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Abstract. We describe theoretically the function of a non-
linear optical element based on photoanisotropy in azo-dye-
doped polymers for optical correlation. This element allows
the realization of a matched filter with two incoherent light
beams. The described technique involves the insertion of
a photoanisotropic polymer sample in the Fourier plane of
the optical element. Due to the specific features of pho-
toanisotropic materials the output is characterized by the con-
volution of the first wave with the autocorrelation function of
the second wave.

PACS: 42.79.Hp; 42.70.Nq

Optical information processing and storage is of increasing
interest. For that the development of new optical methods is
necessary. One important aspect is the use of incoherent light
sources and light sources with a low degree of coherence.
This allows a considerable simplification of experimental se-
tups in comparison with techniques known from coherent
optics. This attribute is of great importance especially in the
field of optical correlation techniques which are of interest
for instance for fingerprint detection, automatic inspection,
or pattern recognition. These techniques base mainly on co-
herent optics. The original optical correlator proposed and
demonstrated by Van der Lugt [1] contains a holographic fil-
ter in the Fourier plane. And the joint transform correlators
[2–4] use the interference of the coherent Fourier transforms
of the two objects under consideration. Due to the use of in-
terference phenomena high stability requirements exist and
the employment of coherent light sources is necessary.

For the reduction of these requirements the use of incoher-
ent optics is of considerable interest. We describe a matched-
filter technique based on a nonlinear optical element contain-
ing photoanisotropic polymers. Optically induced anisotropy
in azo-dye-doped polymers depends on the intensity and the
polarization state of a light wave. The process does not de-
pend on the phase and therefore it is possible to use light
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sources with a low degree of coherence. The nature of this
process is described in several papers [5–8].

1 Theoretical description

For a theoretical description of such a nonlinear optical elem-
ent it is convenient to consider a setup as shown in Fig. 1.
A strong inx-direction linearly polarized waveE1 is passing
through a transparencyt1, which is located in the front focal
plane of lens L1. After passing through the lens the Fourier
transformT1 of t1 is performed in the back focal plane where
the photoanisotropic polymer sample is situated.

t1(x, y)=
(

t1(x, y)

0

)
, (1)

F T [t1(x, y)] =
(

F T [t1(x, y)]
0

)
=
(

T1(ξ, η)

0

)
. (2)

The intensity (power density spectrum) is given by

I1,FT = ε0cn

2
| T1 (ξ, η) |2 , (3)

whereε0 denotes the dielectric constant,c is the velocity of
light, andn is the unperturbed index of refraction of the ma-
terial. The influence of this electric field distribution leads
to a change of the dielectric tensor of the medium. Due to
the model developed by Kakichashvili [9–11] the initially
isotropic polymer becomes anisotropic, which can be de-
scribed by the following matrix:

ε=
(
ε0+κI1,FT(ξ, η) 0

0 ε0

)
. (4)

ε0 is the unperturbed dielectrical constant of the material
and κ is a complex quantity describing the induced pho-
toanisotropy parallel to the polarization direction ofE1.
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Fig. 1. Basic geometrical scheme.E1 and E2 denote the direction of the
electrical field vector. The transmission direction of the polarizer is rotated
by 90◦ with respect toE2

Therefore the Jones matrix of this element can be written as

J =
(

1 0
0 e−iδ

)
, (5)

with

δ=
√
µε0

2ε0
κI1,FTkd= qI1,FT . (6)

k= 2π/λ is the wavenumber,d is the thickness of the poly-
mer layer, andµ is the magnetic permeability of the material.
q= (√µε0/2ε0

)
κkd is a constant for a given sample. So the

resulting birefringence is a function of the intensity of the
Fourier transform of transparencyt1.

A second linear polarized wave is passing through trans-
parencyt2 and through the lens. The polarization direction of
this wave is rotated by45◦ with respect to the polarization
state of waveE1. The intensity distribution ofT2 in the back
focal plane of the lens has to be small in comparison to the
intensity distribution ofT1

IT2(ξ, η)� IT1(ξ, η) . (7)

So the influence of the second wave on the dielectric ten-
sor of the sample is negligible. This wave is passing through
the photoanisotropic sample which is acting as a pure retarder
and goes through an polarizer which is situated immediately
behind the sample. The transmission direction of this polar-
izer is rotated by90◦ with respect to the polarization state of
this second read-out beamE2.

The resulting field distributionOout immediately behind
the sample–polarizer combination can be calculated as

Oout= K

(
0 0
0 1

)
J′
(

T2(ξ, η)
0

)
, (8)

with

J′ = R
(
−π

4

)(1 0
0 e−iδ

)
R
(π

4

)

and

R
(π

4

)
=
 cosπ4 sin π

4

− sin π
4 cosπ4

 .

HereRdenotes the the rotation matrix. ThereforeOout can be
written as

Oout= KT2(ξ, η)

(
0

1− e−iqI1,FT

)
, (9)

whereK = const.
Performing the back transformation yields

F T [Oout] = F T

[
K

(
0

1− e−iqI1,FT

)
T2

]
. (10)

Under the assumptionq� 1 which is valid due to the as-
sumptions made by the Kakichashvili model the exponential
function can be expanded into a Taylor series and yields

e−iqI1,FT(ξ,η) ≈ 1− iqI1,FT(ξ, η) . (11)

Substitution into (10) yields

F T [Oout] = F T

[
K

(
0

iqI1,FT(ξ, η)

)
T2(ξ, η)

]
. (12)

The intensity in the focal plane is than given by

Iout= K ′2
∣∣F T

[
I1,FT(ξ, η)T2(ξ, η)

]∣∣2 . (13)

Due to the Wiener-Khinchin theorem and the convolution
theorem this is equivalent to

Iout= K ′2 | t1⊗ t1 ? t2 |2 , (14)

Fig. 2. Input transparenciest1 (left) and t2 (right)

Fig. 3. Calculated outputIout=
K ′ 2|t1⊗ t1 ? t2|2
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where⊗ denotes the correlation and? denotes the convolu-
tion. This expression allows us to find out which structures
are simultaneously present in the transparenciest1 andt2.

Numerical simulations show the capability of this method.
Figure 2 shows the input transparenciest1 and t2. The cal-
culated distribution in the output plane is shown in Fig. 3.
In contrast to conventional techniques correlation peaks do
not appear. The output delivers the object itself in the right
position.

2 Conclusions

A theoretical description of a nonlinear optical element based
on photoinduced anisotropy in azo-dye-doped polymers for
information processing with mutually incoherent beams is
given. This element is characterized by performing the con-
volution of an input transparency with the autocorrelation
function of a second input transparency. So it is possible to
find out which structures are simultaneously present in both

transparencies. First experiments have shown that this method
works in principle. A paper about experimental results is in
preparation.
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