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Abstract. In order to understand the basic process of a lase©n the outer boundaries of the spherical region (shown in
illuminated scanning probe tip it is necessary to calculate th€ig. 1) some appropriate boundary conditions were used fol-
temperature distribution in such a geometry. In the first partowing the exact Fresnel formulae.

of this paper the temperature distribution in a laser-heated tip The well-known continuity conditions for potentials and
and a semi-infinite metallic sample is solved in a steady-statelectric induction fields were used on the interface boundaries
approach. This is done with the help of the boundary elemer{s;, S): .

method. In a second part, the temperature field in a thin metal

sheet attached to a semi-infinite dielectric substrate is calcy, S0 = . dps _ Ogx
lated by applying the Fourier—Bessel transformation method. s =P Es on~ on’
0ot 0o
PACS: 02; 44.05.+e on Sgipr = gr, e1 o=~ (2

o . wheress, & are the dielectric constants of sample and tip, re-
A new and promising method for sample surface modifispectively. The change of the direction of the normal vector
cation in the nanoscale region was proposed in [1,2]. Theyr the inner and outer side of the surface causes the mi-
pulsed laser illuminating of STM (scanning tunnel micro-nys sign in (2). The problem (1), (2) can be transformed into
scope) or SFM (scanning force microscope) probe tips, which system of connected integral equations for the boundary
are placed above a sample creates a series of nanocrater/gfues of the potentials and its normal derivative&. By
nanogrooves on gold substrates. However, the main reason fghplying the boundary element method [12—-14] a | integrals
the structuring process remains unclear and is controversialpgn be converted into discrete sums and solved directly by the

discussed by many groups [3—6]. To better understand the b&sauss method. A very large enhancement of the electric field
sic physical mechanism of this phenomenon it is necessary

to estimate the temperatures of the sample and the tip. An
appropriate method for the calculation of the electric fields
on the tip, on the sample and in the free space has been de-
veloped as described in our previous paper [7]. This method
is based on a quasi-steady-state (or electrostatic) approach. It
means a reduction of the initial exact formulation of the prob
lem (expressed through the Maxwell or Helmholtz equations,
to the Laplace problem for the electric potentialThis can

be done due to the very small size of the region, in which th
electric field is calculated. The region diameter should not ext
ceed the Rayleigh sizB* = A/(27), A being the wavelength

of the laser light. The phase shift in the field oscillations can
be ignored for all points inside the domain of calculation. The
electric field is expressed via the gradient of the complex elec-
tric potentialg, which is described in three domains |, II, Il
(sample , free space, and tip domain , respectively, see Fig. 1)
by the Laplace equations

sample
surface

v

Aps=0, Agr=0, Ap=0. 1) Fig. 1. Tip-sample geometry used for calculation
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E was found near the apex of the probe. The field enhancevhere«, n;, s, ns are the known optical constants (from
ment factor (FEF) determined as the raB@ax/Eo (Eo is  handbook [9]) determined by the relatioRges; = n; + ixt,
the amplitude of the field in the incident laser beam) reachege, = ns+ ixs, S is the density of the energy flux in the laser
values up to several hundred [7]. The FEF is a strong functiobeam (the modulus of the averaged Poynting vector). With
of the tip-sample distance and the material properties of tha wavelength of,, = 532 nm S = 10 MW/cn? and a tung-
tip and the samples, &). sten probéx; = 177 W/(m*K))we come td;* = 908 K. With
In the first part of this paper the temperature distributiona gold sample); = 312 W/(m*K)) we come toTy = 61 K.
inside a laser-heated tip and a semi-infinite metallic sample ¥/hen we introduce dimensionless temperatues T;/ T,
calculated by a steady-state approach. This is done with thig = Ts/ TS and coordinates we obtain
help of the boundary element method.
In a second part, the temperature field inside a thin metah6s = — | Vgs |2, A6 =— | Vg |. (6)
sheet attached to a semi-infinite dielectric substrate is calcu-
lated by applying the Fourier—Bessel transformation methodHere and hereunder andgs are the dimensionless electric
potentials for the tip and the sample, described by Laplace
equations (1) and (2). The right parts of equations (6) can be
1 Calculation of the temperature distributions in laser- transformed by the formula
illuminated sample and scanning probe tip of
a tunneling microscope A | |?

Vo 2= ,
[ Vo | >

)
1.1 Setting up the steady-state heat transfer problem

which is true for all harmonic functions.
A penetrating electric field inside a tip or a sample causes Since the vector fiel¥¢ is also harmonic, it follows simi-

a heat production according to the known formula [8] lar to (7):
w1 2_ 2
Q:és | E |2 @) AlVel’=2]VVe[>>0. (8)

) . . From (6)—(8) some important properties@fVe, andd can
whereQ is the volumetric density of the heat averaged ovele derived. Due to the positive left- and right-hand sides of

a period of the fieldg” is the imaginary part of the complex (7) and (8)| ¢ |2 and| V¢ | can reach their maximum only
dielectric constant of the tip or the sample material {8lis  on the boundaries, but not inside the regions. The tempera-
the laser light frequency. ture fields, according to the negative right-hand sides of (6),
Why can we use the steady-state approach for the temyn have their minimum only on the boundary and not inside
perature calculation for a very short nanosecond heating,e region. These conclusions follow from the second condi-
pulse? The duration of the laser pulse ds=(5-10) X  {jon for the maximum and minimum. All second derivatives

10-%seg [1]. The thermo-diffusivity coefficient for typical ghoyld have the same sign, negative for maximum and posi-
metals isa = (10~%-10-5) m?/s[10]. Fort ~ t the heat pen-  tiye for minimum.

etration length can be estimated as [11] The identity (7) permits us to transform the Poisson’s
roblems (6) into Laplace problems
L =v4ar~10°m P ©) placep
. . . ) AOs=0, AO=0, 9
This length is ten times larger than the distance used in

our calculation (Rayleigh lengtR* ~ 100 nm) and it is also  where the modified temperatures are:
two orders of magnitude larger than the tip curvature radius

Rt =(—) 1030nm. Therefore the steady-state approach can be 2 2
applied. Y P Os =05+ | go;l . Or=6+ | go;' : (10)
With this approach the temperature in the tip and the sam-
ple is described by the Poisson equation: This transformation (10) helps us to avoid Poisson’s problem.
, We can use the boundary element method (BEM), to calculate
AT, = — Q _ W& | E the solutions for equations (9).
At 8\t ’ Let us consider the boundary conditions for the tempera-
Qs we! 5 ture fieldsds and6d;. Due to the zero heat conductivity within
ATs= — " = T e | Esl%, (4)  the free space between the sample and the tip, the adiabatic

condition is applied on surfac& and$; (see Fig. 1):

wherea, As are the heat conductivity coefficients of tip
and sample materials. 90s
A transformation of (4) into a dimensionless form can be on
done by dividing all coordinates by the Raleigh sdafe and
by using two temperature scales for tip and sample: On the boundarie§ and S, the heat flux density can be de-
termined by the formula

. 06
s on

=0. (11)
S

S Tr= e 5)

TAg

MKy » W

T Yo T
an 2R2

— (12)
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W is the full amount of heat produced by the heat sourcand
Q in this region,$2 is the solid angle. For the probe cone

§2¢ = 2(1— costy) and for the semi-spac@s = 2, Risthe  |FR R) = K© ., R=(,2, R=(2),
radius of the control sphere as in Fig. 1. Formula (12) means n(a+b)l/?

that the heaWV produced in a small domain near the tip apexdF(R, R) E(c) — K(c)

(or near the origin of the system of coordinates for the semi=— 30~ = 271/ @1 b2z

infinite sample) spreads for a relatively large distarRpif ne(f —1')+ny(z—7)

a spherical symmetrical manner: the flux density is expected 7 E(c),

to be approximately constant d and &. In steady state, m(@—b)(a+b )

the heat produced by the heat souewithin the region , _ r2+r’2+(z—i)2 b—2rr' @ — Arr

flows through the boundary of the control sphere. In real ex- ’ ’ r+rH2+(z—-2)?
periments a much larger tip region is illuminated. This would (18)

mean an additional rise in temperature. However, the rise in

temperature which is due to laser illumination is much highefF is the Greens Function for axis-symmetrical probleis.
for the tip apex than for the upper tip region. Therefore, fromand K are elliptic integrals of the first and second kind [12—
(12) a formula for the temperature & andS; can be found 14] and!” is the boundary line of the domain.

by integrating oveR. Equations (17) and (18) together with the boundary condi-
tions (15) and (16) can be used as a starting point for the nu-
W merical calculation of the temperature distribution with BEM.
0= OR (13)  This is done by taking point® on the boundans and by

replacing equation (17) with its discrete form
For the heaWV produced in the volume of the tip or the sam-
ple we can derive the following formula:

N ). .
ai@i—f-Z@j f FR.R) dsj =

an;
3 | |? d =1 !
W:f IVol2dV = ?g S0l ys ?g Relo X lds (14) =
on 2 an N 9o
v s Z(E)fF(Ri,Rj)ds,—. (19)
The final expression (14) for the hewt contains only the =1 I's
boundary values ap* andg—ﬁ, which are calculated with the i )
help of BEM [7]. For all boundary pomtsR the integrals under the sum can be
Finally the boundary conditions for the modified temperacalculated numerically over a small boundary elensgie-
tures®@s and®; are cause the solution fdf(R, R) is known. The integrals in (19)
will be:
90 0ps _ W | gsl? oF
on &-W=Re{¢§%}’°” 9:0s=5 ot Gj :fFr/dF, Hijzf—r/dr. (20)
an
(15) fi fi

These integrals were calculated numerically in the meridian

90, . 0Pt planerl” by Gauss method [14]. They are the elements of the
on S: n Re{ ¢ <p_n , global matrix equation for two non-connected Laplace prob-
W ol lems for domains | and lIl:
on $:6; = : L . (16)
27(1—cosf)R = 2 Hij©; = Gjq;, (21)

whereq; designates the normal derivative €f on the j-th
boundary element. The diagonal element withs included
1.2 Boundary element method for solution of the Laplace in Hj;.
problem Figure 2 shows the temperature distribution along the tip
and sample boundary for different geometry and tip materi-
The Laplace equations (9) can effectively be solved by thals (tungsten and silver tip, gold surfate=532nm § =
BEM [7,12—14]. The mathematical details of the BEM for 10 MW/ cn¥). The temperature in both domains depends to
axis-symmetrical problems can be found in [7]. The follow-a great extent on the tip’s geometry and material. For tung-
ing expression can be derived: sten tips, the temperature in the tiflis2 orders of magnitude
larger than in the sample. The main reason for this difference
is the large volume of the sample in which the heat is dis-

IF(R, R) ’ tributed and also the much better heat conductivity of the gold
aQ(R)JF/ an OR)r'dI(R) sample. Moreover the absorption coefficient (the imaginary
r part of the dielectric constant) is much larger for tungsten.
_ IO(R) , As expected, for a larger tip volume, the temperature de-
_/ F(R R) on rdr(R), a7 creases in the tip whereas the temperature in the sample

r volume increases. For the chosen larger tip geometry, the
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tip geometry 1220
% g ry

1% mal resistance while spreading over the thin sheet which leads

2 to a higher temperature.

Lelg‘fm*:;e ToE g Let us consider this non-steady-state problem. The time
02 rztgi g dependencies of the light intensi§ and of the heat source
* 2} S .
& we &% 08 Q can be described as a Gauss curve
80 B é
60 _12/.2
© & 58 Qun=qmne "
420
%0 02 od 0g v wherer is the characteristic laser pulse duration. The equa-

R tions for the temperature fields in the sheet and in the dielec-

® tric support are
40

W
&

<
oy 19T r 1 9T,
I A (P R ST Y (22)
20; as ot )\.3 aq ot
1535 (as, a4 are the thermo-diffusivity coefficient of the metal sur-
10 . . . .
15 ¢  face and the dielectric support, respectively). After applying
0 the integral Fourier transformation (designated belowbY *
4 to system (22) we get
70 - lw= qint _ 2 - o=
ATs— —Te=——"—e @/ ATy— —Tg=0. (23
.. 50 s as s )\szﬁ d ag d (23)
5 <
40§5 The boundary conditions are
30 8 =
8 0T,
.20§ at z=0: —=0, (24)
5 0z
20 10
"00 02 o4 %% ’ 02 ’ 0d
R iR e . aTs 3Ty
Fig. 2. Temperature distribution along the tifeft sidd and sample bound- at z=-H: Ts=Ta, )‘SE = )‘dg’ (25)
ary (right sidg for different geometries. (tungsten tgwlid ling silver tip
dotted ling gold surfacer = 532 nm § = 10 MW/cn¥) at infinity m - 00: -r-s — T—d —0.

Assuming a sufficiently quick decay of all used functions

FEF decreases [7]. Simultaneously, the enhanced field is digt p — oo the Hankel integral transformation can be applied
tributed over a larger volume. A larger overall heat productiorio the problem:
in the sample volume is the consequence.
The situation is different for silver tips. For a certain tip _ .
geometry the temperature in the sample can exceed the terh(0: 2) = /T(k, 2)J, (kp)k dk,

o0

perature in the tip. There are several reasons. The field en- 0

hancement of silver tips is usually much larger than the FEF oo

of tungsten. Additionally, silver has a much smaller absorpt . » — /-f— A3 (koykd 26

tion (at this wavelength) and a much better heat conductivity *.2) (0. 2), (kp)kdp. (26)
than tungsten. Therefore, the equilibrium between produced 0

heat and heat flow out of the tip region is reached at a smallgfy, o ¢ problemy = 0.

temperature. Dimensionless coordinates, time, frequency, and source

function are introduced via the scalB$ andt. We useyp’ =
o/R, K =kR*, Z =z/R*, t' =t/7, o = wt, H = H/R".
2 Calculation of the temperature distribution in thin The source functiorf is determined by
metal sheets

A . . 2 R A0 e

s mentioned above it was shown that the heat produced ifi(p, 2) = — ——=€ .

a metallic semi-infinite sample spreads quickly over a large Ts As2ym

volume and the temperature .of the sample is. not very higrlselow, the primé will be omitted.

If the sample is made of a thin metal sheet with a high heat e governing system of equations for the dimensionless
conductivityAs placed on a dielectric with a small heat CON- temperatures is:

ductivity A4(Ag < As) changes. When the heat conductivity

of the support is zer@rq = 0), the steady-state solution of 20, - R

the heat transfer problem cannot exist. This means that the—> —ks6s=—f (0>2z> —H),

temperature of the sheet in the two-dimensional case rises t Z

infinity during an infinite period of time. In the case of a small ﬂ —k204=0 (z<—H) 27)
Ag One can expect that the heat encounters a much larger thedz? d”d ’
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wherexs, kg are also dimensionless: where 6peam IS the angle between the light beam and the
direction normal to the surface. The same behavior can be
ks= K2 +iw/Fos, Kkq=+/K2+iw/Foq. (28)  supposed for the heat production in the sheet

. PP
The combinations®} = Fos and 2 = Foy are called the f(p.2) = fo(p)e™™ (33)
Fourier criteria in heat transfer theory. Equation (27) can berhe inner integral in expression (32) can be calculated obtain-

solved in a general form ing.
H oo oo
5 & A- ) 1 o7 2] fsz=0 Z/ fo(o")po'd // e
95 = TCh(KSZ) + ZS / [e S( ’ p) 0('0 )'0 0 KS(KS+ y)
A 0 0
—«s(Z+2) | £ _ —yH _ a—ksH
+e ]f(k,z)dz, {1+(l A)y[e e }—ée‘yH}kdk
. e d(z—H) @ Ks—Yy
ed = | T, (29) o0 oo
K . N k ko'
) 9d(2=—H,p)=/ fo(p’)p’dp’/M
where , ) Kks(ks+ )P
Adkd e vH _ g xsH
@ = Ach(xsH H A=
ch(ksH) + shixsH), s {yCh(KSH) [T}
" H H
R —vH _ g *s
| = / ch(esZ) f(k, 2)dz, (30) —sh(ksH) [u“ kdk. (34)
Ks—VY

0
o0 For the steady-state solutian= 0 andxs = xq = k. For small
f(k,Z)= f f(o',2)Joke)p'dp'. (31) k(k«1)andsmallA(A « 1) the valued = A +kH is very
small and the integrals in (34) become divergentiat 0.

0 Only at nonzero heat conductivity of the support may a fi-

The integrals (30) and (31) can be substituted into expreé‘-ite temperature field _be obtained. This conclusion illustrates
sions (29). After applying the back Hankel transformation théN® above-discussed important general features of our solu-

temperatures in the sheet and in the dielectric support can §@ns (the steady-state solution does not exist in the two-
obtained dimensional case).

The integrals in (32) were calculated numerically. The
Hankel integral was solved by the Newton—Cotes adoptive

oo o Incko) Incko! algorithm [15]. The integrals im andz were found by the
bs(z=0, p) :fp/dp/fdkw trapeze method. The inverse Fourier transformation in the
/ / Ks non-steady-state case was done by the help of FFT.

First off all we want to consider the results for the steady-
H . A-A) ~ state case. Figure 3 shows the radial temperature distribu-
xf [e‘“sz + 7e"(chh(KSz)} f (o', 2)dzZ, tion along the layer surface (solid line) and the layer-support
9 @ boundary (dotted line) (layer thicknebs= 0.1 and 017 R*)
The corresponding tip geometry can be found in Fig. 2a. For

Bize —H. o) — o koo(kp)Jo(kp’) thin layer H = 0.1) only a minor difference between the
a(z=—-H.p)= [ pdp P radial temperature distribution at upper=¢ 0) and lower
0 0 (z= —H) boundary of the metal film can be found.
H Now the result for the non-steady-state model is calcu-
xfch(/csz/) f(o,2)dz. (32) Iateq anq shown in.Fig. 4 in comparison with the sqlution
obtained in the quasi-steady-state approach (the quasi-steady-

0 state approach gives the maximum temperature in the sheet

These temperatures are in the frequency domain. The inver%%r large pulse length). The picture shows the resuits for dif-

Fourier transformation can be applied to obtain these valuegnrggtbser:\?vitetr?'tﬂ;ng?:é dFOSrtg;g‘ ;ﬁrgsth%ngoﬁ-gg]:é qg{:{é solu-
in the time domain. Fast Fourier Transformation (FFT) can be y -ady-st
used for this purpose. ion can be found. In addition, the temperature distribution for

In order to understand the obtained results we now us'€ UPPer and lower boundary of the metal film are almost
a simplified form for the inner integral. For electromagneticIdentlcal in steady and non-steady-state case and lines for

waves propagating in a conducting metal, the intensity det_he upper and_lower bounda_rytemperature distribution merge
to one. Having a larger film thickness we can see some

creases exponentially according to Fresnel's formula. Th ;
At i amping of the temperatures and the appearance of temporal
decay coefficient is given by: ; .
tails compared to the quasi-steady-state results. A tempera-

. ture difference between upper and lower boundary can be
]/ = 2\/ Slnz ebeam_ £, noted.



120 3 Conclusions

1004 The steady-state solution of the heat transfer problem for
a tip and a metallic semi-infinite space was transformed
into a Laplace problem and solved by the boundary element
method (BEM). BEM was also applied in the calculations of
the electric fields in our previous and in the current papers.
60- A very large field enhancement factor (FEF) was found in our
previous calculations. This large FEF causes a large heat pro-
404 duction in a very small region of nanometer size near the tip
apex.

We noted that the rise of temperature of a tungsten probe
tip is one to two orders of magnitude higher than the max-
0 imum temperature of the sample. This is in agreement with

- ' ' : the conclusion drawn in [16], where a different approach for
00 02 04 06 08 10 the investigated problem was developed. For silver tips, the
rR* situation is different. For a certain geometry, the temperature
in the sample can be in the same order of magnitude as the
40 temperature on the tip due to the smaller absorption and the
better heat conductivity.

Similar to results of [16] the tungsten tip temperature in
our calculations can rise by about one hundred degree, while
a massive sample can reach only several degree. The main
reason for this difference is the large volume of the sample
where the heat is distributed. In other words there is a large
solid angle of the sample relative to the one of the probe cone.
When this volume decreases, a increasing temperature within
the sample can be expected.

Such a decrease happens when a thin metal sheet at-
tached to a dielectric support with small heat conductivity is
considered. This problem was solved analytically for the non-
steady-state case. We used the integral Fourier transformation

0 . . . . in time and Hankel transformation in radial coordinates. An
60 02 04 06 08 10 analysis of the analytical solution shows that the temperature
rIR* of the metal sheet has a logarithmic divergence in the inverse
Fig. 3. Temperature in the metallic sheet:zat 0 (solid ling), z= —H (dot- H,ankEI trans_formatlon 'f th_e heat COﬂdUCtIVIty-Of the dielec-
ted ling, (tungsten tip, gold samplé} = 0.1 and 017R*, respectivelyS =  triC support is zero. This is in accordance with the known
10 W/cn?, aq/As = 0.01). For thin layer H = 0.1) only a minor difference  conclusion of the heat transfer theory. The two-dimensional

between the radial temperature distribution at upper and lower boundary qiap|ace prob'em has no solution in the case of an infinite
the metal film can be found

temperature change [K]

20

temperature change [K]

space.
120 50 40
100 10 37 .
< < < 30- 7\
% 80+ '5' 3. 2 ! /‘F\
: X b2 I
5 60 5 § o0l [
e © o by
S = = i
® 2 20- 2 154 ;
S 40 ] /
; : S
= 201 & 104 g J |
5_ A
0 °
. : . 0 ‘ D
2 A 0 1 2 05 : 5 ¥ 5 7 >
time tit time t/x time tit

Fig. 4. Comparison of the results for steady-stadetfed ling and non-steady-statsdlid line) models (forz=0, andz= —H; at p = 0, tungsten tip, gold
sample)q/As =0.01, H = 0.1, 0.17, 0.27, respectively). FoH = 0.1 for thin films only a minor difference between the steady-state and the non-steady-state
solution can be found. In addition, the temperature distribution for the upper and lower boundary of the metal film are almost identical in steady and no
steady-state case. Thees for the upper and lower boundary temperature distribution merge into one. For larger film thickines& 17, 0.27) a damping

of the temperatures and the appearance of temporal tails in the non-steady-state in comparison to the quasi-steady-state can be found. Alse a tempera
difference between upper and lower boundary can be seen
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The maximum temperature of the confined metallic sheeReferences

is much higher than for the semi—infinite space. The tempera-

ture can reach several hundred degrees. The effect dependf
strongly on the material properties of the tip and the sample. 5’
The geometry parameters of the problem (the tip—sample dis-3.
tance, the curvature radius of the tip, the angle of the laser

beam, and the solid angle of the probe cone) also have great-
influence on the final results. 5

The non-steady-state model for heat transfer in the metal ™
sheet shows a considerable decrease of the maximal tems.
perature in comparison with the temperatures found in the 7.
steady-state approach. Small shifts of the temperature profiles
in time and temporal tails are also found in the non-steady-
state results.

Finally, we can suppose that applying this problem to
guasi-one- or quasi-zero-dimensional nano-structures placetp.
on a dielectric support with small heat conductivity will cause
much higher temperatures of the samples than we even cal-
culated in this paper. It means that nano wires and small
thin confined objects having nanometer size can reach melt-

ing or evaporation temperature while the tip is still far away 13-

from this temperature. Such materials can be successfully cut,
welded, and soldered. This makes the method flexible and an
important tool for nano structuring.
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