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QND-measurement of twin beams by phase sensitive preamplification
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Abstract. We propose a QND-measurement of twin beams
to improve the noise suppression achieved with squeezed
states, which is currently limited by the finite sensitivity of
the photo detectors. The scheme can be implemented with
existing fiber technology.

PACS: 42.50.Dv; 42.50.Lc; 42.81.Pa

Quantum theory allows for a noise-free measurement of
a quantum observable. An interferometric measurement of
phase imbalance in a Mach-Zehnder interferometer could be
achieved, in principle, with no uncertainty (noise) using bal-
anced homodyne detection. Balanced homodyne detection
is an example of noise-free amplification of one quadrature
component of the electromagnetic field, if ideal detectors are
employed. The non-unity quantum efficiency of the detec-
tors, however, prevents the achievement of noise-free ampli-
fication. For a detector quantum efficiency of 90%, the de-
tection noise level can be only 10 dB below shot noise, under
otherwise ideal conditions. Ideally, phase sensitive amplifi-
cation of one phase component of the electromagnetic field is
another example of noise-free amplification. If such an am-
plification can be realized, approaching the ideal limit more
closely than balanced homodyne detection with nonideal de-
tectors, then phase sensitive preamplification can improve
the sensitivity. This has been shown by Caves for the case
of dark fringe interferometry using a degenerate parametric
amplifier as a phase sensitive preamplifier before detection
[1]. In that case the preamplification is based on second or-
der nonlinearities. Here, we propose a QND-measurement of
twin beams by a phase-sensitive preamplification that uses
third order optical nonlinearities as they occur in an opti-
cal fiber. Such a scheme can be used to improve balanced
homodyne detection if detectors with non-unity quantum ef-
ficiency are employed.

The usual arrangement for detection is schematically
shown in Fig.1. The twin beams ˆa and b̂ incident upon the
balanced detectors are assumed to be correlated. Section 1
recapitulates the analysis of this case. One may, however,
couple each of the twin beams to a nonlinear Mach-Zehnder
QND-measurement apparatus and detect the probe beams of
the measurement apparatus instead. This scheme introduces

Fig. 1. Direct twin beam detection with 100% detector efficiency

gain into the measurement. If the gain were phase insen-
sitive, noise would be added. However, the gain achieved
in a QND-measurement is phase sensitive and need not be
accompanied by noise. In this way one may overcome the
effect of a non-ideal quantum efficiency of the detectors.
In Sect. 2 we analyze the case with a doubly resonant Kerr
medium in which self-phase modulation can be suppressed.
Section 3 deals with a more realistic Kerr medium, such as
realized with a fiber, that includes the self-phase modulation.
It is shown that even in the presence of self-phase modula-
tion improvements in sensitivity can be achieved. In Sect. 4
we apply the concept to homodyne detection of squeezed
states and in Sect. 5 we discuss its experimental implemen-
tation with existing fiber technology.

1 Measurement of photon number difference in twin
beams by direct photo detection

The term ”twin beam” has connotations of quantum entan-
glement, such as occurs in the generation of photon pairs in
parametric amplification. In this discussion we consider the
general case that may or may not involve entangled states
[2]. A simple model for a measurement of the difference
in photon number between a pair of two monomode opti-
cal beams is direct detection with two photo detectors with
100% detection efficiency (see Fig.1).

The difference in photon number is given by

Î = â†â− b̂†b̂ = n̂a − n̂b. (1)

If the input beams are in photon number states, the mean
square fluctuations in excess of the signal fluctuations van-
ish.

< Î2 > − < Î >2 = < (â†â− b̂†b̂)2 > + < â†â− b̂†b̂ >2

= 0 . (2)
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Fig. 2. Direct twin beam detection with non ideal detectors

Thus, the signal to noise ratio of the difference photon
number measurement is infinite. Usually 100% detection ef-
ficiency is not feasible. We can model a photo detector with
less than 100% efficiency by an ideal photo detector behind
a beam splitter which taps off a fraction 1− η of the signal
power before detection, whereη denotes the finite detector
efficiency [3] (see Fig. 2). We denote the creation operators
for the unexcited ports of the beam splitters by ˆp and ˆq. In
the subsequent analysis we shall assume that they are in the
vacuum state and shall call these ports the vacuum ports.
The modes detected after the beam splitter are related to the
input modes via

f̂ =
√
η â +

√
1− η p̂ (3)

ĝ = −√η b̂ +
√

1− η q̂ (4)

Then the operator measured with such a device is given by

Î = f̂†f̂ − ĝ†ĝ. (5)

The detector current is decomposed into a singal part (the
photon number difference) and a noise part

Î = η∆n̂s + în. (6)

The signal is represented by the photon number difference

∆n̂s = n̂a − n̂b (7)

and the noise current partîn is an operator consisting of the
beat between the signal, as a local oscillator, and the vacuum
port modes, and the noise operator from the vacuum port,
of zero expectation value.

în =
√
η(1− η)

(
â†p̂ + p̂†â + b̂†q̂ + q̂†b̂

)
+ (1− η)(n̂p − n̂q). (8)

Assuming that the beams ˆa andb̂ are in photon number states
|na > and |nb > with na − nb ≡ ∆ns, the signal photon
number, we obtain

< Î > = < η∆n̂s >= η(na − nb) = η∆ns (9)

< ∆n̂s · în > = < în >= 0 (10)

< (în)2 > = η(1− η)(na + nb) (11)

Then the signal to noise ratio for direct detection of the
photon number difference in the twin beams is

S

N
|DD =

< η∆n̂s >√
< î2n >

=
η∆ns√

η(1− η)(na + nb)
(12)

For a signal to noise ratio greater than unity we must have

∆ns >

√
1− η

η

√
na + nb. (13)

Thus the minimum detectable photon number difference
strongly depends on the detector efficiencyη.

Fig. 3. QND-measurement of twin beams

2 QND-measurement of photon number difference in
twin beams using cross phase modulation only

Figure 3 shows the balanced detector with phase sensitive
preamplification. The system consists of a Mach-Zehnder
Interferometer with Kerr media in each of its arms. The
probe is imbalanced by the signal beams ˆa and b̂, coupled
into the Kerr media via dichroic mirrors in each of the two
arms. This arrangement transfers the excitation of the ˆa and
b̂ beams onto the two probe beams. In a sense this is para-
metric amplification, however, the reader should be aware
that it is not linear. The operators exiting the Kerr media
have become nonlinear operators of the input signals that
result in outputsf̂ and ĝ such that the difference current of
the detectors is an amplified version of the input signal. If ˆc
and d̂ are the probe beams, the Hamiltonian describing the
field dynamics for the resonant Kerr media with cross-phase
modulation only [4] is then given by

Ĥ = ~K
(
â†â ĉ†ĉ + b̂†b̂ d̂†d̂

)
(14)

The creation operators of the signal and probe pulses leaving
the interaction region are given by

âout = eiκĉ
†ĉâin; b̂out = eiκd̂

†d̂b̂in (15)

ĉout = eiκâ
†âĉin; d̂out = eiκb̂

†b̂d̂in (16)

with κ = K`/vg, where` denotes the propagation distance
in the Kerr medium andvg is the group velocity. The photon
numbers ˆa†â, b̂†b̂, ĉ†ĉ and d̂†d̂ are invariants and thus we
may drop the subscript ”in”. This is the QND nature of the
measurement equipment, i.e. we do not change the photon
number in each arm and therefore, we also do not change
the photon number difference in the arms. With the beam
splitter transformations at the output port of the NLMZ we
obtain

f̂ =
i√
2

(
ĉout + d̂out

)
(17)

ĝ =
1√
2

(
−ĉout + d̂out

)
. (18)

Again, we model the nonideal detectors by insertion of beam
splitters, that couple the modeŝf and ĝ to the vacuum ports
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p̂ and ˆq as in Sect. 1. Hence, the detector current expressed
as a function of the probe beam operators is given by

Î = η
(
ĉ†d̂eiκ∆n̂s + d̂†ĉe−iκ∆n̂s

)
+
√
η(1− η)

(
f̂†p̂ + p̂†f̂ + ĝ†q̂ + q̂†ĝ

)
+ (1− η)(n̂q − n̂p) (19)

with the difference photon number operator

∆n̂s = b̂†b̂− â†â. (20)

We assume small differences in the phase shifts of the Kerr
media and expand the exponentials to first order in∆n̂s.
The difference current is further decomposed into a signal
and noise part that results in

Î = −iη
(
ĉ†d̂− d̂†ĉ

)
κ∆n̂s + în (21)

with the noise source

în = η
(
ĉ†d̂ + d̂†ĉ

)
+
√
η(1− η)

(
f̂†p̂ + p̂†f̂ − ĝ†q̂ − q̂†ĝ

)
+ (1− η)(n̂q − n̂p). (22)

The input fields of the probe beams are coherent states with
amplitude β√

2
and iβ√

2
. Thus we obtain for the expectation

value of the photo current

< Î >= η|β|2κ∆ns . (23)

The noise for equal signal photon numbers, i.e.∆ns = 0, is
the shot noise

< (în)2 >= η2|β|2 + η(1− η)|β|2 = η|β|2. (24)

The signal to noise ratio for the QND twin beam detection
using non ideal detectors is then

S

N
|QND =

< Î >√
(∆Î)2

=
√
η|β|κ∆ns . (25)

Now, let us assume a quantum efficiencyηDD in the direct-
detection setup, and a quantum efficiencyηQND for the QND-
scheme. Then, we obtain from Eqs. (13) and (25) for the ratio
S between the two signal-to-noise ratios

S =
S
N |QND
S
N |DD

=
√
ηQND

ηDD

√
1− ηDDΦCPM (26)

with the cross phase modulation angeleΦCPM given by

ΦCPM = κ|β|√na + nb . (27)

Eq.(26) implies that we need a large nonlinear cross phase
shift ΦCPM to abtain an improvement in the signal-to-noise
ratio. Suppose we want to equal the signal-to-noise ratio of
a 99% efficient detector in direct detection with an available
detector of only 90% but using the QND scheme. Then we
need a cross phase modulation angle of 10.

3 QND-Measurement of photon number difference in
twin beams in Kerr media with cross and self-phase
modulation

Thus far we have considered a resonant Kerr medium that
avoids self-phase modulation. An optical fiber, the obvious
candidate for the construction of a nonlinear Mach-Zehnder
interferometer, produces both self and cross-phase modula-
tion. In this case the Hamiltonian describing the field dy-
namics in the interaction zones is given by

Ĥ = ~K

(
1
4

(
â†â†ââ

)
+ â†â ĉ†ĉ +

1
4

(
ĉ†ĉ†ĉĉ

))
+ ~K

(
1
4

(
b̂†b̂†b̂b̂

)
+ b̂†b̂ d̂†d̂ +

1
4

(
d̂†d̂†d̂d̂

))
(28)

and therefore the creation operators of the signal and probe
pulses leaving the interaction region are given by

âout = eiκ( 1
2a

†â+ĉ†ĉ)âin, (29)

b̂out = eiκ( 1
2 b̂

†b̂+d̂†d̂)b̂in, (30)

ĉout = eiκ( 1
2 ĉ

†ĉ+â†â)ĉin, (31)

d̂out = eiκ( 1
2 d̂

†d̂+b̂†b̂)d̂in, (32)

In the case of photon number difference detection as shown
in Fig. 3 in the presence of cross and self phase modulation,
the output operators aquire an additional self-phase modu-
lation. We can implement the additional effect of self-phase
modulation in (19) to (21) by introducing the self-phase shift
into the output operators with the replacement

ĉ → ei
κ
2 c

†ĉĉ, (33)

d̂→ ei
κ
2 d

†d̂d̂. (34)

Thus the lower order moments of the self-phase modulated
probe beams are given by

<
β√
2
|ĉ| β√

2
> =

β√
2

exp
[(

exp
(
iκ/2

)− 1
) |β|2/2

]
(35)

< i
β√
2
|d̂|i β√

2
> = i

β√
2

exp
[(

exp
(
iκ/2

)− 1
) |β|2/2

]
(36)

<
β√
2
|ĉ2| β√

2
> = − < i

β√
2
|d̂2|i β√

2
> . (37)

Then we obtain for the average value and the fluctuations of
the detector current

< Î > = η|β|2e−|β|2(1−cos(κ/2))κ∆ns, (38)

< (în)2 > = η|β|2 + η2|β|4
(

1− e−|β|
2(1−cos(κ))

)
. (39)

The phase shift per photon is assumed to be much smaller
than one, i.e.κ� 1 which simplifies Eqs. (38), (39) to

< Î > = η|β|2e−|κβ|2/8κ∆ns (40)

< (în)2 > = η|β|2 + η2|β|4
(

1− e−|κβ|
2/2
)
. (41)

As we see from (40) we only obtain a large average signal
if |βκ| � 1. In this limit we obtain

< Î > = ηκ|β|2∆ns (42)

< (în)2 > = η|β|2 (1 + 8ηφ2
β

)
(43)



222

whereφβ = κ|β|2/4 is the nonlinear phase shift of the probe
beam due to self-phase modulation. This shows that the sig-
nal to noise ratio for the QND-measurement with SPM is
reduced to

S

N
|QND,SPM =

√
η|β|κ∆ns√
1 + 8ηφ2

β

. (44)

Comparison of the signal-to-noise ratio (44) with the corre-
sponding result for cross phase modulation only, (25), shows

that we get a reduction by a factor
√

1 + 8ηφ2
β due to self-

phase modulation and that we are limited to|κβ| � 1. How-
ever, the last restriction leaves enough room for improve-
ment since fiber experiments with|κβ| > 1 correspond to
unrealistically high power levels [5, 6] where we are already
able to detect single photons.

4 Application: Homodyne detection of quadrature
squeezing

4.1 Direct homodyne detection of quadrature squeezing

Figure 4 shows the direct detection of the quadrature com-
ponent of a squeezed state with a local oscillator, ˆc. We
describe the squeezed stateb̂ at the input port by a Bogoli-
ubov transformation of a vacuum mode ˆa, namelyµâ + νâ†
whereµ2− ν2 = 1. The local oscillator input port ˆc is in the
coherent state|γ >. Then we obtain for the detector current

Î = −i [(µ∗â† + ν∗â
)
ĉeiθ − (µâ + νâ†

)
ĉ†e−iθ

]
(45)

and for the mean value and the fluctuations

< Î > = 0

< Î2 > = |γ|2[
(
µ2 + ν2

)− 2µν cos(2θ)] + ν2. (46)

Thus we obtain for the measured minimum normalized
quadrature fluctuations at a detection phase angle ofθ = 0

SDD
min =

< Î2 >

|γ|2 = (µ− ν)2 +
|ν|2
|γ|2 → (µ− ν)2

= Smin for |γ| → ∞ (47)

In the limit of a large local oscillator these are the precise
quadrature fluctuations of the squeezed state. However, in
the case of a non ideal detector with quantum efficiencyη
we obtain with the detector model shown in Fig. 2

SDDη
min = SDD

min +
(1− η)

η
(48)

Thus the measured squeezing is limited by a finite quantum
efficiency of the detector.

4.2 QND homodyne detection of quadrature squeezing

Figure 5 shows the balanced homodyne detection of quadra-
ture squeezing using the QND scheme for twin beam detec-
tion. We obtain for the measured fluctuations in the differ-
ence detector current for the case of finite quantum efficiency
of the detectors, cross and self-phase modulation in the Kerr
media (the derivation is analogous to Sect. 3)

Fig. 4. Homodyne detection of quadrature squeezed state

Fig. 5. QND-measurement of quadrature squeezing

< Î2 > = η2|β|2
(

1 +
|β|2

2
e−|β|

2(1−cos(κ/2))
)
κ2|γ|2Smin

+ η|β|2 + η2|β|4
(

1− e−|β|
2(1−cos(κ))

)
. (49)

We introduce the self-phase shiftsφβ = κ|β|2/4 andφγ =
κ|γ|2/4 that the probe and signal beam undergo during prop-
agation in the Kerr medium. For|κβ| � 1 and|β|2 � 1, the
normalized measured quadrature fluctuations can be written
approximately as

SQND
min =

2 < Î2 >

η2|β|4κ2|γ|2 ≈ Smin +
φβ
φγ

+
1

8ηφβφγ
. (50)

The additional two terms in (49) are minimized forφβ =√
1/8η. Substitution of this value into Eq. (49) leads to

SQND
min ≈ Smin +

1√
2ηφγ

. (51)

For large enough local oscillator power|γ|2, i.e. large non-
linear self-phase shiftφγ we can overcome the limitation due
to the finite detector efficiency. For example, if we choose
a detector with 90% efficiency and probe beams|γ > and
|β > so intense that we achieve a nonlinear phase shift of

φβ =
√

1
8η ≈ 0.4. Then a self-phase shift as large asφγ = 75

due to the local oscillator is necessary to achieve an over-
all detector sensitivity of 20 dB for quadrature squeezing.
Such phase shifts are possible in silica fibers. Silica fibers
show a nonlinear refractive index ofn2 = 3.6·10−16cm2/W.
Therefore, pulse propagation in a fiber with an effective core
crosssection ofAeff = 100µm2 and a lengthL = 50 m when
using pulses with a pulse energy ofW = 1 nJ and a pulse
lengthτ = 1 ps at a wavelength of 1.3µm would result in a
nonlinear self-phase shiftφ = 2π

λ
n2
Aeff

W
τ = 85. Fiber sources
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delivering pulses with such pulse energies are available [10].
The pulse energies of the signal pulse with 1 nJ and the
probe pulse of about 10 pJ correspond to about|γ|2 = 1010

and |β|2 = 108 photons, respectively. Therefore, the condi-
tion |κβ| = 4φβ/|β| � 1 is fulfilled. From this example we
can conclude, that the proposed QND-scheme is in principle
possible using silica fibers.

5 Self-stabilized fiber optic realization of the
QND-quadrature squeezing measurement

The scheme for a QND-quadrature squeezing measurement
is only feasible if the fiber interferometer with an arm length
of about 50 m can be set up in a self-stabilized way. A
self stabilized setup is the Sagnac-loop introduced by Shi-
rasaki et al. [7] which made pulsed squeezed state generation
with fiber technology possible [8, 9]. Such a self-stabilized
scheme is shown in Fig. 6. The upper part of the figure shows
the Sagnac-loop used as a squeezer, the lower part shows
the Sagnac-loop used as a self-stabilzed interferometer for
the QND-twin beam detection in the balanced homodyne
detector. The sagnac loop acts as a backfolded Nonlinear
Mach-Zehnder Interferometer, that is possible since we use
pulses. The beam splitter at the input and the output of the
interferometer are realized by the some 3dB-coupler. There-
fore, a pulse arriving at the coupler of the saganc loop is
split into two pulses. Both pulses counterpropagate in the
automatically balanced ring and undergo self-phase modu-
lation. After recombination at the coupler the average field
is rejected to the entrance port, because both pulses suffered
the same phase shift in the loop. However, the squeezed
fluctuations leave the other port. Thus the pump light used
for the squeezing experiment is fully recovered and can be
reused for the subsequent homodyne detection. From the re-
covered pump the probe light is tapped off. In the sagnac
loop for homodyne detection both polarization states of the
fiber are used. One for the propagation of the signal and the
other for the probe beam. The linear polarization states are
transformed to circular polarization states at the entrance of
the loop by quarter wave plates, so that the above analysis
that has been carried out for circular polarization states is
strictly valid. At one end of the loop is a 90◦ phase shifter.
The phase shifter is set electronically after passage of the
counter clock wise propagating pulses, so that the ring is
phase sensitive for the probe pulses. The difference in pho-
ton number of the detected output probe beams is then due
to an imbalance in cross phase modulation by the signal
beams.

6 Conclusion

Using the QND-measurement scheme for photon number
measurements introduced by Imoto et.al. [4] which is based
on pure cross phase modulation one can set up a QND-
measurement scheme for twin-beam detection. The detec-
tion sensitivity is then not limited by the efficiency of the
photo detectors. The twin-beam detector can be employed in
a homodyne detector for measuring the quadrature fluctua-
tions of squeezed light. It overcomes the limits on detection

Fig. 6. Self-stabilized fiber optic realization of the quadrature squeezing
measurement using QND-photodetection. The thin and thick lines in the
second sagnac loop indicate the two polarisations in the fiber

sensitivity imposed by the quantum efficiency of the detec-
tors. We showed that this scheme does not only work with
pure cross phase modulation but can even be implemented
using the nonlinearity of silica fibers. Using a sagnac loop
very similar to the loop currently used in fiber squeezing
experiments the QND-scheme is self-stabilized.
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