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Abstract. In order to understand the basic process of a laser-
illuminated scanning probe tip it is necessary to calculate the
temperature distribution in such a geometry. In the first part
of this paper the temperature distribution in a laser-heated tip
and a semi-infinite metallic sample is solved in a steady-state
approach. This is done with the help of the boundary element
method. In a second part, the temperature field in a thin metal
sheet attached to a semi-infinite dielectric substrate is calcu-
lated by applying the Fourier–Bessel transformation method.

PACS: 02; 44.05.+e

A new and promising method for sample surface modifi-
cation in the nanoscale region was proposed in [1, 2]. The
pulsed laser illuminating of STM (scanning tunnel micro-
scope) or SFM (scanning force microscope) probe tips, which
are placed above a sample creates a series of nanocraters or
nanogrooves on gold substrates. However, the main reason for
the structuring process remains unclear and is controversially
discussed by many groups [3–6]. To better understand the ba-
sic physical mechanism of this phenomenon it is necessary
to estimate the temperatures of the sample and the tip. An
appropriate method for the calculation of the electric fields
on the tip, on the sample and in the free space has been de-
veloped as described in our previous paper [7]. This method
is based on a quasi-steady-state (or electrostatic) approach. It
means a reduction of the initial exact formulation of the prob-
lem (expressed through the Maxwell or Helmholtz equations)
to the Laplace problem for the electric potentialϕ. This can
be done due to the very small size of the region, in which the
electric field is calculated. The region diameter should not ex-
ceed the Rayleigh sizeR∗ = λ/(2π), λ being the wavelength
of the laser light. The phase shift in the field oscillations can
be ignored for all points inside the domain of calculation. The
electric field is expressed via the gradient of the complex elec-
tric potentialϕ, which is described in three domains I, II, III
(sample , free space, and tip domain , respectively, see Fig. 1)
by the Laplace equations

∆ϕs= 0, ∆ϕf = 0, ∆ϕt = 0. (1)

On the outer boundaries of the spherical region (shown in
Fig. 1) some appropriate boundary conditions were used fol-
lowing the exact Fresnel formulae.

The well-known continuity conditions for potentials and
electric induction fields were used on the interface boundaries
(S1, S3): .

on S1:ϕs= ϕf, εs
∂ϕs

∂n
=−∂ϕf

∂n
,

on S3:ϕt = ϕf, εt
∂ϕt

∂n
=−∂ϕf

∂n
, (2)

whereεs, εt are the dielectric constants of sample and tip, re-
spectively. The change of the direction of the normal vector
for the inner and outer side of the surface causes the mi-
nus sign in (2). The problem (1), (2) can be transformed into
a system of connected integral equations for the boundary
values of the potentialsϕ and its normal derivatives∂ϕ

∂n . By
applying the boundary element method [12–14] all integrals
can be converted into discrete sums and solved directly by the
Gauss method. A very large enhancement of the electric field

Fig. 1. Tip–sample geometry used for calculation
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E was found near the apex of the probe. The field enhance-
ment factor (FEF) determined as the ratioEmax/E0 (E0 is
the amplitude of the field in the incident laser beam) reaches
values up to several hundred [7]. The FEF is a strong function
of the tip-sample distance and the material properties of the
tip and the sample (εs, εt).

In the first part of this paper the temperature distribution
inside a laser-heated tip and a semi-infinite metallic sample is
calculated by a steady-state approach. This is done with the
help of the boundary element method.

In a second part, the temperature field inside a thin metal
sheet attached to a semi-infinite dielectric substrate is calcu-
lated by applying the Fourier–Bessel transformation method.

1 Calculation of the temperature distributions in laser-
illuminated sample and scanning probe tip of
a tunneling microscope

1.1 Setting up the steady-state heat transfer problem

A penetrating electric field inside a tip or a sample causes
a heat production according to the known formula [8]

Q= ω1

8π
ε′′ | E |2 (3)

whereQ is the volumetric density of the heat averaged over
a period of the field,ε′′ is the imaginary part of the complex
dielectric constant of the tip or the sample material [9],ω1 is
the laser light frequency.

Why can we use the steady-state approach for the tem-
perature calculation for a very short nanosecond heating
pulse? The duration of the laser pulse isτ = (5–10)×
10−9 sec, [1]. The thermo-diffusivity coefficient for typical
metals isa= (10−4–10−5) m2/s [10]. For t ≈ τ the heat pen-
etration length can be estimated as [11]

L =√4aτ ≈ 10−6 m

This length is ten times larger than the distance used in
our calculation (Rayleigh lengthR∗ ≈ 100 nm) and it is also
two orders of magnitude larger than the tip curvature radius
Rt=(–) 1030nm. Therefore the steady-state approach can be
applied.

With this approach the temperature in the tip and the sam-
ple is described by the Poisson equation:

∆Tt = − Qt

λt
=−ωlε

′′
t

8πλt
| Et |2,

∆Ts= − Qs

λs
=− ωlε

′′
s

8πλs
| Es |2, (4)

whereλt, λs are the heat conductivity coefficients of tip
and sample materials.

A transformation of (4) into a dimensionless form can be
done by dividing all coordinates by the Raleigh scaleR∗, and
by using two temperature scales for tip and sample:

T∗t =
λlκtnt

πλt
S0, T∗s =

λlκsns

πλs
S0, (5)

whereκt, nt, κs, ns are the known optical constants (from
handbook [9]) determined by the relations

√
εt = nt+ iκt,√

εs= ns+ iκs, S0 is the density of the energy flux in the laser
beam (the modulus of the averaged Poynting vector). With
a wavelength ofλl = 532 nm, S0 = 10 MW/cm2 and a tung-
sten probe(λt = 177 W/(m∗K))we come toT∗t = 908 K. With
a gold sample (λt = 312 W/(m∗K)) we come toT∗s = 61 K.
When we introduce dimensionless temperaturesθt = Tt/T∗t ,
θs= Ts/T∗s and coordinates we obtain

∆θs=− | ∇ϕs |2, ∆θt =− | ∇ϕt |2 . (6)

Here and hereunderϕt andϕs are the dimensionless electric
potentials for the tip and the sample, described by Laplace
equations (1) and (2). The right parts of equations (6) can be
transformed by the formula

| ∇ϕ |2=∆
| ϕ |2

2
, (7)

which is true for all harmonic functions.
Since the vector field∇ϕ is also harmonic, it follows simi-

lar to (7):

∆ | ∇ϕ |2= 2 | ∇∇ϕ |2> 0. (8)

From (6)–(8) some important properties ofϕ, ∇ϕ, andθ can
be derived. Due to the positive left- and right-hand sides of
(7) and (8)| ϕ |2 and | ∇ϕ |2 can reach their maximum only
on the boundaries, but not inside the regions. The tempera-
ture fields, according to the negative right-hand sides of (6),
can have their minimum only on the boundary and not inside
the region. These conclusions follow from the second condi-
tion for the maximum and minimum. All second derivatives
should have the same sign, negative for maximum and posi-
tive for minimum.

The identity (7) permits us to transform the Poisson’s
problems (6) into Laplace problems

∆Θs= 0, ∆Θt = 0, (9)

where the modified temperatures are:

Θs= θs+ | ϕs |2
2

, Θt = θt+ | ϕt |2
2

. (10)

This transformation (10) helps us to avoid Poisson’s problem.
We can use the boundary element method (BEM), to calculate
the solutions for equations (9).

Let us consider the boundary conditions for the tempera-
ture fieldsθs andθt. Due to the zero heat conductivity within
the free space between the sample and the tip, the adiabatic
condition is applied on surfacesS1 andS3 (see Fig. 1):

∂θs

∂n

∣∣∣∣
S1

= 0,
∂θt

∂n

∣∣∣∣
S3

= 0. (11)

On the boundariesS0 andS4 the heat flux density can be de-
termined by the formula

∂θ

∂n
=− W

ΩR2
. (12)
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W is the full amount of heat produced by the heat source
Q in this region,Ω is the solid angle. For the probe cone
Ωt = 2π(1−cosθt) and for the semi-spaceΩs= 2π, R is the
radius of the control sphere as in Fig. 1. Formula (12) means
that the heatW produced in a small domain near the tip apex
(or near the origin of the system of coordinates for the semi-
infinite sample) spreads for a relatively large distance (R) in
a spherical symmetrical manner: the flux density is expected
to be approximately constant onS0 and S4. In steady state,
the heat produced by the heat sourceQ within the region
flows through the boundary of the control sphere. In real ex-
periments a much larger tip region is illuminated. This would
mean an additional rise in temperature. However, the rise in
temperature which is due to laser illumination is much higher
for the tip apex than for the upper tip region. Therefore, from
(12) a formula for the temperature onS0 andS4 can be found
by integrating overR.

θ = W

ΩR
. (13)

For the heatW produced in the volume of the tip or the sam-
ple we can derive the following formula:

W=
∫
V

|∇ϕ|2dV =
∮
S

∂

∂n

|ϕ |2
2

dS=
∮
S

Re

{
ϕ∗
∂ϕ

∂n

}
dS. (14)

The final expression (14) for the heatW contains only the
boundary values ofϕ∗ and ∂ϕ

∂n , which are calculated with the
help of BEM [7].

Finally the boundary conditions for the modified tempera-
turesΘs andΘt are

on S1 : ∂Θs

∂n
=Re

{
ϕ∗s
∂ϕs

ϕn

}
,on S0 :Θs= Ws

2πR
+ | ϕs |2

2
,

(15)

on S3:
∂Θt

∂n
=Re

{
ϕ∗t
∂ϕt

ϕn

}
,

on S4:Θt = Wt

2π(1−cosθt)R
+ |ϕt|2

2
. (16)

1.2 Boundary element method for solution of the Laplace
problem

The Laplace equations (9) can effectively be solved by the
BEM [7, 12–14]. The mathematical details of the BEM for
axis-symmetrical problems can be found in [7]. The follow-
ing expression can be derived:

αΘ(R)+
∫
Γ

∂F(R, R′)
∂n

Θ(R′)r ′dΓ(R′)

=
∫
Γ

F(R, R′)
∂Θ(R′)
θn

r ′dΓ(R′), (17)

and

F(R, R′)= K(c)

π(a+b)1/2
, R= (r, z), R′ = (r ′, z′),

∂F(R, R′)
∂n

= E(c)− K(c)

2πr ′(a+b)1/2
nr

+ nr (r − r ′)+nz(z− z′)
π(a−b)(a+b)1/2

E(c),

a= r 2+ r ′
2+ (z− z′)2,b= 2rr ′, c2 = 4rr ′

(r + r ′)2+ (z− z′)2
.

(18)

F is the Greens Function for axis-symmetrical problems.E
andK are elliptic integrals of the first and second kind [12–
14] andΓ is the boundary line of the domain.

Equations (17) and (18) together with the boundary condi-
tions (15) and (16) can be used as a starting point for the nu-
merical calculation of the temperature distribution with BEM.
This is done by taking pointsR on the boundaryS and by
replacing equation (17) with its discrete form

αiΘi+
N∑

j=1

Θj

∫
sj

∂F(Ri , Rj )

∂nj
dsj =

N∑
j=1

(
∂Θ

∂n

)
j

∫
sj

F(Ri , Rj )dsj . (19)

For all boundary pointsR the integrals under the sum can be
calculated numerically over a small boundary elementsj be-
cause the solution forF(R, R′) is known. The integrals in (19)
will be:

Gij =
∫
Γj

Fr ′dΓ, Hij =
∫
Γj

∂F

∂n
r ′dΓ. (20)

These integrals were calculated numerically in the meridian
planeΓ by Gauss method [14]. They are the elements of the
global matrix equation for two non-connected Laplace prob-
lems for domains I and III:

HijΘj = Gij qj , (21)

whereqj designates the normal derivative ofΘ on the j -th
boundary element. The diagonal element withαi is included
in Hij .

Figure 2 shows the temperature distribution along the tip
and sample boundary for different geometry and tip materi-
als (tungsten and silver tip, gold surfaceλ = 532 nm, S0 =
10 MW/ cm2). The temperature in both domains depends to
a great extent on the tip’s geometry and material. For tung-
sten tips, the temperature in the tip is1–2 orders of magnitude
larger than in the sample. The main reason for this difference
is the large volume of the sample in which the heat is dis-
tributed and also the much better heat conductivity of the gold
sample. Moreover the absorption coefficient (the imaginary
part of the dielectric constant) is much larger for tungsten.

As expected, for a larger tip volume, the temperature de-
creases in the tip whereas the temperature in the sample
volume increases. For the chosen larger tip geometry, the
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Fig. 2. Temperature distribution along the tip (left side) and sample bound-
ary (right side) for different geometries. (tungsten tipsolid line, silver tip
dotted line, gold surfaceλ= 532 nm, S0 = 10 MW/cm2)

FEF decreases [7]. Simultaneously, the enhanced field is dis-
tributed over a larger volume. A larger overall heat production
in the sample volume is the consequence.

The situation is different for silver tips. For a certain tip
geometry the temperature in the sample can exceed the tem-
perature in the tip. There are several reasons. The field en-
hancement of silver tips is usually much larger than the FEF
of tungsten. Additionally, silver has a much smaller absorp-
tion (at this wavelength) and a much better heat conductivity
than tungsten. Therefore, the equilibrium between produced
heat and heat flow out of the tip region is reached at a smaller
temperature.

2 Calculation of the temperature distribution in thin
metal sheets

As mentioned above it was shown that the heat produced in
a metallic semi-infinite sample spreads quickly over a large
volume and the temperature of the sample is not very high.
If the sample is made of a thin metal sheet with a high heat
conductivityλs placed on a dielectric with a small heat con-
ductivity λd(λd < λs) changes. When the heat conductivity
of the support is zero(λd = 0), the steady-state solution of
the heat transfer problem cannot exist. This means that the
temperature of the sheet in the two-dimensional case rises to
infinity during an infinite period of time. In the case of a small
λd one can expect that the heat encounters a much larger ther-

mal resistance while spreading over the thin sheet which leads
to a higher temperature.

Let us consider this non-steady-state problem. The time
dependencies of the light intensityS0 and of the heat source
Q can be described as a Gauss curve

Q(t, r) = q(r)e−t2/τ2

whereτ is the characteristic laser pulse duration. The equa-
tions for the temperature fields in the sheet and in the dielec-
tric support are

∆Ts− 1

as

∂Ts

∂t
=−q(r)

λs
e−t2/τ2

,∆Td− 1

ad

∂Td

∂t
= 0. (22)

(as, ad are the thermo-diffusivity coefficient of the metal sur-
face and the dielectric support, respectively). After applying
the integral Fourier transformation (designated below by ‘∼’)
to system (22) we get

∆T̃s− iω

as
T̃s=− q(r)τ

λs2
√
π

e−(ωτ/2)
2
, ∆T̃d− iω

ad
T̃d= 0. (23)

The boundary conditions are

at z= 0:
∂T̃s

∂z
= 0, (24)

at z=−H : T̃s= T̃d, λs
∂T̃s

∂z
= λd

∂T̃d

∂z
, (25)

at infinity,
√
ρ2+ z2→∞ : T̃s= T̃d= 0.

Assuming a sufficiently quick decay of all used functions
at ρ→∞ the Hankel integral transformation can be applied
to the problem:

T̃(ρ, z)=
∞∫

0

T̂(k, z)Jν(kρ)k dk,

T̂(k, z)=
∞∫

0

T̃(ρ, z)Jν(kρ)kdρ. (26)

For our problem:ν = 0.
Dimensionless coordinates, time, frequency, and source

function are introduced via the scalesR∗ andτ. We use:ρ′ =
ρ/R∗, k′ = kR∗, z′ = z/R∗, t ′ = t/τ, ω′ = ωτ, H ′ = H/R∗.
The source functionf is determined by

f̃ (ρ, z)= R∗2

T∗s

q(r)
λs2
√
π

e−(ωτ/2)
2
.

Below, the prime′ will be omitted.
The governing system of equations for the dimensionless

temperatures is:

d2θ̂s

dz2
−κ2

s θ̂s=− f̂ (0> z>−H),

d2θ̂d

dz2
−κ2

dθ̂d= 0 (z<−H), (27)
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whereκs, κd are also dimensionless:

κs=
√

k2+ iω/Fos, κd=
√

k2+ iω/Fod. (28)

The combinationsasτ

R∗2
= Fos and adτ

R∗2
= Fod are called the

Fourier criteria in heat transfer theory. Equation (27) can be
solved in a general form

θ̂s= I
e−κsH(1−Λ)

κsΦ
ch(κsz)+ 1

2κs

H∫
0

[
e−κs|z′−z|

+e−κs(z′+z)
]

f̂ (k, z′)dz′,

θ̂d= I
e−κd(z−H)

κsΦ
, (29)

where

Φ =Λch(κsH)+sh(κsH), Λ= λdκd

λsκs
,

I =
H∫

0

ch(κsz
′) f̂ (k, z′)dz′, (30)

f̂ (k, z′)=
∞∫

0

f̃ (ρ′, z′)J0(kρ
′)ρ′dρ′. (31)

The integrals (30) and (31) can be substituted into expres-
sions (29). After applying the back Hankel transformation the
temperatures in the sheet and in the dielectric support can be
obtained

θ̃s(z= 0, ρ)=
∞∫

0

ρ′dρ′
∞∫

0

dk
J0(kρ)J0(kρ′)

κs

×
H∫

0

[
e−κsz′ + (1−Λ)

Φ
e−κsHch(κsz

′)
]

f̃ (ρ′, z′)dz′,

θ̃d(z=−H, ρ)=
∞∫

0

ρ′dρ′
∞∫

0

dk
J0(kρ)J0(kρ′)

κsΦ

×
H∫

0

ch(κsz
′) f̃ (ρ′, z′)dz′. (32)

These temperatures are in the frequency domain. The inverse
Fourier transformation can be applied to obtain these values
in the time domain. Fast Fourier Transformation (FFT) can be
used for this purpose.

In order to understand the obtained results we now use
a simplified form for the inner integral. For electromagnetic
waves propagating in a conducting metal, the intensity de-
creases exponentially according to Fresnel’s formula. The
decay coefficient is given by:

γ = 2
√

sin2 θbeam− ε,

where θbeam is the angle between the light beam and the
direction normal to the surface. The same behavior can be
supposed for the heat production in the sheet

f̃ (ρ, z)= f̃0(ρ)e−γz. (33)

The inner integral in expression (32) can be calculated obtain-
ing.

θ̃s(z= 0, ρ)=
∞∫

0

f̃0(ρ
′)ρ′dρ′

∞∫
0

J0(kρ)J0(kρ′)
κs(κs+γ){

1+ (1−Λ)γ
Φ

[
e−γH−e−κsH

κs−γ
]
− Λ
Φ

e−γH

}
kdk

θ̃d(z=−H, ρ)=
∞∫

0

f̃0(ρ
′)ρ′ dρ′

∞∫
0

J0(kρ)J0(kρ′)
κs(κs+γ)Φ{

γch(κsH)

[
e−γH −e−κsH

κs−γ
]

−sh(κsH)

[
κse−γH −γe−κsH

κs−γ
]}

k dk . (34)

For the steady-state solutionω= 0 andκs= κd= k. For small
k(k� 1) and smallΛ(Λ� 1) the valueΦ =Λ+kH is very
small and the integrals in (34) become divergent atΛ = 0.
Only at nonzero heat conductivity of the support may a fi-
nite temperature field be obtained. This conclusion illustrates
the above-discussed important general features of our solu-
tions (the steady-state solution does not exist in the two-
dimensional case).

The integrals in (32) were calculated numerically. The
Hankel integral was solved by the Newton–Cotes adoptive
algorithm [15]. The integrals inρ andz were found by the
trapeze method. The inverse Fourier transformation in the
non-steady-state case was done by the help of FFT.

First off all we want to consider the results for the steady-
state case. Figure 3 shows the radial temperature distribu-
tion along the layer surface (solid line) and the layer-support
boundary (dotted line) (layer thicknessH = 0.1 and 0.17 R∗)
The corresponding tip geometry can be found in Fig. 2a. For
thin layer (H = 0.1) only a minor difference between the
radial temperature distribution at upper (z= 0) and lower
(z=−H) boundary of the metal film can be found.

Now the result for the non-steady-state model is calcu-
lated and shown in Fig. 4 in comparison with the solution
obtained in the quasi-steady-state approach (the quasi-steady-
state approach gives the maximum temperature in the sheet
for large pulse length). The picture shows the results for dif-
ferent sheet thicknessH . For thin films only a minor differ-
ence between the steady state and the non-steady-state solu-
tion can be found. In addition, the temperature distribution for
the upper and lower boundary of the metal film are almost
identical in steady and non-steady-state case and lines for
the upper and lower boundary temperature distribution merge
into one. Having a larger film thickness we can see some
damping of the temperatures and the appearance of temporal
tails compared to the quasi-steady-state results. A tempera-
ture difference between upper and lower boundary can be
noted.
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Fig. 3. Temperature in the metallic sheet: atz= 0 (solid line), z=−H (dot-
ted line), (tungsten tip, gold sample,H = 0.1 and 0.17R∗, respectively,S0=
10 W/cm2, λd/λs= 0.01). For thin layer (H = 0.1) only a minor difference
between the radial temperature distribution at upper and lower boundary of
the metal film can be found

Fig. 4. Comparison of the results for steady-state (dotted line) and non-steady-state (solid line) models (forz= 0, andz=−H ; at ρ = 0, tungsten tip, gold
sample,λd/λs= 0.01, H = 0.1, 0.17, 0.27, respectively). ForH = 0.1 for thin films only a minor difference between the steady-state and the non-steady-state
solution can be found. In addition, the temperature distribution for the upper and lower boundary of the metal film are almost identical in steady and non-
steady-state case. Thelines for the upper and lower boundary temperature distribution merge into one. For larger film thickness (H = 0.17, 0.27) a damping
of the temperatures and the appearance of temporal tails in the non-steady-state in comparison to the quasi-steady-state can be found. Also a temperature
difference between upper and lower boundary can be seen

3 Conclusions

The steady-state solution of the heat transfer problem for
a tip and a metallic semi-infinite space was transformed
into a Laplace problem and solved by the boundary element
method (BEM). BEM was also applied in the calculations of
the electric fields in our previous and in the current papers.
A very large field enhancement factor (FEF) was found in our
previous calculations. This large FEF causes a large heat pro-
duction in a very small region of nanometer size near the tip
apex.

We noted that the rise of temperature of a tungsten probe
tip is one to two orders of magnitude higher than the max-
imum temperature of the sample. This is in agreement with
the conclusion drawn in [16], where a different approach for
the investigated problem was developed. For silver tips, the
situation is different. For a certain geometry, the temperature
in the sample can be in the same order of magnitude as the
temperature on the tip due to the smaller absorption and the
better heat conductivity.

Similar to results of [16] the tungsten tip temperature in
our calculations can rise by about one hundred degree, while
a massive sample can reach only several degree. The main
reason for this difference is the large volume of the sample
where the heat is distributed. In other words there is a large
solid angle of the sample relative to the one of the probe cone.
When this volume decreases, a increasing temperature within
the sample can be expected.

Such a decrease happens when a thin metal sheet at-
tached to a dielectric support with small heat conductivity is
considered. This problem was solved analytically for the non-
steady-state case. We used the integral Fourier transformation
in time and Hankel transformation in radial coordinates. An
analysis of the analytical solution shows that the temperature
of the metal sheet has a logarithmic divergence in the inverse
Hankel transformation if the heat conductivity of the dielec-
tric support is zero. This is in accordance with the known
conclusion of the heat transfer theory. The two-dimensional
Laplace problem has no solution in the case of an infinite
space.
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The maximum temperature of the confined metallic sheet
is much higher than for the semi–infinite space. The tempera-
ture can reach several hundred degrees. The effect depends
strongly on the material properties of the tip and the sample.
The geometry parameters of the problem (the tip–sample dis-
tance, the curvature radius of the tip, the angle of the laser
beam, and the solid angle of the probe cone) also have great
influence on the final results.

The non-steady-state model for heat transfer in the metal
sheet shows a considerable decrease of the maximal tem-
perature in comparison with the temperatures found in the
steady-state approach. Small shifts of the temperature profiles
in time and temporal tails are also found in the non-steady-
state results.

Finally, we can suppose that applying this problem to
quasi-one- or quasi-zero-dimensional nano-structures placed
on a dielectric support with small heat conductivity will cause
much higher temperatures of the samples than we even cal-
culated in this paper. It means that nano wires and small
thin confined objects having nanometer size can reach melt-
ing or evaporation temperature while the tip is still far away
from this temperature. Such materials can be successfully cut,
welded, and soldered. This makes the method flexible and an
important tool for nano structuring.
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