
[
i
(
(q−q′)(δθ + (n−q′) 2ωrT )

)]
. (13)
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Note that this result does not depend on∆ω. Such an in-
sensitivity to the frequency detuning is known for spin echo
experiments. The result naturally is also independent of the
centering, width and form of the atomic velocity distribution,
provided only that the distribution does not vary significant-
ly over a momentum intervalδpz as stated above. Using now
a new index defined bys= n + q, the probability of finding
an atom in the dark state after the pulses may be written as

| |Ψfinal〉 |2 =
2N−2∑
s=0

| |Ψs〉 |2 , (14)

where

|Ψs〉 =
(∑

q

cs−q
2cq

2 exp
[
i
(
qδθ + (sq−q2)2ωrT

)])
× ∣∣ϕD,s

〉
. (15)

As shown in Fig. 1 each wave function|Ψs〉 corresponds
to [N − ( | s− N +1 | )] beams that spatially recombine and
interfere during the third pulse at position[p+ sh(k+ −
k−)] T relative to the interferometer start. The|ϕD,s〉 de-
note the corresponding dark states at this time. The sum
over the index q, which numbers the different possible
paths in one family of interfering wave packets, runs from
max(0, s− N +1) to min(N −1, s). The individual families
give rise to different interference signals. Let us first consider
the limit of small timesT between the laser pulses (ωrT � 1),
where the recoil term in (15) can be neglected. The contri-
butions| |Ψs〉 |2 of the different families of interfering wave
packets in this limit are shown in Fig. 3 forN = 5. Con-
sidering e.g. the family with two interfering beams (s = 1
ands= 7) one expects a sinusoidal interference signal. The
sharpest principal maximum and three side maxima are ob-
tained for the family with five interfering beams (s = 4),
which also gives the largest contribution to the total signal.
All these individual signals have their principal maxima at
phasesδθ of integer multiples of 2π. Note that these indi-
vidual contributions do not precisely have the form of e.g.
the far field diffraction pattern of a grating with several slits,

Fig. 3. Calculated individual signals of the families of interfering wave
packets| |Ψs〉 |2 and total signal (solid line) of a multiple beam atom inter-
ferometer as shown in Fig. 1 withN = 5 paths for small timesT between
laser pulses (ωrT � 1, whereωr = 2hk2/m). The same signal is also ob-
tained forωrT = rπ, where r is an integer number. The graph shows the
fraction of atoms remaining in the dark state after the optical pulses as
a function of the phase of the third pulse

since the different paths here do not all have equal weights.
The unequal Clebsch–Gordan coefficients for the atom, anal-
ogous to e.g. a grating with different transmissions of the
individual slits, will now increase the side maxima. For the
case of anF to F′ = F transition as used here, one finds that
the Clebsch–Gordan coefficients are such that the outermost
paths are the ones mostly favored. The principal maximum
of e.g. our five beam interference signal (s= 4 and N = 5)
with a width of 0.16×2π is therefore slightly sharper than
the width obtained when setting all coefficientscn to the
same value (obtained width: 0.18×2π). While in principle
by using a very well collimated atomic beam and performing
spatially resolved detection one could observe the interfer-
ence signals of the individual families (s= 0, . . . , 8), in our
experiment we measure the (incoherent) sum of all interfer-
ence signals. The solid line in Fig. 3 shows the expected total
interferometer signal, as given also by (14). Note that the plot
gives the ratio of the number of atoms in the dark state after
the third pulse to those in the dark state at the end of the
first laser pulse. The signal observed in an experiment can
be increased when adding a repumping laser during (at least
part of) the first pulse, such that almost all the atoms can be
prepared in the dark state.

Figure 4a shows theoretical total fringe signals for differ-
ent drift timesT between the laser pulses. For small times
T, when the recoil term can be neglected, the phase differ-
ence between adjacent paths is equal for all paths. When for
larger timesT this term introduces phase shifts approaching
unity between a central and an outermost path, the phase dif-
ference between adjacent paths within the interferometer is
no longer constant for all paths. By variation of the phase
δθ it is no longer possible to obtain constructive interference
between all paths, and the width of the principal maxima de-
creases. The contrast of the interference pattern thus lessens
for larger timesT. When however the drift timeT reaches
an integer multiple ofπ/ωr, the fringe pattern is revived. This
can be seen from (15), since the recoil term now gives a phase
equal to an integer multiple of 2π. Intuitively this effect is
understood by considering the quadratic phase accumulated
due to the photon recoil energy during a time 2T between
the first and final optical pulse. When the accumulated phase
difference between two adjacent paths approaches an integer
multiple of 2π, the fringe pattern is revived. Collapse and re-
vival of the fringe pattern are not observed in a two-beam
atom interferometer2. These effects are interesting features of
multiple beam interferometers. The recoil energy can be de-
termined with a precise measurement of the revival time. In
most other practical applications it will be reasonable to set
the drift timeT to a revival time, which maximizes the fringe
contrast. Figure 4a further shows that at a drift time of half
the first revival time (atT = π/2ωr) one also expects a fringe
signal, which however shows a reduced contrast and doubled
period. A fringe signal atT = π/3ωr with tripled period is
visible in Fig. 4a. When considering an atom interferome-
ter with very many interfering paths, one generally expects
fringes atωrT = rπ/s, with r and s as integer numbers.

2The incoherent sum of the signals of several two-beam atom interfer-
ometers with different phase terms can however in some cases also lead
to a collapse and revival [22]. In a recent atom interferometer experi-
ment based on three mechanical gratings, predominantly the signal of many
two-beam atom interferometers of different geometries at revival times in-
coherently added up to an enhanced total signal [25].
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Fig. 4. aCalculated total interference sig-
nal of an atomic multiple beam inter-
ferometer withN = 5 paths for different
drift times T between the laser pulses.
While good interference contrast is ex-
pected for small timesT, the signal soon
collapses whenT is increased. When the
accumulated quadratic recoil phase be-
tween adjacent paths however equals an
integer multiple of 2π for larger timesT,
a revival of the fringe signal occurs.b – e
Signal of individual families of interfer-
ing wave packets, as shown in Fig. 1,
for some different drift timesT. The 4-
beam signal forωrT = π/2 in (c), and all
2-beam signals in (e) are equal to the cor-
responding signals at revival times. The
1-beam signal (s= 0 and 8) is indepen-
dent of both the phase andT, and is not
shown here

The signals of the individual families of interfering wave
packets are shown in Figs. 4b–e for different timesT be-
tween laser pulses. Similarly as for the total signal, collapse
and revival is expected for the signals with more than two
interfering wave packets. The interference signal with an in-
creasingly large number of beams naturally degrade faster
when departing from a revival time. Note that the signal of the
individual families does not in all cases show period multiply-
ing at drift times of integer fractions of the first revival time.
For example, Figs. 4b–e shows that the signals of the fami-
lies with an even number of interfering wave packets at a drift

time of half the first revival time here are identical to the cor-
responding signal expected at a revival time, while the fami-
lies with an odd number of wave packets at this intermediate
time give a signal that is phase-shifted byπ compared to the
signal at revival time. We have, speaking very qualitatively,
identified two mechanisms that can lead to period multiply-
ing of the total interference signal. First, period multiplying of
this sum signal can occur when the signals of individual fami-
lies of interfering wave packets are phase-shifted by different
amounts for some intermediate drift time. The period doub-
ling of our five-beam signal atωrT = π/2 shown in Fig. 4a
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can be explained in this way, since this signal is an incoherent
sum of families with principal maxima at phases of even and
odd multiples ofπ for even respectively odd number of inter-
fering wave packets. Second, the individual families can show
period multiplying when the accumulated phase difference
between paths differing by several photon momenta equals an
integer number of integer multiple of 2π.

Collapse and revival effects related to the ones described
are long known in near field optics, where it is not sufficient
to solve the wave equation by keeping only terms linear in
phase (Fraunhofer limit), but also including quadratic terms
(Fresnel approximation). In this limit, e.g. self-imaging of pe-
riodic objects first observed by Talbot finds its explanation,
as described e.g. in the review article by Patorski [24]. The
Talbot effect has found first applications in atom optics and
interferometry [1, 25–27], and also in the subrecoil cooling of
atoms [28].

For future experiments, it certainly would be desirable to
realize an atom interferometer with more thanN = 5 paths.
One might for example think of using some isotopes of heavy
atoms or molecules with a high rotational quantum number
and a very large number ofmF levels, which should result in
interferometers with a very high number of interfering paths.
The large enclosed area could increase the level of accuracy.
Theoretical interference fringes for different number of paths
N (N = 2, N = 5 andN = 11) are shown in Fig. 5 (left) as
a function of the phase of the third pulse. Generally for such
an interferometer withN paths both the width of the princi-
pal maxima and its height scale approximately as 1/N (for
N � 1). Assuming Poissonian statistics the signal to noise
ratio for a phase measurement therefore increases approxi-
mately as

√
N, when a repumping laser is added during the

first laser pulse. The loss of signal that accompanies the fringe
sharpening with more interfering paths occurs at the second
laser pulse, which selects increasingly sharp velocity slices
from the initial atomic velocity distribution. We note, that the
same loss mechanism is also present in previously demon-
strated interferometers based on adiabatic passage [9], and
similarly also in the Bord́e interferometer [10].

An increased number of interfering paths is also advan-
tageous for a precise measurement of the revival time, from
which the recoil energy can be readily determined (for a simi-
lar recoil energy measurement see also [27]). Figure 5 (right)
gives the expected signal for multiple beam atom interfer-
ometers with different number of paths as a function of the
drift time T between the pulses assuming no additional phase
in the final pulse. A structure – caused by the recoil phase
quadratic in transverse atomic momentum – is here only ob-
served for more than two interfering paths (N > 2), which
precisely is the condition for the occurance of collapse and
revival when scanning the phase of the third pulse for differ-
ent drift timesT. Note that the expected fringe width for our
method decreases with the square of the number of interfering
paths3, since multilevel coherences are excited. For a meas-
urement of the photon recoil energy aN3/2 scaling of the

3In the well known Bord́e-Interferometer [10] with four optical pulses,
where the propagation direction of the light pulses is reversed after the
second pulse, the photon recoil can be determined also with two interfer-
ing beams from the frequency splitting between the central fringes of two
different interferometers. Also in that scheme an increased recoil can be
obtained, when using multipulse sequences to transfer additional photon
momenta to the atoms within the atom interferometer. The observed recoil

signal to noise ratio is thus obtained in the limit of Poissonian
statistics.

1.2.2 Density matrix approach.We have furthermore ver-
ified that the results obtained in the previous section with
a single particle wave function fully describe our experiments
performed with an ensemble of atoms by calculating the in-
terference signal in a density matrix approach. Again we only
consider the atomic momentum along thez-axis of the laser
beams. For the sake of simplicity we further assume that the
spatial extend of the atomic beam along this axis is infinite,
and thus in a momentum basis picture no diagonal elements
between different momentum states occur. A more general
initial atomic density matrix for an atomic beam can be found
in [31].

The first laser pulse performed at timetA projects the
atoms onto a dark state, and the resulting density matrix by
this time is

%(tA) =
∫

dpz g(pz) |ϕD(pz, tA)〉 〈ϕD(pz, tA)| , (16)

whereg(pz) here includes both the quantum mechanical mo-
mentum spread of an atomic wave packet, and the classical
atomic velocity distribution of an ensemble of atoms with
different initial velocities. The density matrix obtained after
three optical projection pulses can readily be determined from
(10), and gives

%final =
∫

dpz g(pz) |Ψ(pz, tA +2T )〉 〈Ψ(pz, tA +2T )|

=
∫

dpz g(pz)
∣∣ϕ′

D(pz, tA +2T )
〉 〈

ϕ′
D(pz, tA +2T )

∣∣
×

N−1∑
n=0

N−1∑
q=0

N−1∑
n′=0

N−1∑
q′=0

cn
2 cq

2 cn′ 2 cq′2

×exp
[

i
(
(n+q−n′ −q′) (∆ω− (2k pz/m)) T

+ (q−q′)δθ − (n2+q2 −n′ 2 −q′ 2) ωrT
)]

. (17)

If the momentum of the atoms in the dark state is not
resolved, we can omit the quantum numberpz in the dark
states and draw the obtained states|ϕ′

D(tA +2T )〉〈ϕ′
D(tA +

2T )| out of the integral. Similarly to the procedure described
in the discussion of (12), we can solve the momentum in-
tegral for an atomic velocity distribution sufficiently broad
(2k∆pzT/m � 2π) and smooth. In the resulting expression
we again use the indexs= n+q, and our final result can be
written in the simple form

%final =
2N−2∑
s=0

|Ψs〉 〈Ψs| , (18)

where |Ψs〉 is given by (15) and describes the wave func-
tion of a single family of interfering paths. Note that this
density matrix does not include the atoms lost during the pro-
jection pulses, most of which will be optically pumped into an
other hyperfine level and not detected. With the density ma-
trix approach, we obtain the same fringe pattern as derived
previously using wave functions only.

splitting increases linearly [29], or even with the square of the number of
transferred photon momenta [30].
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Fig. 5. Calculated total interference signals for multiple beam atom interferometer with different number of interfering pathsN, as can be realized using an
atom with a transition from a ground state of total angular momentumF = N −1 to an excited state withF′ = F: (left) as a function of the phase of the
third optical pulse at a revival time (T = rπ/ωr, with r as an integer number), and (right) as a function of the drift timeT between the optical pulses with
no additional phase of the third pulse

1.3 The atomic coherence length

Let us, in a density matrix approach, now derive the signal ex-
pected after only two laser pulses, if the phase of the second
laser pulse is varied. The density matrix of atoms in the dark
state by this time is

%′(tA + T ) = ∣∣ϕ′
D(tA + T )

〉 〈
ϕ′

D(tA + T )
∣∣

×
∫

dpz g(pz)

N−1∑
n=0

N−1∑
n′=0

cn
2 cn′ 2 exp

[
i (n−n′)

× (
(∆ω− (2k pz/m)) T + δθ − (n+n′) ωrT

)]
.

(19)

When the atomic velocity distribution is sufficiently broad
and smooth (2k∆pzT/m� 2π) such thatg(pz) does not vary
significantly over an intervalδpz = πm/Tk, the termg(pz)
can again be replaced by a constant and drawn before the in-
tegral. The signal after the second pulse is determined by the

density matrix

%′(tA + T ) = ∣∣ϕ′
D(tA + T )

〉 〈
ϕ′

D(tA + T )
∣∣ N−1∑

n=0

cn
4 , (20)

which is independent of the phaseδθ, and the fringes at this
point average out. The condition for a sufficiently broad ve-
locity distribution to cause a washing out of the fringes at
the second pulse is equivalent to the condition that the split-
ting between adjacent interferometer paths 2Thk/m is much
larger than the spatial coherence length of the atomszcoh =
h/2∆pz. The (transverse) spatial coherence length equals the
minimum size of an atomic wave packet with momentum
width ∆pz. Earlier work originated by neutron interferometer
experiments has shown, that while the size of a wave packet
increases with time due to diffraction, the spatial coherence
length of a wave packet remains constant over time [32]. In
our experiments, the splitting between adjacent paths exceeds
the coherence length, and no fringes are observed with only
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two pulses when using counterpropagating optical beams.
A fringe signal can only be observed with a sequence of three
laser pulses that spatially divide, redirect, and then recombine
the atomic wave packets. By experimentally verifying that the
spatial splitting between adjacent paths by the time of the sec-
ond pulse exceeds the atomic coherence length, one justifies
the assumption of a sufficiently broad atomic velocity distri-
bution to derive (14) and (18) from the plane wave signal of
(10).

1.4 Inertial measurements

We now derive the sensitivity of the atom interferometer to
some inertial fields. Assume that the atoms are subject to
a gravitational field with accelerationg, and that the setup is
rotated with a constant angular velocityΩ. We follow [33],
and consider the variation of the laser frequencies due to the
inertial fields in the frame of an atom with initial velocity
v. The resulting modification of the interferometer signal is
derived by modifying the frequency detunings from reson-
ance accordingly in (4) and (5). The fringe signal changes
only due to the variation in the Raman laser difference de-
tuningsδn, where the term:ω+ −ω− is replaced by:ω+ −
ω− − (k+ − k−) · g t − (k+ − k−) ·Ω × v t. The correspond-
ing interferometer signal is obtained by replacing the phaseδθ
with the term:δθ − (k+ −k−) · g T2 − (k+ −k−) ·Ω ×v T2

in (15). The fringe pattern is shifted uniformly, and by this the
degree of rotation or acceleration can be determined. As dis-
cussed in Sect. 1.2, compared to the corresponding two-beam
atom interferometer a higher resolution can be obtained here
due to the narrower fringe width.

2 Experimental Setup

Our experimental setup is schematically shown in Fig. 6.
Within a vacuum chamber, cesium atoms are emitted by an
oven trough a200µm wide slit into an atomic beam. The
beam is collimated in a direction along the optical pump-
ing beams by a second slit of250µm width in a distance
of 25 cm. The atoms then enter an optical interaction region,
which is magnetically shielded and has a homogeneous (typ-
ically 9 mG) magnetic bias field oriented along the optical
beams. Within the interaction region the cesium atoms are ir-
radiated by a series of three optical light pulses. The pulses
are generated from aTi:sapphire laser near894 nm. After
passing a first acousto-optic modulator (AOM) used to gener-
ate the pulse shapes for the optical beams, the light is split to
provide the two counter-propagating optical projection beams
in a σ+–σ− polarization configuration. Each of the beams
then passes a further AOM which shifts their optical frequen-
cies by slightly different amounts in order to maintain the
two-photon resonance condition (∆ω = 0) in the presence of
the bias field. The phase of the rf drive frequency of one of
these frequency shifters can be changed during the pulse se-
quence to allow the adjustment of the phase of one of the
optical beams in the final pulse. The two projection beams
are spatially filtered and expanded to Gaussian beam diam-
eters of43 mm. The typical optical power in each beam is
300 mW. All the interferometer pulses are applied during the
transit time of the atoms through the optical interaction re-
gion. While in earlier experiments using a slightly simplified

setup still without magnetic shielding we have observed the
fringe pattern by detecting the atomic fluorescence emitted in
the final optical selection pulse [13], in later experiments we
have measured the number of atoms remaining in the dark
state (inF = 4) after the pulses. This population is measured
by irradating the atoms with a further optical detection pulse
tuned to the 6S1/2 (F = 4) – 6P3/2 (F′ = 5) cycling transition,
and recording the resulting fluorescence with a photomulti-
plier and a boxcar integrator. The optical detection beam is
generated with a diode laser, and is travelling in opposite di-
rection of the atomic beam to allow Doppler selection of only
a part of the broad thermal atomic velocity distribution. The
frequency of the diode laser is tuned to address atoms mov-
ing with a velocity near140 m/s, while the most probable
velocity of the beam is290 m/s. This Doppler selection ef-
ficiently suppresses signal contributions from atoms moving
far above the most probable atomic velocity, so that a signifi-
cant increase of the interferometer drift time is obtained.

In a typical pulse sequence, we start the first interferome-
ter pulse with a1.2µs long period of lower light intensity to
select a velocity slice∆vz of 2k∆vz/2π ≈ 200 kHzDoppler
width in the direction along the optical pumping beams from
the initial transverse beam velocity distribution of1.2 MHz
Doppler width (we refer here to the width for a Raman-like
two-photon transition). The beam power is then increased to
full value for the remaining time of the2µs long pulse. The
typical length of the second and third interferometer pulse
is 1.2µs. Subsequently, the population in the dark state is
measured. The repetition rate of such an interferometer pulse
sequence is3.5 kHz. We alternate between a sequence with

Fig. 6. Experimental setup of the multiple beam atom interferometer. The
atoms in the atomic beam are irradiated by a sequence of three laser pulses
with two counterpropagating optical beams andσ+ respectivelyσ− circu-
lar polarization. In the third pulse, the RF-switch is flipped such that the
phase of the drive frequency of the acoustooptic modulator is shifted by an
amountδθ. The atomic interference signal can be monitored either by ob-
servation of the fluorescence emitted during the third optical pulse, or by
recording the fluorescence scattered from a further optical detection beam
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the phase of the beam with frequencyω+ shifted in the fi-
nal pulse, and a sequence with no additional phase shift. We
determine the difference of the two obtained fluorescence sig-
nals with a lock-in amplifier, which largely suppresses the
effect of stray light. The typical used integration time is1 s
per measurement point.

3 Experimental results

The solid line in Fig. 7 shows a typical interferometer signal
obtained by measuring the fluorescence scattered during the
third optical pumping pulse, where the atomic wave function
is recombined in several families of interfering wave pack-
ets. This spectrum was recorded for a timeT = 5µsbetween
sucessive light pulses, whereωrT � 1. Note that the fluo-
rescence signal here decreases in the interference maxima,
since little fluorescence is emitted in the final pulse when
the atoms by this time are dark for the light field. The ob-
served width of the principal dip typically is 0.32×2π which
is clearly broader than the expected value of 0.18×2π. As
discussed below, we believe that this larger width of the in-
terferometer signal is both due to the broad transverse atom-
ic velocity distribution and to imperfect optical wavefronts.
The observed width nevertheless is still considerably below
the value 0.5× 2π observed in conventional two-beam in-
terferometer experiments. Related multiple beam atom inter-
ferometer experiments have now also been realized by two
other groups [27, 34]. The dashed line in Fig. 7 for compar-
ison shows the signal measured during the second pulse as
a function of the phase of this pulse. In this case almost no
interference signal is observed, which is an indication that
by this time the spatial splitting between two adjacent paths
exceeds the atomic coherence length. The spatial splitting be-
tween adjacent paths after a drift timeT is 2Thk/m = T·
(6.67 mm/s), while the atomic coherence length correspond-
ing to the atomic velocity width selected during the first laser
pulse iszcoh = h/2m∆vz ≈ 2.7 nm.

In later experiments, as stated above, we have improved
our experimental setup to allow longer drift times between
the interferometer pulses. We have added an additional laser
tuned to the 6S1/2 (F = 4) – 6P3/2 (F′ = 5) cycling transition,
which was pulsed on directly after the third selection pulse to
allow measurement of the number of atoms left in the dark
state (inF = 4) by the scattered fluorescence. In this way,
we have recorded interference signals such as those shown
in Fig. 8 as a function of the phase of the third projection
pulse for different timesT between the laser pulses. The
lowest curve withT = 5µs corresponds to the atomic inter-
ference signal in the limit of small times between laser pulses
(ωrT � 1), as in the spectrum shown in Fig. 7. Note however,
that the signal of atoms in the dark state shown in Fig. 8 in-
creases in the interference maxima, as in the theoretical fringe
patterns of Figs. 3–5. While good contrast of the interfer-
ence pattern is observed in Fig. 8 for small timesT between
the laser pulses, the fringe pattern collapses for drift timesT
above a fewµs. This collapse of the fringe pattern is expect-
ed for multiple beam atom interferometers, and is caused by
a recoil phase shift, that inreases quadratically in transverse
atomic momentum. When the drift time reachesT = π/2ωr
(equals approximately33.4µs), one expects a partial regain
of constrast and a period doubling, which is only barely vis-

Fig. 7. Experimental interference signals (solid) of an atomic multiple beam
interferometer realized with a sequence of three optical pulses, as shown
in Fig. 1 for a timeT = 5µs between laser pulses. The fluorescence signal
detected during the third pulse is shown as a function of the phase of this
pulse. Note that this signal decreases in the interference maxima. For com-
parison, the dashed line shows the fluorescence detected during the second
pulse as a function of the phase of the second pulse. Since the splitting be-
tween the individual paths by this time exceeds the spatial coherence length,
almost no interference signal is present

ible. When the drift time however approaches the first revival
time atT = π/ωr (approximately66.8µs), the fringe pattern
is restored, and the fringes reach maximum contrast at the
revival time. For this time, the accumulated quadratic phase
between adjacent paths has reached an integer multiple of
2π. For even larger drift times between the pulses, the fringe
pattern again collapses. These results directly demonstate the
temporal Talbot effect in an atom interferometer. The obser-
vation of collapse and revival is both fundamentally interest-
ing and of practical importance, since it shows that multiple
beam atom interferometers can be realized with longer drift
times between laser pulses, as necessary for precision meas-
urements.

The typically observed fringe width of the principal maxi-
ma increases from 0.32×2π at small drift times to 0.36×2π
at the first revival time, both of which is above the theo-
retical value, but below the fringe width of two-beam atom
interferometers. With the aim of determining the cause of the
experimental fringe broadening, we have observed Doppler-
free multilevel Ramsey interference signals [13] by orienting
the two Raman beams in a colinear excitation geometry. The
typical observed Ramsey fringe width in our new setup with
magnetic shielding was 0.20×2π for a drift time of130µs,
which is reasonably near to the expected value of 0.16×
2π. One thus does not expect inhomogeneous stray magnet-
ic fields to be the principle cause for the broadening of the
atom interferometer fringes. We attibute the broadening of
these spectra, recorded in the Doppler-sensitive mode with
counterpropagating laser beams, to be mainly due to both the
large initial atomic velocity spread parallel to the laser beams
and to imperfect optical wavefronts. Wavefront imperfections
are expected to be important especially for larger drift times,
since then each atom samples light from different spatial re-
gions within the optical beams. Note that the fringe pattern of
Fig. 8 is shifted slightly towards higher phases for larger drift
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Fig. 8. Experimental interference signals for different drift timesT between
the laser pulses. This plot shows the number of atoms detected after the pro-
jection pulses as a function of the phase of the third pulse. The signal here
increases in the interference maxima. For drift timesT above severalµs the
signal collapses. When the timeT approaches the first revival time ofπ/ωr
(equals about66.8 µs for the cesium D1 line) the fringe pattern revives. For
even larger timesT the fringe contrast again decreases. We note that the da-
ta with T above50µs had to be taken with a higher photomultiplier supply
voltage

times, which also may be due to wavefront imperfections.
The magnitude of this shift changed between experimental
runs only after a major realignment of the optical interferom-
eter beams. As can be seen from (15), a principal interference
maximum is expected at zero phase independent from (ho-
mogeneous) magnetic field or frequency detuning. The multi-
level Ramsey signal is less affected by imperfect optics, since
for Doppler-free signals both beams are copropagating and
can pass through the same optics.

We have monitored the optical beam quality with an opti-
cal sheering interferometer, and estimate an average, mainly
spherical symmetric phase distortion of almost half a fringe
between the center and the edge of the60 mm diameter
beams. For comparsion, during the total interferometer drift
time 2T the atoms with velocity140 m/s typically travel
a distance of approximately20 mmacross the laser beam at
the first revival time. Moreover, the atoms are located at dif-
ferent positions within the beam profile when being irradiated
by the optical pulses. We attribute the beam imperfections to
be mainly due to unexpectedly large spherical aberations of
our collimation doublet lenses (N. A. 1/30), and to imperfec-
tions of the vacuum can windows. We expect good optical
beam quality to be especially important for multiple beam
atom interferometers, since multiphoton coherences are re-
quired. Besides choosing very high quality optics, in a future
experimental setup based on slow atoms the interferometer

beams could be oriented colinearly to the propagation di-
rection of the atoms. Beam quality imperfections are then
expected to affect the interference signal less even at very
large drift times, since the atoms in their free flight then most-
ly sample light that passed though the same spatial region of
the optical components [9, 29].

4 Outlook

In future experiments, drift times up to200 msand narrow-
er fringe width should be within reach by using laser cooled
cesium atoms in an atomic fountain [35]. Precision measure-
ments of, e.g. gravitation and photon recoil should be possible
with an increased sensitivity. One might also think of using
dark states with components differing only in their external,
and not in their internal quantum numbers. Since then one
would no longer be limited by the number of internal levels,
a larger number of interfering paths might be realized4. The
difficulty in such a scheme is, that the dark state then would
tend to extend to both positive and negative very large mo-
menta, and thus is extremely leaky for finite pulse lengths
due to the quadratic recoil phase. A multiple beam atom in-
terferometer based on this scheme could be realized by using
a sequence of three resonant standing waves tuned to an open
optical transition [36]. In a simplified spatial picture, only
those atoms are dark that pass precisely through the nodes of
the waves. An atom interferometer realized with three reso-
nant standing waves tuned to an open optical transition in the
short pulse limit does in many terms resemble an atom inter-
ferometer realized with an arrangement of three mechanical
gratings [25, 37]. In contrast to these experiments, however,
by using optical absortion gratings losses at the first grating
could in principle be much reduced when a repumping laser
is added during the first laser pulse.

To conclude, atom interferometers with dark states are in-
triguing applications of quantum mechanics. In the future,
they will allow for more precise measurements of both funda-
mental and applied interest.

4When performing the calculation of the fringe pattern of such an atom
interferometer one finds a mathematically equivalent result to the fringe pat-
tern derived in this work [see e.g. (14)], where however the weightscn of
the dark state with, in theory, infinitely many components will not reach
a stationary value within an optical pumping pulse of finite length, and thus
are always dependent on length and intensity of a pulse. A second import-
ant difference to the calculation presented in Sect. 1.2 is, that one here can
extend the integral over the atomic velocity distribution along the direction
of the laser beams (11) only over a momentum range of 2hk to avoid dou-
ble counting of the components of the dark state. It follows, that one can
derive the far field solution of (13) only when the drift timeT equals at
least the first revival time atT = π/ωr, since the momentum intervalδpz
is naturally limited to 2hk. The far field interference pattern of (14) is thus
only observed for a drift time of at least the first revival time (more precise-
ly, the period doubling, tripling etc. effects described by (14) can already be
observed at timesT = π/(sωr) with s being an integer number). For smaller
times, one has to consider the full solution of (12), which also describes
near field (geometrical shadow) effects.
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