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Abstract. We have measured the phase anisotropy of four
very high reflectivity(R> 0.999969) interferential mirrors
for polarized light at strictly normal incidence by study-
ing the birefringence properties of a Fabry–Pérot cavity
to which a Nd:YAG laser has been frequency locked. We
found phase anisotropies per reflection ranging from less than
2×10−7 radto 2×10−6 rad.

PACS: 42.70; 42.80

Recently high-finesse Fabry–Pérot cavities [1] have found ap-
plications in several advanced fields; for instance gravitation-
al wave detection with interferometers [2, 3], optical sensors
for gravitational wave bar antennas [4], metrology [5], gy-
rometry [6], and parity violation experiments [7]. In particular
their use has been proposed to increase the sensitivity of ellip-
someter apparata designed to measure the vacuum magnetic
birefringence [8–10] and gas magnetic birefringence [11].

In general, when a linearly polarized light beam is re-
flected by an interferential mirror, the reflected light acquires
a slight elliptical polarization. This fact is a source of noise
and systematic errors in all of the above-mentioned experi-
ments. In [12], for example, the authors discuss this noise
problem for an apparatus such as the one proposed in [10].

Experimental studies of the birefringence properties of in-
terferential mirrors have been conducted [13–17]. The results
show that birefringence for normal-incidence reflection could
be as large as3×10−4 for a 0.9983 reflectivity mirror [15].
The value of birefringence and the direction of the birefrin-
gence axis were also shown to vary for different reflection
points on the mirror surface [15].

In [18], the authors proved that in a Fabry–Pérot cavi-
ty at resonance the changes in the light polarization caused
by the phase anisotropy of the mirror surface add coherently.
Moreover, since in the case of a Fabry–Pérot the incidence on
the mirror is strictly normal, the birefringence due to the off-
normal incidence vanishes. The finesseF of the Fabry–Ṕerot
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cavity [18] was about 7000(R≈ 0.99955), the measured
phase anisotropy per reflection was of the order of10−6 rad.

A phase anisotropy per reflection of the same order of
magnitude has been also reported in [17]. The mirror was
part of a Fabry–Ṕerot cavity of finesse around100 000(R≈
0.999969). A higher phase anisotropy of the order of10−3 rad
is reported in [9] for mirrors of a Fabry–Pérot cavity with
finesse 300(R≈ 0.9895).

In this letter we report the measurements of the phase
anisotropy of two pairs of interferential mirrors used to real-
ize a Fabry–Ṕerot cavity to which a Nd:YAG laser was fre-
quency locked by means of the Pound–Drever technique [19].
The mirrors are high-reflectivity spherical mirrors (reflectiv-
ity R> 0.999969, radius of curvatureRc= 11 m, BK7 sub-
strate) and they were supplied by Research Electro-Optics
(Boulder, Colorado).

The measured phase anisotropy per reflection ranges from
less than2×10−7 radto 2.4×10−6 rad.

In Fig. 1a simplified scheme of the apparatus is shown.
The measurements reported in this article were performed
during the tests of the PVLAS (Polarizzazione del Vuoto con
LASer) experiment [8]. PVLAS has been designed to meas-

Fig. 1. Simplified scheme of the apparatus. OI optical isolator; P, PP, AP po-
larizer prisms; LR, LT lenses; PDR, PDT photodiodes; FC Faraday cell;λ/2
half-wave plate; TL telescope; M1, M2, M3 steering mirrors; W1, W2 win-
dows; MM1, MM2 tilting stages; CM1, CM2 cavity mirrors; coordinate axis
are also shown
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ure the vacuum magnetic birefringence by using a very sen-
sitive ellipsometer that will be based on a vertical6-m-long
very high finesse Fabry–Pérot cavity. The servo system used
to lock the laser to the high-finesse Fabry–Pérot cavity has
already been discussed [20].

The light source is a tunable NPRO laser emitting about
15 mW of power at a wavelength ofλ = 1.064µm (ν =
2.82×1014Hz). The laser light after crossing a two-stage op-
tical isolator, OI, enters the polarizing cube beam splitter P
which is set for maximum transmission. The Faraday cell FC
rotates the polarization by a45◦ angle and a half-wave plate
λ/2 is used to change the polarization direction of the beam.
A telescope TL is used to match the laser beam to the cavi-
ty FP. Mirrors M1 and M2 are mounted on tilting stages and
are used to allow the alignment of the beam with the optical
axis of the cavity. When the cavity and the beam are proper-
ly aligned light coming back from the cavity follows the same
optical path as incoming light. After it crosses the Faraday
cell, FC, the polarization angle of the reflected light is rotated
a further45◦ so that the reflected light can be extracted from
the main path as the ordinary ray of polarizer prism P. Mir-
ror M3 steers the beam in the vertical direction. The polarizer
prism PP is used to linearly polarize the laser beam before it
enters the FP made of the two mirrors CM1 and CM2. The po-
larizer prism AP is then used to analyze the polarization state
of the light transmitted by the cavity. The cavity mirrors CM1
and CM2 and the polarizer prisms PP and AP are contained
in a vacuum chamber and mounted on stages designed to ro-
tate the optical elements around thez axis (see Fig. 1), to tilt
them aroundx andy axis, and to translate alongx andy ax-
is. Appropriate manual feedthrough for vacuum allowed us to
precisely align the optical elements from outside the vertical
vacuum chamber. The photodiode PDR collects the reflect-
ed light, focused by the lens LR, giving the main signal for
the Pound–Drever locking scheme. The photodiode PDT, on
the other hand, collects the light transmitted by the cavity and
analyzed by the polarizer prism AP. The lens LT focuses the
transmitted light onto this photodiode. Two windows (W1 and
W2) allow the light to enter and exit the vacuum chamber. The
length of the Fabry–Ṕerot cavity is2.15 m.

The principle of the experiment is shown in Fig. 2. A light
beam propagating along thez direction is linearly polar-
ized at an angleθP with respect to thex axis. The phase
anisotropies of the coatings of the cavity mirrors CM1 and
CM2 are schematized as two ideal waveplates WP1 and WP2
between two isotropic cavity mirrors M1 and M2 of reflec-
tivity R. WP1 has its fast axis along thex axis and a phase
anisotropyδ1. WP2 has its fast axis at an angleθWP with re-
spect to thex axis (i.e. with respect to the fast axis of WP1)
and a phase anisotropyδ2. Thus the phase anisotropy per re-
flection corresponds to twice the phase anisotropy of the ideal
waveplates WP1 or WP2.

Light coming from the cavity is analyzed by a polariz-
er prism crossed with the initial laser polarization. When the
laser is frequency locked to the cavity, rotation of the AP
polarizer varies the transmitted light from a minimum value
IEXT to a maximum valueIT. Therefore, the ellipticityΨ can
be measured as the square root ofIEXT/IT, i.e.

Ψ =
√

IEXT

IT
= f(θP, θWP, δ1, δ2) . (1)

Fig. 2. Principle of the experiment;E0 light polarization vector; CM1, CM2
cavity mirrors; M1, M2 isotropic mirrors; WP1, WP2 waveplates equivalent
to the coating of cavity mirrors

To calculate the expression forΨ as a function of the experi-
mental parametersθP, θWP, δ1, δ2 we use the Jones matrix for-
malism [21]. The following matrices represent the waveplates
WP1 and WP2

WP1=
(

e+iδ1/2 0
0 e−iδ1/2

)
(2)

WP2=
e+iδ2/2 cos2 θWP
+e−iδ2/2 sin2 θWP

−2i sin(δ2/2) cosθWP sinθWP

−2i sin(δ2/2) cosθWP sinθWP
e−iδ2/2 cos2 θWP
+e+iδ2/2 sin2 θWP


(3)

The combined effect of the waveplates WP1 and WP2 cor-
responds to the effect of a single equivalent waveplate WPEQ
of phase anisotropyδEQ and with the fast axis at an angleθEQ
with respect to thex axis. Writing then

WPEQ=
e+iδEQ/2 cos2 θEQ
+e−iδEQ/2 sin2 θEQ

−2i sin(δEQ/2) cosθEQ sinθEQ

−2i sin(δEQ/2) cosθEQ sinθEQ
e−iδEQ/2 cos2 θEQ
+e+iδEQ/2 sin2 θEQ


(4)

and imposing

WPEQ=WP2 ·WP1 (5)

with matrix algebra, and forδ1, δ2� 1 one obtains

δEQ=
√
(δ1− δ2)

2+4δ1δ2 cos2 θWP (6)

cos 2θEQ= δ1/δ2+cos 2θWP√
(δ1/δ2−1)2+4(δ1/δ2) cos2 θWP

. (7)

Whenδ1� δ2 (or δ2� δ1), δEQ does not depend onθWP and
is equal toδ1 (or δ2).

In Fig. 3 we showθEQ for some characteristic values ofδ1
andδ2. One can see that ifδ1/δ2= 1,θEQ is equal toθWP/2; if
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Fig. 3. Plot of the theoretical expressions ofθEQ(θWP) for some character-
istic value of the ratioδ1/δ2

δ1/δ2→∞, θEQ is equal to 0 and finally ifδ1/δ2→ 0, θEQ is
equal toθWP. Intermediate cases (δ1/δ2 = 0.5, δ1/δ2 = 1.5)
are also shown.

To explicitate (1) we calculate the Jones matrixFPWP cor-
responding to a Fabry–Pérot cavity at resonance, taking into
account the presence of the waveplate WPEQ between the two
mirrors. For the sake of simplicity we use the coordinate sys-
tem in whichWPEQ is diagonal. For two identical mirrors
FPWP can therefore be written as

FPWP=
+∞∑
n=0

{
T

[
R

(
eiδEQ 0

0 e−iδEQ

)]n (
eiδEQ/2 0

0 e−iδEQ/2

)}
,

(8)

whereT and R are the mirror transmittivity and reflectivity,
respectively. Again, matrix algebra gives as result that

FPWP=
T

1− R

exp
[
i
(

1+R
1−R

)
δEQ

2

]
0

0 exp
[
−i
(

1+R
1−R

)
δEQ

2

] . (9)

FPWP corresponds to, apart from the usual Fabry–Pérot trans-
mission factorT/(1− R) [1], to a waveplate of anisotropy
(1+ R)/(1− R)δEQ, i.e. using a Fabry–Ṕerot cavity one am-
plifies the effectδEQ of the original waveplate by a factor
A= (1+ R)/(1− R). If R≈ 1, A can be written as 2F/π,
whereF is the finesse of the cavity [1].

As we have demonstrated the combination of the two
waveplatesWP1 andWP2 and the Fabry–Ṕerot cavity at res-
onance acts on the light polarization as a waveplateFPWP of
phase anisotropyδ= (2F/π)δEQ with the fast axis at an angle

θEQ. The square of the ellipticityΨ 2 can be written as

Ψ 2= IEXT

IT

=
(

1− R

T

)2 ∣∣∣∣AP ·R(θEQ− θP) ·FPWP ·R(θP− θEQ) ·
(

1
0

)∣∣∣∣2
= δ

2

4
sin2 2(θP− θEQ) ,

(10)

whereR(α) is the rotation matrix of an angleα andAP is the
matrix corresponding to the analyzer prism AP set to max-
imum extinction. We are interested in the phase anisotropy
of the two mirrors, i.e.δ1 and δ2 in our schema. To recov-
er these two values, we measuredΨ 2 as a function ofθP for
different values ofθWP. From the analysis of the experimen-
tal values ofΨ 2(θP, θWP) one obtains the experimental values
of the functionsδEQ(δ1, δ2, θWP) andθEQ(δ1/δ2, θWP) and fi-
nally from the comparison with the theoretical curves one can
evaluateδ1 andδ2.

We have tested two pairs of very high reflectivity mir-
rors, in the following labeled with Roman numerals I and
II, respectively. To obtain a good resonance condition of the
Fabry–Ṕerot cavity we have to properly align the laser beam
and the geometrical axis of the mechanical supports. Using
mirrors M1 and M2 we aligned the laser beam to pass through
the cavity-mirror tilting stages so that light could hit the cen-
ter of the mirror itself. The two mirror centers define the
cavity axis. The cavity mirror CM2 was then cleansed with
pure ethanol and put in its tilting stage MM2. Stage MM2 was
then used to send the reflected beam exactly on the same path
as the incoming beam. The same procedure was followed for
the second mirror CM1. Since the cavity is vertical, the mir-
ror can be just placed on the tilting stage, thus minimizing the
mechanical stresses on the mirror itself, which can produce
birefringence [1]. The vacuum chamber was then closed and
evacuated. During data taking the pumps were switched off
and the pressure inside the vessel was less than0.1 mbar.

The frequency of the laser was then driven by a triangu-
lar wave signal. An infrared-sensitive camera was put before
the photodiode PDT. While the laser frequency was swept
by the triangular wave the frequency modes of the cavity
could be clearly seen on a TV monitor. By slightly adjust-
ing stages MM1, MM2, M1, and M2, the cavity could be
fine tuned on the mode TEM00. The servo system was then
turned on and we checked that the laser was locked to the
TEM00 mode of the cavity. Finally, we removed the camera
and again using stages M1 and M2 we maximized the intensi-
ty transmitted by the cavity at resonance, looking at the signal
from the photodiode PDT. To measure the cavity finesseF
we measured the cavity decay time, observing the exponen-
tial decay of the light coming onto photodiode PDT after the
laser was switched to the standby mode [20]. For mirror pair
I we obtained a finesse of about65 000and for mirror pair II
we obtained a finesse of about110 000. The finesse expect-
ed from the data provided by the mirror manufacturer should
be at least100 000. The slightly smaller value measured for
mirror pair I is probably due to a defective mirror-cleaning
procedure. The relative error of the finesse measurement has
been evaluated, by measuring several times the finesse of the
cavity during data taking, to be about10%.
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Once the Fabry–Ṕerot cavity was set up, phase anisotropy
measurements could be started. The intensitiesIEXT and IT
have been measured for differentθP. To changeθP we rotat-
ed the half-wave plateλ/2 and consequently the polarizing
prism PP. We then rotated the cavity mirror CM2 around thez
axis to perform another measurement ofIEXT andIT as func-
tion of θP for a differentθWP. The anglesθWP andθP were
measured relative to the initial angular valuesθ0

WP and θ0
P.

The absolute value ofθ0
WP andθ0

P were then determined by
comparison of the experimental and theoretical curves.

In principle, if the optical axis of the cavity corresponded
exactly to thez axis, rotating CM2 should not affect the align-
ment of the cavity. In practice we have to slightly realign the
cavity for every differentθWP. This means that the position of
the beam on the mirrors has also changed. This could create
problems in the data analysis if the surface structure reported
in [15] was very pronounced on our mirrors. For this reason
theθWP range was limited to minimize the unavoidable cav-

Fig. 4. Typical experimental results for the square ellipticityΨ2 as a func-
tion of the polarization angleθP, obtained for mirror pair I withθWP=
θ0

WP+11.6◦. The superimposed curve is obtained by best fitting these data
with the theoretical expression (10)

Fig. 5. Experimental data points for the functionδEQ(θWP) for both mirror
pairs. For mirror pair I the result of the fit using expression (6), giving the
values of Table 1, is also shown. For mirror pair II we plot the curves corre-
sponding to the valuesδ1= 0, δ2= 1.2×10−6 andδ2= 1.1×10−6, δ1=
0.1δ2

Fig. 6. Experimental data points for the functionθEQ(θWP) for both mirror
pairs. For mirror pair I the result of the fit using expression (7), giving the
values of Table 1, is also shown. For mirror pair II we plot the curves corre-
sponding to the valuesδ1= 0, δ2= 1.2×10−6 andδ2= 1.1×10−6, δ1=
0.1δ2

ity adjustment. For any newθWP we measured the finesse of
the cavity, finding values whose spread was compatible with
the finesse measurement error.

In Fig. 4 we show the experimental data obtained for
θWP= θ0

WP+ 11.6◦ for mirror pair I superimposed with
the curve obtained by best fitting of these data with the
theoretical expression (10). From this best fit one obtains
a phase anisotropyδ of about 11 mrad corresponding to
δEQ= 2.7×10−7 rad.

In Figs. 5 and 6 are shown the experimental curves
δEQ(θWP) andθEQ(θWP) for the two mirror pairs. To obtain
the values of the phase anisotropiesδ1 andδ2 for mirror pair
I we performed two independent best fits. From the data of
Fig. 5, using the theoretical expression (6), we obtained some
preliminary values forδ1 andδ2; from the data of Fig. 6, using
for the best fit the theoretical expression (7), we obtained
a value for the ratioδ1/δ2 in agreement with the previous
results forδ1 and δ2. These results are reported in Table 1
and the corresponding theoretical curves are shown in Figs. 5
and 6.

For mirror pair II it is clear from the data in Fig. 6 and
a comparison with the theoretical curves shown in Fig. 3, that
δ1� δ2. This is also in agreement with data from Fig. 5.
By comparison of the experimental data with the theoretical
curves we found the allowed range for the values ofδ1� δ2
andδ2. Table 1 shows these results, the corresponding theo-
retical curves are plotted in Figs. 5 and 6.

The values obtained for the phase anisotropy per reflec-
tion are of the order of10−6 rad, in agreement with data

Table 1. Results coming from the fit for the phase anisotropies of the two
mirror pairs. The phase anisotropies per reflection is twice the value of the
parametersδi of the table

Mirror pair I Mirror pair II

CM1 δ1= (6.3±0.3)×10−7 δ1/δ2 < 0.1
CM2 δ2= (3.7±0.2)×10−7 1.1×10−6 < δ2 < 1.2×10−6
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reported in [17, 18]. It is possible, however, to select mirrors
with a phase anisotropy per reflection less than2×10−7 rad,
as we measured for the CM1 of the mirror pair II. This is, as
far as we know, the smallest value ever reported for the phase
anisotropy per reflection of the coating of a high-reflectivity
interferential mirror.
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