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Investigation of two-wave mixing in arbitrary oriented sillenite crystals
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Abstract. A generalized systematic description of the
Two-Wave Mixing (TWM) process in sillenite crystals
allowing for arbitrary orientation of the grating vector is
presented. An analytical expression for the TWM gain is
obtained for the special case of plane waves in a thin
crystal ( Dg Dd;1) with large optical activity ( Dg D/.;1, g is
the coupling constant, . the rotatory power, d the crystal
thickness). Using a two-dimensional formulation the
scope of the nonlinear equations describing TWM can be
extended to finite beams in arbitrary geometries and to
any crystal parameters. Two promising applications of
this formulation are proposed. The polarization depend-
ence of the TWM gain is used for the flattening of Gaus-
sian beam profiles without expanding them. The depend-
ence of the TWM gain on the interaction length is used for
the determination of the crystal orientation. Experiments
carried out on Bi

12
GeO

20
crystals of a non-standard cut

are in good agreement with the results of modelling.

PACS: 42.40, 42.65, 42.70

Due to the inherent speed arising from their relatively
short dielectric relaxation times and their wide availabi-
lity, sillenite crystals like Bi

12
SiO

20
(BSO), Bi

12
TiO

20(BTO) and Bi
12

GeO
20

(BGO) are promising materials for
real-time interferometry and image processing [1]. This
explains the continuing interest of both experimentalists
and theoreticians in photorefractive Two-Wave Mixing
(TWM) in these crystals [2]. A correct description of the
TWM process in sillenites is complicated by the presence
of optical activity and linear birefringence induced by any
applied electric field. The electro-optic tensor r

ikl
respon-

sible for the field-induced birefringence is described by
T-symmetry [3]. The structure of the tensor r

ikl
leads to

the coupling of different components of the polarization
vectors of two interacting waves. In addition, the coupling
strongly depends on the orientation of the grating vector
of the space-charge field with respect to the crystallo-
graphic axes. As a result, even in the idealized case
of infinite plane waves intersecting at a small angle, a cor-
rect description of the polarization state involves two

transverse components of the light field [4], and the
evolution of the beams can only be modelled using a ten-
sorial treatment of TWM.

Up to now, the majority of the published works have
been devoted to a one-dimensional formulation, see e.g.
[5—7]. In the special case of thin crystals with large optical
activity, the analytical solution for the one-dimensional
model [7] is sufficient to describe the TWM process. In
the present article, we generalize the model presented in
[7] to include an arbitrary orientation of the grating
vector. However, in any real application, the interacting
beams are unlikely to be planar and one must take into
account their structure [8—10] and polarization properties
[11] as well as the finite dimensions of the crystal [12, 13]
and the crystal orientation [14].

A theoretical model including all these effects for the
case of cylindrical symmetry was recently proposed [15].
The purpose of the present paper is to discuss the validity
of both one-dimensional and two-dimensional models of
real TWM experiments in sillenites. Most attention is paid
to the influence of the grating vector orientation on the
character of the energy exchange. It is also shown that
a two-dimensional model allows the crystal to be easily
characterized. The structure of this article is as follows. In
Sect. 1, we obtain an analytical solution for the TWM gain
with plane waves, allowing for an arbitrary grating vector
orientation, and discuss the applicability of this one-di-
mensional model. In Sect. 2, the two-dimensional model of
TWM with non-plane waves is reviewed and the expected
new effects are qualitatively discussed. The results of nu-
merical modelling in Sect. 3 confirm these theoretical ex-
pectations. As example applications of this theory, we
describe a technique for flattening a Gaussian beam pro-
file and a method for the determination of the crystal
orientation. In Sect. 4, a comparison of the theory with
experiments on unconventionally cut crystals1 is carried
out with good agreement.

1The normals of the faces of a ‘‘conventionally cut crystal’’ are
pointing in the crystallographic directions [001], [110], [111 0]



1 One-dimensional theory

In the optically isotropic sillenite crystals [3], the tensor of
optical activity c

ikl
and the electro-optic tensor r

ikl
have

the form

c
ikl
"ce

ikl
, r

ikl
"r De

ikl
D ,

where e
ikl

is the Levi-Civita symbol, o"!2(n/j)2c is the
rotatory power, r is the effective electro-optic coefficient
and j is the wavelength.

We start with a simple idealization — the coupling of
two plane waves E and E1 in the diffusion regime. The
interaction geometry, the crystal orientation and the coor-
dinate system are shown in Fig. 1. We assume that the
incident angles of both waves are small, so that the light
rays inside the crystal propagate mainly in the [111 0]
direction. Due to the small-angle approximation and the
transversality of light waves [16] it is sufficient to consider
only the x- and y-components of E and E1, completely
neglecting the z-component. Note that the grating vector
of the space-charge field is located in the x—y plane having
an inclination angle m with respect to the x-axis (m"0 and
m"n/2 correspond to the well-known longitudinal (L)
and transverse (T) configurations, respectively). For sim-
plicity, we do not consider refraction at the crystal boun-
daries and optical absorption. These physical factors will
not influence such relative quantities as e.g. the gain
(which will be defined later). The above simplifications
lead to the following system of equations describing the
photorefractive mixing of two plane waves in the steady
state:
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Here g is the coupling constant, C denotes the coupling
coefficient, m the modulation of the interference pattern, p

ithe i-component of the vector of Pauli matrices, n the
refractive index, and the asterisk complex conjugation.
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e2)1@2 is the Debye radius, e

45
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0

the di-
electric permittivity, k

B
Boltzmann’s constant, ¹ the abso-

lute temperature, e the electron charge, N
5
the trap con-

centration and K the absolute value of the grating vector.
We are assuming that there is no applied external field

and so we are operating in the diffusion regime. For

Fig. 1. Scheme of TWM with arbitrary oriented grating vector K

crystals of BSO and BGO this further implies that Dg D/. is
small2. Dg D/. will serve as a small parameter. Since there is
no external field induced birefringence, the solution of
(1a, b) is sought as a superposition of two circularly polar-
ized eigenmodes of the optically active medium:
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We define the gain, being a measure of the energy transfer
between the pump and signal wave, as

G"

DE D2!DE
0
D2

DE
0
D2

, (2)

where E
0

denotes the amplitude of the signal wave behind
the crystal in the absence of the interaction with the
grating. For sufficiently thin crystals3 the system (1a, b)
can be solved in first-order perturbation theory with the
small parameter Dg D/.. For the gain, we obtain

G"Cd
b

b#1
(cos m fE#sin m f

M
), (3)

with
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Here d is the crystal thickness, u and u1 are the initial
polarization angles of the waves E and E1 measured
clockwise from the x-axis (we have assumed the incident
states to be linearly polarized). b"DE1 D2/ DE D2 is the initial
value of the beam ratio. The terms fE and f

M
describe the

contributions of the pure L- and pure T- components of
the grating vector. With u"u1, m"0 and m"n/2 we
obtain the familiar formulae describing TWM in the L-
and T-configurations, respectively (see [6, 7]).

2The condition Dg D.;1 is well fulfilled for BSO and BGO crystals
in the absence of an external field, and it is invalid for BTO crystals
even in the diffusion regime. For a typical experimental situation
(j"514.5 nm, Kr

D
"1) Dg D/.+0.09—0.12 in BSO and BGO while

Dg D/.+0.33 in BTO
3The crystal is considered to be thin if the modulation depth m does
not significantly change along the crystal depth, i.e. Dg Dd;1. In the
diffusion regime this is true at least for d;1.3 cm (BSO,
j"514.5 nm)
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Fig. 2. a Dependence (Gu, m); b dependence u015 (m) for .d"n/2.
The remaining parameters are n"2.615, e

45
"56,

r"5]10~12 mV~1, N
5
"1022m~3, ."36° mm~1, Kr

D
"1. The

point M corresponds to the very maximum gain

In general, m can be arbitrary4. To the best of our
knowledge, such a formula for the energy exchange, allow-
ing the vector K to be arbitrarily oriented, is reported for
the first time. Expression (3) permits us to analyze the
influence of various factors (polarization of the waves,
optical activity, crystal orientation and thickness) on the
energy exchange in the TWM process. Such an analysis is
of interest for a number of practical problems, e.g. for
forward phase-conjugation schemes when two pairs of
beams are in planes perpendicular to each other
[14, 17, 18]. In the diffusion regime one cannot achieve
very large gain. Therefore, the knowledge of optimum
gain is of practical importance for real-time optical inter-
ferometry using sillenites. Unlike the T-configuration it is
a characteristic feature of the L-configuration that the
direction of the energy transfer does not change with
increasing interaction length. In other words, in the L-
configuration the amount of energy transferred from one
beam to another will accumulate. As a result, for suffi-
ciently thick crystals [sin(.d)/.d;1] the maximum gain
will always be achieved using the L-configuration. For
thin crystals [sin(.d)/.d41], because of the competition
between L- and T-contributions, the maximum gain can
be achieved in a non-conventional configuration. An
example of the dependence G(m, u) is presented in Fig. 2a,

4Throughout this article, the phrase ‘‘arbitrary orientation of the
grating vector’’ means that the grating vector still remains inside the
x-y plane

Fig. 3. Polarization dependence G (u) for a L- and b T-configura-
tions for .d"n/2, 2n/3, 5n/6, 11n/12, n (curves 1—5, resp.). Note that
curve 5 indicates the disappearance of the polarization dependence
for .d"n

for the case u"u1, .d"n/2, b"1. The parameters used
correspond to a BSO crystal at j"514.5 nm [19]. It is
seen that the optimum gain can be achieved neither for the
L- nor for the T-configuration, but for an intermediate
orientation of the grating vector (point M in Fig. 2).

For each grating orientation one can find the optimum
polarization angle that leads to the highest local gain.
Figure 2b presents the dependence of the optimum polari-
zation angle on the grating orientation angle u015(m). It is
seen that there is no linear dependence between u015 and m.
A similar conclusion arising from numerical calculations
has already been reported [14]. The authors of [14] have
investigated the influence of external parameters (ex-
ternally applied voltage and frequency detuning) on the
optimum polarization angle and have found that the angle
depends only on the direction of the grating vector. As
.P0, the dependence u015(m) becomes identical to that
given in [14].

For certain particular values of .d, (3) cannot be used
directly to determine the crystal orientation. This is easily
understood, e.g. in the case u"u1. The polarization de-
pendence of the gain is most pronounced in the limiting
case .dP0, when the factor sin(.d)/.dP1. At the same
time, if .dPn, then sin(.d)/.dP0, and the gain becomes
independent of the initial direction of polarization.
Figure 3a and b illustrates the influence of the parameter
.d on the polarization dependence for the L- and T-
configurations, respectively. We note that the situation
.dPn is realistic (for example, in a BSO crystal at
a wavelength of 514.5 nm, .d+n for d+5 mm). This
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means that for a wide class of parameters, it is difficult to
observe a pronounced polarization dependence of the
gain in experiments with plane waves. An alternative is to
work with finite beams. A two-dimensional theory of
TWM taking into account the transverse structure of the
beams and the interaction geometry is presented in the
next section.

2 Two-dimensional theory

2.1 General remarks

We consider a model based on the ideas of geometrical
optics [15] and we restrict ourselves to an interaction
geometry with invariance in one direction. In general, the
interacting waves are not plane. Both the phase and am-
plitude of the waves may change over their cross-sections.
Correspondingly, the coupling constant g can change over
the beam cross-section as well as over the crystal depth.
Furthermore, as a result of the overlap of two finite beams
in a finite crystal, one has to deal with rather tedious
boundary conditions. Remaining in the framework of the
small-angle approximation, we get the following system of
equations as a direct generalization of the system (1a, b):

(a(r) ·$) E (r)"i.p
2
E (r)#ig* (r) RE1(r)!1

2
($ · a (r) )E (r),

(4a)

(a1(r) · $)E1(r)"i.p
2
E1(r)#ig (r)RE (r)

!1
2
($ · a1(r)) E1(r). (4b)

a1 and a are the spatially dependent unit vectors determin-
ing the propagation direction of the different rays of the
pump and signal waves, respectively, and define the inter-
action plane. Equations (4) describe a rather general case
of the evolution of the amplitudes of optical waves during
their propagation through an optically active crystal with
an arbitrary refractive-index grating. The terms contain-
ing $ · a1 and $ · a on the right-hand side of the system
(4a, b) are new. They vanish when the pump and signal
waves are plane. As before, the interaction plane is in-
clined at an angle m with respect to the x—z plane (see Fig.
1, vector K). We introduce a new coordinate w, so that the
interaction plane will be the w—z plane. The interaction
geometry of two finite waves is shown in Fig. 4. For the
signal wave, we distinguish regions 1—3 where different
terms on the right-hand side of (4a) are non-zero. Inside
the crystal, the light waves interact in region 1 (all terms
contribute). In region 2, the waves do not interact (g"0).
Outside the crystal (region 3), only the term with $ · a
remains. For the pump wave, there are analogous regions.

2.2 Qualitative discussion

The interaction geometry presented in Fig. 4 is just a par-
ticular case. In general, two beams of arbitrary shape may
overlap within a crystal in many different ways. Conse-
quently, the system (4a, b) can in general be solved only
numerically. Contrary to the assumptions necessary for
obtaining the analytical solution of the one-dimensional

Fig. 4. Interaction geometry of two finite beams in a crystal

Fig. 5. Two plane beams in a a trapezoid and b a rhombus geometry

case, there will be no restriction on the parameters Dg Dd
and Dg D/.. System (4a, b) yields the vector amplitudes of
the signal wave in regions 1—3 (Fig. 4), before and after the
interaction with the pump wave.

In experiments, it is of course generally only possible
to measure the intensity outside the crystal. However, the
following two subsections show how it is possible to study
the energy exchange inside the crystal with the help of
intensity measurements at a detector located behind the
crystal. We propose to use two geometrical arrangements
that we call the ‘‘trapezoid’’ and ‘‘rhombus’’ geometries
(Fig. 5a and b, respectively). These notations are clear
from the figure.

2.2.1 ¹rapezoid geometry. The arrows in Fig. 5a show
schematically the interaction paths for different rays of the
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signal wave. It is seen that for one part of the signal beam
(the quadrangle ABDE) all the rays interact with the
pump wave over the entire crystal. In the other part of the
signal beam (the triangle BCD), the interaction length is
different for each ray. It falls down from its maximum
value to zero as one moves along the crystal face from B to
C. Consequently, we expect that the signal beam will
behave differently at the detector in the regions E @D@ and
D@C@ . The initial polarization state of the signal wave at
the crystal front face remains unchanged over the beam
cross-section. If the intensity profiles of both waves are
plane, each ray of the signal wave in the region ABDE will
have both equal interaction lengths and boundary condi-
tions. As a result, assuming a perfect crystal, one can
expect the same changes of intensity for all these rays, i.e.
a constant distribution of the gain in the interval E@D@ will
be observed. At the same time, the change of the gain in
the detector interval D@C@, corresponding to the region
BCD, will be determined by the change in the interaction
length. The gain changes from its value obtained at the
maximal interaction length (point D@) to zero (absence of
interaction, point C @). Let us emphasize that, since the
interaction length changes through the beam cross-sec-
tion, the problems connected with .d+n can be avoided.

2.2.2 Rhombus geometry. In the rhombus geometry (Fig.
5b), both beams overlap completely inside the crystal. In
the case of different widths of pump and signal wave, the
interaction region is a parallelogram rather than a rhom-
bus. In contrast to the previous case, all rays of the signal
wave interact with the pump wave over the same distance
(as indicated by arrows). However, before entering the
interaction region, the rays of the signal wave follow
different optical paths inside the crystal (denoted by dot-
ted lines). Due to optical activity, each ray of the signal
beam has a different polarization state at the entrance of
the interaction region. That is, the amplitude of the signal
wave will be polarization-modulated. Consequently, the
dependence of the gain on the detector coordinate corres-
ponds to the polarization dependence of the gain. Note
that, in this geometry, the interaction length depends on
the width of the interacting beams rather than on the
crystal thickness. One can always avoid problems connec-
ted with .d+n by, e.g., varying the width of the pump
wave. Moreover, in order to obtain the polarization de-
pendence of the gain by means of the conventional one-
dimensional method, one has to carry out a set of
measurements with different initial polarizations of the
beams. Using the two-dimensional rhombus geometry,
one is able to get the polarization dependence in a single
measurement. Obviously, the rhombus geometry is reas-
onable only for sufficiently large values of the optical
activity (BSO, BGO) and crystal thicknesses.

3 Numerical results

All numerical simulations in two dimensions are per-
formed using a program package described in detail in
[20]. The procedure is based on the method of character-
istics [21].

Fig. 6. Flattening of the Gaussian beam: a signal intensity and
b gain at the detector (rhombus geometry)

3.1 Flattening Gaussian beam profiles

In this subsection we use the rhombus geometry for shap-
ing signal intensity profiles which can be of great import-
ance for, e.g., laser projection printing, material characteri-
zation, etc. [22]. We consider the interaction of two plane
waves with Gaussian intensity profiles in the T-configura-
tion. Both waves are initially equally polarized
(u"u1"3n/4). The beam ratio b"100. The interaction
lengths correspond to .l"n/2 for the signal wave and
.l"3n/2 for the pump wave. The remaining parameters
are the same as in Fig. 2. Figure 6a presents the intensity
profile of the signal wave at the detector before and after
the interaction with the pump wave. One can see that the
initial Gaussian profile has been flattened. The corres-
ponding dependence of the gain at the detector is shown in
Fig. 6b. Due to the continuously varying initial polariza-
tion at the boundary of the interaction region, the central
part of the signal wave is depleted whereas the sides of the
signal wave gain energy. As a result, one is able to flatten
the incoming Gaussian profile without changing its phase
(i.e. without expanding it). As is well known [22], there is
a necessity for illuminating an object field with a uniform
intensity distribution without expanding the laser beam.
We believe that the proposed method can be easily ap-
plied to a practical flattening of Gaussian profiles using
BSO (or BGO) crystals of sufficient thickness.

3.2 Influence of the crystal orientation on the energy
exchange

Now we consider the trapezoid geometry and allow for an
arbitrary orientation of the grating vector. The limiting
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Fig. 7. Influence of the grating vector orientation on the TWM.
Gain at the detector for m"90° a, 100° b, 110° c (trapezoid geo-
metry). The initial polarization corresponds to (u!m)"0 (solid),
n/4 (dashed), n/2 (dashed-dotted), 3n/4 (dotted line)

cases are the L- and T-configurations. In order to change
from the first to the second configuration, one can rotate
either the grating vector or the crystal by n/2 about the
propagation axis of the crystal ([111 0]). Intermediate con-
figuration where the grating vector is inclined at an arbit-
rary angle m to the axis [001] can be realized e.g. in
forward phase-conjugation processes [17]. Such a situ-
ation can also occur in ordinary TWM experiments, for
example, if the crystal is cut in such a way that its surfaces
are not exactly parallel to the planes (001), (110) and (111 0).
In this case, it would be useful for experimentalists to be
able to determine the real crystal orientation through
some simple TWM experiments. Therefore, it is worth
studying the influence of the crystal orientation on the
TWM process.

In Fig. 7 the dependence of the gain on the detector
coordinate is shown for various grating vector orienta-
tions. The crystal thickness corresponds to .d"3n/2, the
beam ratio is b"1 and the remaining parameters are as

in Fig. 2. Figure 7a is for the T-configuration and different
initial polarizations (see the figure caption). Figures 7b
and c are for slightly different crystal orientations. As
discussed above, Fig. 7 can be interpreted as the depend-
ence of the gain on the interaction length. The plateaus at
the left side are due to equal boundary conditions and
interaction lengths (interval E@D in Fig. 5a). As can be seen
from the figure, slight changes of the orientation of the
grating vector lead to perceptible changes in the gain
distribution at the detector. In the T-configuration, by
changing the polarization state, it is possible to change the
direction of the energy transfer between the pump wave
and the signal wave. In the case b"1, the theoretical gain
distributions with the chosen initial polarizations are sym-
metric with respect to the direction of the energy transfer
(Fig. 7a). With increasing deviation from the T-configura-
tion, this symmetry is gradually destroyed (Fig. 7b, c). This
is because the real configuration is a mixture of the L- and
T-configurations. By deviating from the T-configuration
naturally the longitudinal part of the configuration in-
creases and the direction of the energy transfer in the
L-configuration prevails. Using such a measurement on
a crystal with unknown surface normals, it is possible to
calculate the deviation of the grating vector from the T- or
L-case, as will be shown in the following section.

4 Experimental results

We have investigated a set of BGO crystals of different
thicknesses (from 2 to 8 mm). The input face of all the
crystals was the same — (1 11 0). We have chosen this set of
crystals (all from the same manufacturer) since in conven-
tional one-dimensional measurements, using what was
believed to be the L- and T-configurations, the depend-
ence of their gain on their input polarization state demon-
strated an unexpected behavior. Furthermore, because of
their different thicknesses, the investigation of the polari-
zation dependence with the one-dimensional method for
plane waves was not equally successful for all crystals.
Therefore, we used finite beams to clarify the true crystal
orientations.

The experimental arrangement is shown schematically
in Fig. 8. The plane wave from the Ar` laser (j"514.5 nm)
is split into the Signal Wave (SW) and Pump Wave (PW)
by a Polarizing Beam Splitter (PBS). The beam ratio is
b+40 and the pump intensity is 80 Wm~2. A polarizer
(P) is inserted to improve the polarization purity of the
signal wave. The half-angle between the symmetrically
incident beams is 23°. With the Half-Wave Plates (HWP1,
HWP2) the polarization angle u of both waves can be
chosen. The slit S of width 3 mm in front of the crystal
(polished surface) cuts both beams; the overlap inside the
crystal corresponds to the trapezoid geometry, see Fig. 5a.
The lens L behind the crystal transmits the image of the
signal wave in the neighborhood of the slit’s edge on
a CCD camera. The digitized two-dimensional image with
512]512 pixels is spatially averaged over the vertical
coordinate of the detector in order to obtain a one-
dimensional intensity distribution at the detector line.

As an example, we discuss here the results obtained for
the crystal with d"8 mm. We denote as the ¸@-config-
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Fig. 8. Experimental setup for TWM. Due to the slit S in front of the
BGO crystal, the interaction region inside the crystal is a trapezoid

Fig. 9. Measured gain at the detector in a the ¸@-configuration and
b the ¹ @-configuration. The initial polarization corresponds to
(u!m)"0 (solid), n/4 (dashed), n/2 (dashed-dotted), 3n/4 (dotted
line)

uration the case with the grating vector perpendicular to
one unpolished surface, and as the ¹ @-configuration the
case (perpendicular to the first) with the grating vector
perpendicular to another unpolished surface. Figure 9a
and b shows the measured gain at the detector for the ¸@-

Fig. 10. Calculated gain at the detector for ¸@ a and ¹ @ b configura-
tions. The initial polarization corresponds to (u!m)"0 (solid), n/4
(dashed), n/2 (dashed-dotted), 3n/4 (dotted line)

and ¹ @-configurations, respectively. The different curves
correspond to different initial polarizations of the incident
beams (see the figure caption). Using standard parameters
for BGO crystals [19], we have modelled this experiment
numerically, allowing for an arbitrary orientation of the
grating vector and fixing all other parameters. The results
are presented in Fig. 10a and b for the ¸@- and ¹ @-
configurations, respectively. Because of various experi-
mental influences (like light reflection at crystal surfaces,
leading to multiple wave coupling5, crystal inhomogenei-
ties, and so on), it is of little use to make a quantitative
comparison of experimental and numerical results. Vis-
ually, the best agreement is achieved for m"340° in the
¸@-configuration and for m"70° in the ¹ @ configuration.
Thus, we get in both cases the same deviation of 20° from
the correct L- and T-configurations. We concluded that in
this crystal both unpolished surfaces were in error by
angles of 20° with respect to the conventional cut assumed
at the beginning.

To check the alignment of the faces of the crystal,
X-ray techniques were used. These showed that the
polished surfaces of the crystal (111 0) were cut correctly,
and the other faces were in error by angles (17$1)°. This

5At the detector (point D@ in Fig. 5a), a step is observed in the gain
curve. It appears in both the ¸@- and ¹ @-configurations for any
polarization in the vicinity of the detector coordinate 0.2 (see Fig. 9).
We believe that this is because of the reflection of the pump wave
between D and E (Fig. 5a) into the direction opposite to the signal
wave from the backface of the crystal. As a result, the conditions for
the interaction in the corresponding region of the crystal (ABDE)
change, which in turn manifests itself in the step in the gain curve
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result is in good agreement with that obtained with finite
beam measurements. Analogous investigations with other
crystals of this set lead to similar success in determining
the correct crystal orientation. The values for m obtained
with X-ray techniques and with our method differ by less
than (3—4)°. One cannot expect a better agreement for
intensity measurements. Nevertheless, using simple TWM
experiments with finite beams, one can easily and with
good accuracy get information about crystal orientation.
Since the equipment for X-ray diffraction is not available
in many optical laboratories, we believe that the proposed
method may be useful for the characterization of optically
active crystals.

5 Conclusions

For the case of thin crystals with large optical activity, we
obtained an analytical expression for the TWM gain of
plane waves allowing for an arbitrary orientation of the
grating vector. In the case .d"n the polarization de-
pendence of plane waves vanishes. Alternatively, a two-
dimensional approach can be used. It permits the deter-
mination of the polarization- and thickness-dependences
of the TWM gain by an analysis of the deformation of the
intensity profiles of finite beams. We point out the possib-
ility of using this approach for flattening Gaussian beam
profiles without expanding them and for determining the
crystal orientation.

Experiments with finite beams and with BGO crystals
of a non-standard cut have been performed with the aim
of determining the crystal orientation. The results agree
well with the results obtained by X-ray diffraction.
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