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Abstract. The evolution of a two-level system subjected to
stimulated transitions which is undergoing a sequence of
measurements of the level occupation probability is eval-
uated. Its time correlation function is compared to the one
obtained through the pure Schrödinger evolution. Systems of
this kind have been recently proposed for testing the quan-
tum mechanical predictions against those of macrorealistic
theories, by means of temporal Bell inequalities. The clas-
sical requirement of noninvasivity, needed to define corre-
lation functions in the realistic case, finds a quantum coun-
terpart in the quantum nondemolition condition. The conse-
quences on the observability of quantum mechanically pre-
dicted violations to temporal Bell inequalities are drawn and
compared to the already dealt case of the rf-SQUID dynam-
ics.

PACS: 03.65.Bz, 42.50.Lc

The validity of quantum mechanics at the macroscopic level
is still an open question crucial to understand why a partic-
ular limit of it, classical mechanics, works so well in a wide
variety of situations visible to our eyes. Leggett and Garg
have challenged this question by proposing laboratory tests
aimed at comparing, in a macroscopic domain, the predic-
tions of a set of theories incorporating realism and nonin-
vasivity, two properties manifestly not shared by quantum
mechanics, and quantum mechanics itself [1]. In analogy to
the well-knownspatial Bell inequalities [2], already tested
[3] and making light on the ultimate contrast of quantum
mechanics with locality at the microscopic level, Leggett
and Garg have shown that certain relations among the cor-
relation probabilities - calledtemporal Bell inequalities -
which hold in realistic theories, are instead violated, with
a proper choice of the measurement times, by the coherent
evolution of the state dictated by quantum mechanics. The
ingredients of temporal Bell inequalities, regardless of the
concrete scheme used, are different-time correlation proba-
bilities between subsequent measurements of a two-valued
(dichotomic) observable. However, the quantum mechanical
predictions discussed so far do not consider the effect of the
Heisenberg principle on consecutive measurements of the
same observable of the monitored system. In this paper we

discuss this effect in the exactly solvable case of two-level
systems, which have been recently proposed to experimen-
tally test temporal Bell inequalities. The first proposal is
based upon three two-level systems coupled through opti-
cal pulses [4], one of which is monitored and the other two
are treated as nondissipative memories which register the
state of the first one at given times. The second proposal is
based upon a Rydberg atom interacting with a single quan-
tized mode of a superconducting resonant cavity [5]. While
Leggett and Garg claim that their proposed experiment gives
insights on the validity of quantum mechanics at the macro-
scopic level [1], the proposal in [4] is in a purely micro-
scopic framework and the one in [5] is located in between,
an atomic system being involved, although in a large quan-
tum number state, and interacting with a singlemesoscopic
mode of a QED cavity. In all these cases it turns out that
the concept of quantum nondemolition (QND) measurements
[6, 7] and its refinement to nearly QND measurements play
a key role for understanding if violations to temporal Bell
inequalities can be observed when somebody looks at them.

Temporal Bell inequalities are based upon different-time
correlation functions, calculable either in a classical (realis-
tic) or in a quantum context. The different-time correlation
function for a generic observableQ(t) can be written as [4]

K(t1, t2)
def≡
∫

D [Q(t)]P [Q(t)]Q(t1)Q(t2) (1)

where the information about the dynamics of the system is
expressed through the probability functionalP [Q(t)], which
selects theQ(t) allowed by the dynamical evolution, possi-
bly including the effect of the measurement. This last can
be easily taken into account by means of the concept of pro-
jection of the state [8]. Indeed, a quantum observable can
be written in terms of its eigenvaluesq ∈ Sp(Q̂), and the
related projectorsP̂q (such thatP̂ 2

q = P̂q), as Q̂ =
∑

q qP̂q

which implies

Q(t)
def≡ 〈ψ(t)|Q̂|ψ(t)〉

〈ψ(t)|ψ(t)〉 =
∑
q

q
〈ψ(t)|P̂q|ψ(t)〉
〈ψ(t)|ψ(t)〉 . (2)

Before a measurement performed at timet̃,
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Q(t̃−) =
∑
q

q
〈ψ(t̃−)|P̂q|ψ(t̃−)〉
〈ψ(t̃−)|ψ(t̃−)〉 ; (3)

and, if the measurement result is ˜q, after it we get

|ψ(t̃+)〉 = P̂q̃|ψ(t̃−)〉 (4)

and therefore

Qq̃(t̃+) = q̃
〈ψ(t̃−)|P̂q̃|ψ(t̃−)〉
〈ψ(t̃−)|ψ(t̃−)〉 . (5)

Let us suppose, by starting from the state|ψ(t0)〉, to measure
the observableQ̂ at N instants of timet1 < t2 < · · · < tN
with outcomes{qi}1≤i≤N . Thus the successive evolutions
of the state can be recursively written as

|ψ(t−i )〉 = U (ti − ti−1)|ψ(t+i−1)〉;
|ψ(t+i )〉 (4)

= P̂qiU (ti − ti−1)|ψ(t+i−1)〉. (6)

The time-dependent expectation valueQ{qi}(t), including
the effect of theN measurements, can be calculated through
Eqs. (5), (6). The different times product ofQ’s required to
define correlation functions as the (1), is written as

Q{qi}(t1)Q{qi}(t2) · · ·Q{qi}(tN ) =

q1q2 · · · qN 〈ψ(t+N )|ψ(t+N )〉. (7)

The N -times correlation function in the presence of mea-
surements (in the case dealt here,N = 2) can be evalu-
ated by summing on theQ{qi}(t) rather than on theQ(t).
The presence of measured trajectoriesQ{qi}(t) replacing the
Q(t) is not the only effect of the measurement process in
Eq. (1). The trajectory weigthP [Q(t)] is also affected, since
the need to measure in an actual experiment these correla-
tions as joint probabilities for finding the system indefinite
states [1], “requires the obtained data to be purged by throw-
ing away all the information coming from channels in which
the state of the first memory changes” [4]. The amount of
off-line data processing and selection is therefore expressed
as∆ = 1− 〈ψ(t1)|P̂q1|ψ(t1)〉. When∆ /= 0, Q{qi}(t) /= Q(t)
for t > t1, the only exception in whichQ{qi}(t) = Q(t) being
the impulsive QND case, when the system at the measure-
ment time is already in the observed eigenstate. More in
general ideal QND stroboscopic measurements are obtained
if they are performed each time interval corresponding to a
complete reconstruction of the state (a complete revival of
the wavefunction after the collapse induced by the measure-
ment), as discussed in [9] for the case of position measure-
ments on a generic nonlinear system. On the other hand, if
∆ /= 0, the probability functional should select theQ{qi}(t)
for which 1−∆ ≥ ε, whereε is a distinguishability thresh-
old which expresses the degree of reliability for the measure-
ment to indicate a definite state of the system. This selection
leads to theselectivecorrelation functionKε(t1, t2) which in
the limit of complete selection becomes null. It follows that
Kε(t1, t2) cannot violate temporal Bell inequalities if ideal
QND measurements are required. Violations could be found
for ε = 0; however in this case the correlation function does
not allow to distinguish the two eigenstates. We are looking
for an intermediate regime in which a well-defined selec-
tive correlation function will show detectable violations to
temporal Bell inequalities.

For a system with two energy levels|+〉 and |−〉, Q̂ =
P̂+ − P̂− = |+〉〈+| − |−〉〈−| and

Q(t) = |〈+|ψ(t)〉|2 − |〈−|ψ(t)〉|2 (8)

which holds both for a spin-1
2 system [4] and for an atom

coupled to a single mode of a resonant cavity [5], provided
that |+〉 and |−〉 stand for the excited and the ground state
respectively. If the system is harmonically oscillating be-
tween the two states, the matrix elements involved in the
evaluation of Eq. (7) are

〈+|U (t− t0)|+〉 = cosω(t− t0)
〈+|U (t− t0)|−〉 = − sinω(t− t0)
〈−|U (t− t0)|+〉 = sinω(t− t0)
〈−|U (t− t0)|−〉 = cosω(t− t0).

(9)

For the spin system considered in [4],ω is the frequency of
Rabi oscillationsΩR, whereas for the atom-cavity system
[5] the Jaynes-Cummings evolution givesω = ΩR

√
n + 1

(wheren is the principal quantum number of the Rydberg
excited state, for an experimental demonstration on single
atoms see [10]).
The initial state of the system|ψ(t0)〉 = c+(t0)|+〉+c−(t0)|−〉
(with |c+(t0)|2 + |c−(t0)|2 = 1) can be parametrized with
c+(t0) = cosω(t − t′), c−(t0) = sinω(t − t′). From Eq. (9)
then followsQ(t) = cos 2ω(t − t′), where t′ is the only
free parameter (representing some arbitrary instant at which
the system was in|+〉) on which one should integrate for
evaluating the correlation function:

K(t1, t2) =
ω

π

∫ 2π
ω

0
cos 2ω(t′ − t1) cos 2ω(t′ − t2)dt′

= cos 2ω(t1 − t2), (10)

which depends only upon the time differencet2 − t1. The
distinguishability condition is expressed as

〈ψ(t1)|P̂q1|ψ(t1)〉 ≥ ε. (11)

The propagator including the effect of the measurement is
calculated by summing overn1 andn2 and integrating on
t0 under the condition (11), obtaining a factorized form

Kε(t1, t2) =
1
π

[
2
√
ε(1− ε) + arccos(2ε− 1)

]
K(t2 − t1)

def≡ AεK(t2 − t1), (12)

which shows the correct limitsK0(t1, t2) = K(t1, t2) and
K1(t1, t2) = 0.

A generic temporal Bell inequality involves a combina-
tion ∆K of two-time correlation functionsK(ti, tj) with
some coefficientsκij and an upper boundB:

∆K =
N∑

i/=j=1

κijK(ti, tj) ≤ B. (13)

which can be violated for some values of{(ti, tj)}i/=j=1,...,N
by the quantum mechanical predictions, with a maximum

∆Kmax
def≡ max{(ti,tj )}∆K > B. For the system described

in [4], B = 2 and

∆K = |K(t1, t2) +K(t2, t3) +K(t3, t4) −K(t1, t4)|
∆Kmax = 2

√
2 (14)
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Fig. 1. Time evolution of the two-level system in [5]. The time-dependent
expectation value of the observableQ(t) (thick line) and the temporal Bell
inequality parameter∆K(t) (thin line) with its upper boundB (dotted
line) are represented on the same scale. Ideal QND measurements corre-
spond to time intervals integer multiples ofπ/ω, for which the inequality
is not violated; however, small violations are compatible with quasi QND
measurements around odd-integer multiples ofπ/ω

whereas in [5]B = 1 and

∆K− = −K(t1, t2) −K(t2, t3) −K(t1, t3) ∆Kmax = 3/2

∆K+ = −K(t1, t3) +K(t1, t2) +K(t2, t3) ∆Kmax = 3/2.

(15)

∆K± can be simplified by introducing the so-called sta-
tionarity assumption [5], namelyt2 − t1 = t3 − t2 = t, cor-
responding to stroboscopic (equally spaced) measurements,
such that∆K depends only ont. For instance, Fig. 1 shows
on the same scale the behavior of∆K−(t) and of Q(t).
The upper bound for the fulfilment of the corresponding
temporal Bell inequality is also depicted. The impossibil-
ity of simultaneously having ideal QND measurements of
the occupation number, corresponding to a complete revival
of the initial state, and maximal violations to temporal Bell
inequalities is evidenced. To refine in a quantitative way
the possibility of coexistence of unoptimal violations to the
temporal Bell inequalities and quasi QND measurements one
can use the distinguishability levelε. The measurement ef-
fect is represented, as in Eq. (12), by a factorAε multi-
plying ∆K. It is worth noting thatAε is independent upon
time and thus leaves unchanged the correlation times for
which ∆K is maximal. The maximal violation in percent-
age under the effect of the measurements is then expressed
as∆Bmax = (Aε∆Kmax − B)/B. Figure 2 shows∆Bmax
versus the distinguishability levelε. As already observed
in [5] without measurement effects, we confirm here that
even in presence of measurements, by assuming the same
distinguishability level, the proposed inequalities are more
violated than in [4]. As expected, the violations disappear for
nearly QND measurements, but are present forε ≤ 0.693.
So the proposed systems could be used for testing the pre-
dictions of quantum mechanics against those of a realistic
theory, as claimed in [4, 5], only if one requires a reliability,
for the detection of distinct states, not greater than 70%.

The examined experiments should be performed by look-
ing at the correlation functions of an already-dichotomic
variable, the state in two-level systems; the one discussed in
[1, 11] deals with the reduction of the spectrum of acontinu-
ousobservable, the magnetic fluxφ trapped in a SQUID, into

Fig. 2. Observability of violations to temporal Bell inequalities. The de-
pendence of the maximal violation∆Bmax upon the distinguishabilityε
is depicted for both the experiments proposed in [4] and [5]. Violations
disappear in the QND limit (ε → 1), and are present only forε ≤ 0.649
[4] and ε ≤ 0.693 [5]

a dichotomic variable, its sign̂φ/|φ̂|. This proposal has been
already discussed in [12, 13] by also including the effect of
the Heisenberg principle, showing that for selective mea-
surements there is incompatibility between violation of the
inequalities and distinguishability of the dichotomic variable.
Work is in progress to repeat the same analysis developed
here for the case of the rf-SQUIDs dynamics. In this case
the projectors on states of definite sign areP̂± = Θ(±φ̂):
from Eq. (2) then follows

Q(t) =
∫ ∞

0
|ψ(φ)|2dφ−

∫ 0

−∞
|ψ(φ)|2dφ (16)

(if ψ(φ) is normalized to 1) andKε(t1, t2) can be calculated
by Eq. (12), as we will report in a forthcoming paper [14].

In conclusion, our result can be simply summarized as
follows: the observability of violations depends critically
on the statistical criterion adopted for defining the resolu-
tion of distinct states. In other words, violations to tempo-
ral Bell inequalities can be detected only in aprobabilistic
way, unlike the spatial case. This is due to the fact that the
time-dependent correlation probabilities, unlike the space-
dependent ones, involve measurements on thesameobserv-
able of thesamesystem, and therefore the quantum pre-
dictions are characterized by an uncertainty dictated by the
Heisenberg principle, which makes ambiguous the definition
of the violations themselves.
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