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Abstract. The degree of second-order coherence g(2)(q)
and its frequency-dependent formula of a two-longitudi-
nal-mode laser (simply called two-mode laser) are derived
from the quantum theory of light. The quasi-periodicity,
frequency-dependent characteristics and photon statistics
properties of g(2)(q) are analysed theoretically. It is found
that for a two-mode laser field there exists the effect of
photon anticorrelation and the g(2)(q ) can be measured by
the optical interference method. The frequency-tuning
characteristics of g(2)(q) in the two-mode laser field is also
analysed. It is shown that the frequency-dependent chara-
cteristics of g(2)(q) can be applied to frequency and power
stabilization of the two-mode laser and the measurement
of two-mode laser linewidth Dl

D
and the frequency width

dl
)

of each longitudinal-mode, respectively.

PACS: 42.50.Ar; 42.25.Hz; 42.55.Lt

Since two-mode lasers have been widely used in frequency
stabilization [1—6], interferometer of two-mode laser [7],
high-resolution laser spectroscopy and optical frequency
standards, two-mode squeezed state [8] and two-mode
correlated spontaneous emission, etc., it is very important
to investigate the properties of photon statistics and fre-
quency dependence of a two-mode laser field, while the
statistical properties of light are determined by the degree
of second-order coherence g(2)(q ).

Recently, the first-order temporal coherence g(1) (q) of
a two-mode and multimode laser field at steady state was
analysed in [9—12] using classical theory. The frequency-
dependent properties of first-order temporal coherence
g(1)(q ) in a freely operated two-mode laser were studied in
[13]. The methods of frequency and power stabilization of
two-mode lasers were introduced in [1—6].

In this paper, second-order coherence and its
frequency-dependent characteristics, and the photon
statistical properties of the two-mode laser field are

*To whom correspondence should be addressed

investigated. In Sect. 1, the degree of second-order coher-
ence g(2)(q) of the two-mode laser field at the steady-state
and the frequency-dependent formula of g(2)(q) for freely
operated two-mode laser are derived from the quantum
theory of light. In Sect. 2, the frequency-dependent charac-
teristics and its quasi-periodicity of g(2)(q) of a two-mode
laser field are calculated and analysed theoretically. In
Sect. 3, the photon statistical properties of a two-mode
laser, such as photon correlation and anticorrelation effects
and the condition of photon non-correlation, are discussed.
The frequency-tuning properties of g(2)(q) of a two-mode
He—Ne laser are analysed. The possible applications of the
frequency-dependent characteristics of g(2)(q) to the fre-
quency and power stabilization and the measurement of
the linewidth Dl

D
and frequency width dl

)
of the longitudi-

nal-mode in a two-mode laser are discussed.

1 Frequency-dependent Formula of g(2)(s)

If the two-mode annihilation operators are aL
1

and aL
2
, the

wave functions with space variables are u
1
(x) and u

2
(x),

and the mode volume is »
1
"»

2
"», the electric field

operator of a two-mode laser with frequencies u
1

and u
2follows:
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For an ideal multimode laser field, the density matrix can
be written as a coherent state with random phase

o"
N
<
k/1

o
k
? <

k/N`1

DO
k
]O

k
D, (1.4)



where

o
k
"Db

k
]b

k
D"

1

2n
2n
:
0

dU
k
Db

k
]b

k
D, (1.5)
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Here Db
k
D2"SnL

k
T is the average photon number of the

kth mode, U
k
is the random phase, DO

k
T is the state vector

of the kth mode of vacuum state. The creation operator
aL (`)
k

and the annihilation operator aL
k{
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For a two-mode laser field, N"2, k"1, 2. From the
definition of the second-order quantum correlation func-
tion of the light field

G(2)(q)"S : IK (t)IK (t#q ) :T

"SEK (~) (t)EK (~)(t#q )EK (`)(t#q)EK (`)(t)T, (1.8)

one has
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Since the first-order quantum correlation function of
a two-mode laser field is given by
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Equation (1.9) can be rewritten as
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From the definition of the degree of second-order cohe-
rence

g(2)(q )"G (2) (q)/[G (1)(0)G (1)(0)]"
S :IK (t)IK (t#q ) :T

SIK (t)T2
, (1.12)

the general formula of the degree of second-order cohe-
rence of a two-mode laser field at the steady state is given
by
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where SIK
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2
T are the output

intensities of a two-mode laser at the steady state.
If k"SIK

1
T/SIK

2
T is the relative intensity of the two-

mode output, (1.13a) can be rewritten as

g(2)(q )"
2k
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#Dg(1)(q) D2, (1.13b)

where g(1)(q ) is the degree of first-order coherence of the
light. In order to discuss the influence of the frequency
width dl

H
of longitudinal mode upon the g(2)(q), we em-

ploy the semi-classical theory of light to derive the degree

of first-order coherence g(1)(q ) [11, 13]. The form of g(1)(q)
is given by
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where dl
H

is the frequency width of the longitudinal
modes. When dl

H
P0, or the delay time q (i.e., optical path

difference Dl"Cq) is very small, (1.13) can be simplified as
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If the output intensities of the two modes are the same,
i.e., SIK

1
T"SIK

2
T, or k"1, with dl

H
P0, (1.13a) or (1.15)

can be simplified further

g(2)(q )"1#Dg(1)(q) D2"1#1
2

cos(2nDl
2
q). (1.16)

It is clear that the range of the degree of second-order
coherence g(2)(q) of a two-mode laser field is:
1
2
4g(2)(q)43

2
. In addition, (1.16) shows that the degree of

second-order coherence g(2) (q) (or second-order correla-
tion function) of a two-mode laser field can be determined
by the measurement of the degree of first-order coherence,
i.e., the second-order coherence and statistical properties
of an electromagnetic field can be studied by the optical
interference method. Of course, this is a method of in-
direct-measurement on g(2)(q ).

If the influence of the drift effect Dl of longitudinal-
mode frequency on the two-mode output intensities in
a freely operated laser is considered, the general formula
(1.13) of the frequency-dependent g(2)(q ) in a two-mode
laser field can be modified as
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where k(Dl )"IK
1
(Dl )/IK

2
(Dl) is the instantaneous inten-

sity ratio of the two-mode output at the drift amount Dl of
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longitudinal-mode frequency. When dl
H

can be neglected,
or q (i.e., Dl ) is very small, (1.17) can be simplified as
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For a two-mode He—Ne laser working at steady state,
if the two-mode intensities are equal, i.e., k"1, the degree
of second-order coherence g(2)(q ) is given by

g(2)(q )"1
2
#exp(!2ndl

H
q) cos2(nDl
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q ). (1.20)

However, for a freely operated two-mode He—Ne laser,
the ratio of the two-mode laser intensities at Dl is given by
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where Dl
D

and Dl
2
are the laser linewidth and the space of

longitudinal modes, Dl is the amount of the frequency
drift of the two-mode frequency l

1
, l

2
relative to the

frequency-symmetric point (l
0
$Dl

2
/2). Substituting

(1.21) into (1.17) and (1.18), one has the general formula of
the frequency-dependent g(2) (q)

If Dl does not vary with the time t, (1.22) becomes the
general formula of g(2) (q) of the two-mode He—Ne laser
field at the steady state. When dl

H
P0, or q (i.e., Dl) is very

small, (1.22) reduces to
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)
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where Dl
2
"C/2n¸+C/2¸, and ¸ is the length of the

laser cavity.

2 Frequency-dependent Characteristics of g(2)(s)

Assuming Dl"2m¸(m"0,$1,$2,2), i.e., the optical
path difference Dl is even multiples of the laser cavity
length ¸, from (1.17) and (1.18), one obtains the frequency-
dependent g(2)(q ) of the two-mode laser field

g(2)(Dl, 2m¸)"exp(!4mndl
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(2.1)
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Similarly, if Dl"(2m#1)¸ (m"0,$1,$2,2), i.e., the
optical path difference is odd multiples of the laser cavity
length ¸, the frequency-dependent g(2) (q) of the two-mode

laser field is given by
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"
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Obviously, at Dl"2m¸, or Dl"(2m#1)¸, the degree of
second-order coherence g(2) (q) is related to the relative
intensity k (Dl), i.e., to the frequency-drift effect Dl of the
longitudinal modes.

Moreover, when Dl"(2m#1)¸/2, (m"0,$1,
$2,2), i.e., the optical path difference is odd multiples
of ¸/2, the frequency-dependent g(2)(q) of the two-mode
laser field is given by

g(2)[Dl, (2m#1)¸/2]"1 (2.5)

if dl
H
P0.

When the longitudinal mode is drifted and the relative
intensity ratio k(Dl) varies from 0.1 to 10.0, the fre-

quency-dependent curve of g(2)(q) is calculated from (1.17)
and (1.18) for the optical path diference Dl"0, L

2
,¸, 3

2
¸,

and 2¸, or for k(Dl)"0.1, 0.5, 1.0, 5.0 and 10.0. The vari-
ation of g(2)(q) against the relative intensity ratio k(Dl), or
the optical path difference Dl for ¸"25 cm
(Dl

2
"600 MHz), dl

H
"30 MHz is shown in Figs. 1a and

2a, respectively. When dl
H
"0, the relative results are

shown in Figs. 1b and 2b. If we compare Fig. 1a with
Fig. 1b, or compare Fig. 2a with Fig. 2b, it can be found
that g(2)(q) of the two mode laser is intensely depend on
the frequency width dl

H
of longitudinal mode, and the

periodicity of g(2)(q) becomes the quasi-periodicity when
dl

H
O0. The maximum values of g(2)(Dl, q ) are

exp(!2ndl
H
Dl/c )#2k(Dl )/[1#k(Dl )]2 at Dl"2m¸,

the minimum values of

g(2)(Dl, q ) are 2k(Dl)/[1#k(Dl )]2#exp(!2ndl
H
Dl/c )

]C
1!k (Dl)

1#k (Dl)D
2

at Dl"(2m#1)¸,

the relative variation range is from 0 to 3
2
. When Dl is

equal to zero, the maximum values of g(2)(Dl, q ) are
1
2
#exp(!2ndl

H
Dl/c ) at Dl"2m¸, the minimum values

of g(2)(Dl, q) are constantly 1
2

at Dl"(2m#1)¸. The cor-
responding period is 2¸.

For a two-mode He—Ne laser, if ¸"25 cm,
dl

H
"30 MHz, Dl

D
"1000 MHz, and the longitudinal-

mode drift amount Dl drifts from !Dl
2
/2 to Dl

2
/2 in one

direction, the frequency-dependent curve of g(2)(q) can be
calculated from (1.22) for Dl"0, L

2
,¸, 3

2
¸, and 2¸, or for
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Fig. 1. The frequency-dependent curve of the variation of g(2)(q)
against the relative intensity ratio k (Dl) for a general two-mode
laser. In Fig. 1: (a) dl

H
"30 MHz; (b) dl

H
"0; Other calculated

parameters: ¸"25 cm, and Dl
2
"600 MHz

Dl"!1
2
Dl

2
, !1

4
Dl

2
, 0, 1

4
Dl

2
and 1

2
Dl

2
. The variation of

g(2)(q ) against the relative intensity ratio k (Dl), or the
optical path difference Dl is shown in Figs. 3a and 4a,
separately. When dl

H
"0, the relative results are shown in

Fig. 2. The frequency-dependent curve of the variation of g(2)(q)
against the optical path difference Dl for a general two-mode laser.
In Fig. 2: (a) dl

H
"30 MHz; (b) dl

H
"0; Other calculated para-

meters: ¸"25 cm, and Dl
2
"600 MHz

Figs. 3b and 4b. If k (Dl) and Dl are substituted by the
steady state k and Dl, Figs. 1—4 are the curves of g(2)(q) of
the two-mode laser field at the steady state calculated
from (1.17), (1.18) and (1.22).
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Fig. 3. The frequency-dependent curve of the variation of g(2)(q)
against the relative intensity ratio k(Dl) for a two-mode He—Ne
laser. In Fig. 3: (a) dl

H
"30 MHz; (b) dl

H
"0; Other calculated

parameters: ¸"25 cm, Dl
2
"600 MHz, and Dl

D
"1000 MHz

From the above theoretical analysis, it is seen that
the g(2) (q) of the two-mode laser field has the following
frequency-dependent properties.

(1) The degree of second-order coherence g(2) (q) of the
freely operated two-mode laser field is not only related to

Fig. 4. The frequency-dependent curve of the variation of g(2)(q)
against the optical path difference Dl for a two-mode He—Ne laser.
In Fig. 4: (a) dl

H
"30 MHz; (b) dl

H
"0; Other calculated para-

meters: ¸"25 cm, Dl
2
"600 MHz; and Dl

D
"1000 MHz

the optical path differenceDl but also related to the longitu-
dinal mode drift effect Dl. If the influence of the longitudi-
nal-mode frequency width Dl

H
is considered, g(2)(Dl,Dl)

decays with quasi-periodic oscillations as a function of the
optical path difference Dl. The period is 2¸.
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(2) When Dl"2m¸, g(2)(Dl, 2ml) of the two-mode
laser field is not only related to the laser linewidth Dl

D
and

longitudinal-mode linewidth dl
H
, but also related to the

longitudinal-mode drift amount Dl. If the drift amount Dl
is small, the value of g(2)(Dl, 2m¸) becomes large. The
curve of the frequency-dependent characteristics presents
a shape of inverse ‘‘V’’. This is quite different from the
frequency-dependent characteristics of g(1)(q), which is
g(1)(Dl, 2m¸)"1 [13].

(3) When Dl"(2m#1)¸, the frequency-dependent
characteristics curve of g(2) (Dl, (2m#1)¸ ) is opposite
to that of g(2)(Dl, 2m¸) at Dl"2m¸. It appears as
a ‘‘V’’ shape curve and symmetric about the direct line
Dl"0.

(4) When Dl"(2m#1)¸/2 and when dl
H
"0, or

Dl is very small, the g(2)(q) of the two-mode laser field
depends only on the longitudinal-mode frequency width
dl

H
and independent of the longitudinal-mode drift

effect Dl. These are only time—space points that are
independent of Dl in g(2)(q ) of the two-mode laser
field.

(5) When the influence of dl
H

is considered at
Dl"0, 2¸(or ¸ ), the variation of g(2)(Dl, q) of the two-
mode laser field as a function of the longitudinal-mode
drift Dl is the largest. The variation range is about from 1

2to 3
2
. This is very suitable for the measurement of laser

linewidth Dl
D

and the frequency and power stabilization
of the two-mode laser.

3 Analyses and discussions

3.1 Photon statistical properties

The degree of second-order coherence g(2)(q ) of a light
field reflects the correlations between photons at time
t and time t#q in a time—space point of the light field. To
describe the properties of photon correlation in light field,
it is usually called g(2)(q)'1 photon correlation effect
while g(2)(q )(1 photon anticorrelation effect (in a two-
mode laser field, this definition is equivalent to the stan-
dard definitions g(2)

12
(q)(1, or C

12
(q)(0). When

g(2)(q )"1, it is called photon non-correlation effect [14].
For a two-mode laser field at steady state, if dl

H
P0,

g(2)(q ) of (1.15) shows variation from 1
2

to 3
2

periodically. It
varies as a function of the time delay q, or the optical path
difference Dl. Some time—space points in the two-mode
laser field show periodical photon correlation and an-
ticorrelation effect. At the points Dl"(2m#1)¸/2, there
are photon non-correlation effects. If the influence of dl

His considered, the two-mode laser field shows non-correla-
tion effect (g(2)(q

0
)"g(2)(Dl

0
/C)"1) at following

time—space points Dl
0

1!exp(2ndl
H
Dl

0
/C)"

2k

1#k2
cos(2nDl

2
Dl

0
/C). (3.1)

For a freely running two-mode laser field, it is seen from
Figs. 2 and 4 that the variation range of g(2)(q) is from 0 to
1.5 when DlO0, while when Dl"0 the variation range of
g(2)(q ) is from 0.5 to 1.5. In other words, Figs. 1, 2, and
4 show that photon correlation and anti-correlation ef-

fects vary periodically not only with time delay q (or Dl )
but also with the drift effect k(Dl) (or Dl ) of longi-
tudinal-mode frequency. At Dl"2m¸, the light field
shows photon correlation effect and at Dl"(2m#1)¸/2,
it shows photon non-correlation effect. If the influence
of dl

H
is considered, the photon correlation effect of

a two-mode laser field decreases while photon an-
ticorrelation effect increases when DlO0. The amount
of decrease or increase depends on the magnitude of
dl

H
, Dl and Dl. While when Dl"0 the frequency width

dl
H

reduces only the photon correlation effect, and does
not affect the photon anticorrelation effect at
Dl"(2m#1)¸. Since g(2)(0)5g(2)(q ), the photon an-
ticorrelation effect in the two-mode laser is not a non-
classical effect. The two-mode laser field is an only
example that both photon anticorrelation and photon
bunching effects appear.

3.2 Frequency-tuning properties of g(2)(q)

For a two-mode He—Ne laser with frequency tuning Dl,
optical path difference Dl"¸, from (1.22), one has

g(2)(Dl,¸ )"
cosh(8 ln 2 · Dl

2
· Dl/Dl2

D
)

1#cosh(8 ln 2 ·Dl
2
· Dl/Dl2

D
)

(3.2)

This is the tuning equation of g(2)(q) for a two-mode
He—Ne laser field at Dl"¸. Similarly, when Dl"0 or 2¸,
(1.22) gives

g(2)(Dl, 0)"g(2)(Dl, 2¸)"1#
1

1#cosh(8 ln 2 ·Dl
2
·Dl/Dl2

D
)
.

(3.3)

Assuming ¸"25 cm (Dl
2
"600 MHz), Dl

D
"800,

1000, and 1200 MHz, when the tuning amount
Dl"$600 MHz, the frequency-tuning curves of g(2)(q)
calculated from (3.2) and (3.3) are shown in Figs. 5a and
5b.

From Fig. 5, it is seen: (1) At Dl"¸ and Dl"0, 2¸,
the frequency-tuning property of g(2)(q) of the two-mode
laser field is of the same shape and opposite opening. This
shows that the frequency-dependent method of g(2)(q) on
frequency and power stabilization of two-mode He—Ne
laser can be achieved either at Dl"¸, or Dl"0 and 2¸.
This is different from the method of the frequency-depen-
dent g(1)(q ) for frequency and power stabilization of two-
mode He—Ne laser [13].

(2) The frequency-tuning characteristics of g(2)(q)
shows ‘‘V’’ shape curve and is symmetric about the line
Dl"0. When Dl"0, g(2)(0,¸ )"1

2
is the minimum. The

photon anticorrelation effect is the strongest. The output
intensities of the two mode are equal (i.e., k"1) and the
polarizations of the two modes are perpendicular for the
intracavity two-mode laser.

(3) When the laser linewidth Dl
D

becomes smaller, the
variation of frequency-tuning curve of g(2) (Dl,¸ ) becomes
steeper. It is necessary to choose two-mode He—Ne laser
with small Dl

D
to improve the precision of the frequency

and power stabilization.
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Fig. 5. The frequency-tuning curve of g(2) (q) for a two-mode He—Ne
laser. In Fig. 5; (a) the variation of g(2)(q) against the relative tuning
amount Dl/Dl

2
at Dl"¸; (b) the variation of g(2)(q ) against the

relative tuning amount Dl/Dl
2

at Dl"0.2¸ (¸"25 cm, i.e.,
Dl

2
"600 MHz)

.

3.3 Possible applications

From the theoretical analysis of the frequency-dependent
and frequency-tuning properties of g(2)(q ), it is seen that if
Dl"0 is the frequency-locking point with Dl"¸ or
Dl"0, 2¸, the frequency and power stabilization of the
two-mode He—Ne laser can be achieved by using the
frequency-dependent signal of g(2)(Dl,¸ ) or g(2)(Dl, 0/2¸)
as an error signal to control the cavity length ¸ of the
two-mode laser. This principle and method are similar to
that of the frequency-dependent method of g(1)(q) for the
frequency and power stabilization [13].

Since the slope of the tuning curve of g(2)(q) near
Dl"0 is not very large, the degree of frequency stabili-
zation cannot be very high if Dl"0 is chosen as the
frequency-locking point. This is also different from the
frequency-dependent method of g(1)(q ) for frequency sta-
bilization. However, it is seen from Fig. 5a that if a slope
discriminator is used [15] and the frequency-locking
point l

-0#,
is chosen in the middle at the linear part of one

side of the ‘‘V’’ shape curve, it will be very suitable to
achieve frequency and power stabilization of the two-
mode He—Ne laser using the frequency-dependent chara-
cteristics of g(2) (Dl,¸). This is similar to the frequency-
stabilization method of transverse Zeeman laser [16].

Differentiation of (3.2) gives the slope of g(2) (Dl,¸ )
tuning curve at some amount Dl of frequency tuning:

k(Dl )"
d

d(Dl )
g(2)(Dl,¸ )"

a sinh(aDl )

[1#cosh(aDl)]2
, (3.4)

where

a"8 ln 2Dl
2
/Dl2

D
. (3.5)

If ¸"25 cm (Dl
2
"600 MHz) and Dl

D
"800 MHz,

from (3.5), a"5.3]10~9. It is seen from Fig. 5a that the
coordinates of the middle points on the linear part of
either side of g(2)(Dl,¸ ) are approximately
Dl

0
"$250 MHz and g(2)

0
($250 MHz, ¸)"0.6634.

From (3.4), the slope of g(2)(Dl,¸ ) at Dl
0
"250 MHz is

about k
0
"1.02]10~9(1/Hz). The degree of second-order

coherence g(2)(q ) at the middle position Dl
0
"250 MHz

in one branch of the linear parts of g(2)(Dl,¸ ) tuning curve
is given by

g(2)(Dl,¸ )+k
0

DDlD#b, (3.6)

where b is the distance of section of the straight line (3.6)
on g(2)(Dl,¸ ) axis. The corresponding degree of the fre-
quency stabilization is about

dl
l
0

+

1

k
0
l
0

· Dg(2)(Dl,¸ ), (3.7)

where l
0

is the central frequency of the laser and
Dg(2)(Dl,¸ ) the amplitude distinguishing ability of the
measurement of g(2)(q ). For a He—Ne laser,
j
0
"632.8 nm, l

0
"4.74]1014 Hz, with Dg(2)(Dl,¸ )"

10~3—10~4, the degree of frequency-stabilization cal-
culated from (3.7) is about 2.1]10~9—2.1]10~10.

From (3.2) and (3.3), or Figs. 5a and 5b, it is seen that
the frequency-dependent characteristics of g(2)(t,¸ ) can
also be used in the measurement of the linewidth Dl

D
of

the two-mode laser.
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4 Conclusion

The general formulae of the degree of second-order coher-
ence g(2)(q) and of the frequency-dependent relationship
are derived from the quantum theory of the light. The
second-order quantum coherence, its frequency-depen-
dent and photon statistical properties of the steady state
and of the freely operated two-mode laser field are ana-
lysed and discussed. On the basis of investigation of g(2)(q)
frequency-tuning property, the possible applications of
g(2)(q) frequency-dependent characteristics in the measure-
ment of the linewidth Dl

D
and the longitudinal-mode

frequency width dl
H

of two-mode laser and the frequency
and power stabilization of two-mode laser are discussed.
Theoretical investigations show:

(1) The second-order quantum coherence and its fre-
quency-dependence of the two-mode laser vary periodi-
cally with the time delay q and the frequency drift Dl. The
maximum value is 3

2
and the minimum value is 1

2
with

corresponding period 2¸ and 2Dl
2
.

(2) When two longitudinal modes have the same out-
put intensities (i.e., SIK

1
T"SIK

2
T), the degree of second-

order coherence can be observed experimentally by the
optical interference method in Michelson interferometer.

(3) At Dl"2m¸ or (2m#1)¸(m"0,$1,$2,2)
the frequency-dependent g(2)(q ) of the two-mode laser
varies most remarkably with Dl. It is very useful for the
frequency and power stabilization of the two-mode laser.

(4) There is photon anticorrelation effect in the two-
mode laser field, but which is not a non-classical effect.
According to the variation of the time delay q (or Dl ) and
the amount Dl of frequency drift, the photon correlations
of the two-mode laser show periodic changes from photon
correlation to photon anticorrelation with period 2¸.
Only at Dl"(2m#1)¸/2, there is photon non-correla-
tion effect.

(5) The frequency-dependent characteristics of
g(2)(Dl, q ) of the two-mode laser field is similar to that of
g(1)(Dl, q ) [13] which can also be applied in the measure-
ment of the linewidth Dl

D
and the frequency and power

stabilization of the two-mode laser. The theoretical pre-
cision of frequency stabilization is of the order of
2.1]10~9—2.1]10~10.

The frequency stabilization method of g(2)(q) fre-
quency-dependence described in this paper is similar to
that of g(2) (q) [13]. It essentially overcomes some disad-
vantages in the traditional method of frequency stabili-
zation which uses the two-mode polarization properties of
the two-mode intracavity laser [1—4]. The precision of the
frequency and power stabilization can be improved fur-
ther. This method is also suitable to two-mode intracavity
He—Ne laser with output of random polarization property
and two mode half-extracavity with parallel-linear polari-
zation output. Compared to the frequency-stabilization
method of g(1)(q ) with frequency-dependence, this method
has some advantages, such as simple optical system,
strong anti-interfere ability, and good dynamic property
and so on because the correlator (i.e., the intensity inter-
ferometer) to measure the degree of second-order coher-
ence g(2)(q ) is almost a pure electronic device, while is not
an optical interferometer. Then it is not sensitive to the
influence of on-the spot working conditions or circum-
stances, such as: the mechanical vibration, temperature
and refractive-index fluctuation and atmospheric distur-
bance, etc.
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