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Abstract. A quantitative theory for modeling the laser- having orthotropic symmetry. However, all these theoretical
generated transient ultrasonic Lamb waves, which propagatesorks involved an inverse Laplace integral, which is usually
along arbitrary directions in orthotropic plates, is presente@valuated by the calculus of residues. The evaluation of the
by employing an expansion method of generalized Lamlinverse Laplace integral in the first approach involves the un-
wave modes. The displacement field is expressed by a surderstanding of the intricate behavior of dispersion relations
mation of the symmetric and antisymmetric modes in thefor real as well as complex wavenumbers, and its physical
surface stress-free orthotropic plate, and therefore the theosgnse is hard to understand [5].

is particularly appropriate for waveform analyses of Lamb  Another approach, called the normal mode expansion
waves in thin plates because one needs only to evaluate sawethod, has been proposed by Cheng et al. [6] for model-
eral lower modes. The transient waveforms excited by théng the thermoelastic generation process of elastic waveforms
thermoelastic expansion and the oil-coating evaporation ari@ an isotropic plate. Cheng and Berthelot [7] have extended
analyzed for a transversely isotropic thin plate. The resultthis method to Lamb wave propagation along two principal
show that the theory provides a quantitative analysis to chadirections in an orthotropic plate. In the principal directions
acterize anisotropic elastic stiffness properties of orthotropiof the orthotropic material, there exist three types of free-

plates by laser-generated Lamb wave detection. plate modes; namely, the pure shear horizontal, dilatational,
and flexural modes. The shear horizontal mode polarized par-
PACS: 43.35.+d; 81.60.Hv; 81.70.Dw allel to the plate surface is not coupled to the dilatational

and flexural modes, which simplifies greatly the Lamb wave

motion. However, only seven of the nine independent elas-
The technique of laser-generated Lamb waves has potentiat coefficients of the orthotropic materials are involved, as
applications to non-contact and nondestructive evaluation arahalyzed in [7], as the Lamb waves propagate in the princi-
characterization of the sheet materials in industry. It wagal directions. These seven coefficients @rg Cz2, C33, Caa,
demonstrated that the thickness and moduli of isotropic thimss, ci3, andc,3 in the principal axis coordinate system. In
plates could be measured experimentally without any prioorder to extract the other two elastic coefficients, (and
knowledge of the acoustic properties [1,2]. In determiningcsg) by fitting comparison of theory with experimental wave-
the plate thickness and moduli it was assumed that the olflerms, we had to consider the Lamb wave propagation in
served waveform was composed of the lowest order synthe nonsymmetric directions. The Lamb wave propagation in
metric and antisymmetric Lamb modes, due to existence aionsymmetric directions is more complex than that along the
a cut-off frequency. On the theoretical front, Spicer et al. [3]principal directions, because there will no longer be a fam-
presented a theoretical formulation for laser—ultrasonic wavdy of shear horizontal modes independent of the dilational
generation in an isotropic thin plate by using the numerical inand flexural modes in the nonsymmetric directions. All partial
version of the Hankel-Laplace transform solution to the timewaves are coupled, and the free-plate modes can only be clas-
dependent thermal diffusion problem in the hyperbolic formsified as symmetric and antisymmetric modes with respect to
The effectiveness of this formulation was shown in extractthe median plane. Therefore, it is necessary to develop the
ing plate thickness and modulus values by direct comparisomwork in [7] to Lamb wave propagation in the nonsymmetric
of theory with experimental waveforms. Dubois et al. [4] de-directions.
veloped a model of the thermoelastic excitation of ultrasound The interest in an orthotropic plate has been motivated
in an orthotropic thick plate based on the temporal Laplacky fiber composite material. For the propagation of elastic
and spatial two-dimensional Fourier transforms for materialsvaves in composite reinforced with large-diameter fibers, the
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dynamic effects of the microstructuring must be considered, Laser pulse
if the fiber is large enough to equal a longitudinal acoustic
quarter-wavelength in the range of 1020 MHz However,

in most fiber composite systems, the fiber diameter is small

enough to permit modeling of the material as a homoge- |

neous, but anisotropic, medium, which retains the symmetry I '

of the composite, but ignores its microstructural nature. For l l 0 /| X1

a [0/90] cross-ply composite with a unidirectional lamina,
the composite plate is considered usually as an equivalent ¢
homogeneous orthotropic material and the characteristics of ‘ Py .

\ 4

the elastic waves are studied by using the effective stiffnes x « / |\ Sy

matrix. 4 ” *ox
In this paper, a quantitative theory to simulate the laser %

generated transient Lamb wave propagating along an arb +h

trary direction in an orthotropic plate is presented by em-
ploying the normal mode expansion of generalized Lamb
wave modes. The displacement is simply expanded into both
the symmetric and antisymmetric wave modes in the surface'g 1. Geometry of an orthotropic plate, showing Gaussian line oriented in
stress-free orthotropic plate. All factors, such as spatial angd®> i g ¢

time distributions ofR[hepincident laser beam, opticalppenetra— @ anglep and Lamb wave propagating aloggdirection

tion, thermal diffusivity, thickness of the plate, and source—

receiver distance, can be taken into account. This method #ress tensor can be expressed by nine non-zero independent
particularly appropriate for waveform analyses of the tranelastic constants for an orthotropic material in the symmetric
sient Lamb wave in the thin-sheet materials since we neecbordinate system

only to calculate contributions of the lower few antisymmet-

ric and symmetric modes. The transient Lamb waves, excited

by thermoelastic expansion and evaporation of the oil, are
a)rﬁalyzed numericall?/ for a transversgly isotropic thin plate™t = C11t11+ Cr2l22+ Ci3Us 3,
modeling unidirectional composite materials. The numericaFz2 = C12U1,1 + C22U22 +C23U33 ,
anal_ysis shows thgt the .theory. provides a quantitative alezg = C13U1,1+ Co3Uz 2+ Ca3U 3,
alysis to charaqterlz_e anisotropic elastic stiffness Properties . — ¢, (uyz+Us>) .

of the orthotropic thin plates by laser-generated Lamb wave ' ’

detection. T13 = Cs5(U,3+U3 1),

T12 = Cep(Uz,1+U12) ,

v
X3

1 Theory

By the two-dimensional Fourier transform for variabbes

1.1 Basic equations andxs

We consider an infinite plate of finite thickneds @f an or-
thotropic material. The coordinate axes x,, andxz of the
model are chosen as to be parallel with the principal axes 1
y, andz of the material, wittz being the optical axis of the in- Ui (Xq, X2, X3, t) = — f 0; (g, K2, X3, t)

cident laser. Thas = £h are the lower and upper surfaces of 2 s

the elastic plate, respectively, wia = 0 being the midplane ;

of the plate, as shown in Fig. 1. The displacement field vector x expli (kaxa +koxo) [ dka dkz )
u = (uq, Uy, U3) satisfies

o0

3 Equations (1a) and (1b) are reduced to forms of the matrix

92y, oTij (U) .
— = fi | =12, and la
P2 ; o +fi, 3 (1a)  operators

with the boundary conditions at surfaces= +h .

a°U o

3 PW =a+f, (33)
Z Tj(Wn;j =5, i=12 and3 (1b) b(uy=3%, at xz==+h, (3b)
=1

where f = (f1, fp, f3) ands= (s, &, 3) are the bulk and

surface force densities, respectively, induced by the incidenthere i = (0, U, Us)' is the displacement column vector,
laser pulsep is the volume densityni, ny, n3) = (0, 0, £1) f=(fy, f, i)' and3= (&, %, %)! are the body and surface
are the normal vectors at the lower and upper surfaces, respdorce column vectors, respectively, the superscripgpre-
tively, andz; (u)(i, j =1, 2, and 3 is the stress tensor. The sents the transpose, and the elemaptandb;; of the 3x 3
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matrix operators. = (a;j) andb = (b;;) are follows wheregn(t) are the generalized Fourier coefficients
2 2 9 1
a1 = —(C11K5 + Cgek5) +Cs55— ; _ : = .ot %ot
11 (C11KT + Ce6K3) C558X§ Em = w—mf5|nwm(t—r) Swp, X3:ih+/ fwydv | dr,
0 v

a12 = ap1 = —(C12+ Cep)kikz ,
52 (5b)

— 2 2 .
A2 = —(CoeK] + C20K3) + Caaz3 >

2 wherev represent the body of the plate and the superscript

| : “*” represents complex conjugation.
Ap3 = Az = 1(Cp3+ Caa)ko— ,

0X3
2

0
azz = —(C55k§ + C44k§) +C33—
ox3

1.3 Lamb wave modes

3 In fact, (4a) and (4b) mean that the eigen-functions of the

a13 = ag; = i1(C13+ Cs5)ki — , operatora are the generalized Lamb wave modes and the re-
X3 lations betweernwy, and 1, ko) are dispersion equations of

the Lamb wave modes. The eigenfunctions can be classified

and as antisymmetric and symmetric modes with respect to the
d . median planexz = 0) [9],
D11 =Css—; b12=0; biz=icCssky,
0X3 . . .
3 ' wh=1 Y  xjuesinuxg, j=1land2
P21 =0; bp= C448_x3 ; Doz =icCaskz , =P
. ) 9 wi = @ COSA|X3 , (6a)

b1 =iCa1Ky ; b3p =iCaokp ; b33 =Caz— . am l_z

0X3 =p.gr

for antisymmetric modes and

1.2 Expansion in normal modes szm =—i Z xjA ficoshxs, j=21land2
I=p,q,r
Usually, (3a) is solved by employing temporal Laplace transwgm _ Z f, sin X . (6b)

formation [3, 4]. However, this technique requires a numer-
ical inverse transform integral evaluated by the calculus of

residues, which in the first approach involves the understangor symmetric modes. The generalized Rayleigh—Lamb equa-
Ing of the intricate behavior of dlsperS|0n relations for realtions for determining the relations between eigen_frequency

and complex wave numbers. Here we employ the method Qf, and the wavenumberk,(andks) can be obtained by com-
expansion in normal modes to solve this equation. We desining (6a) and (6b) with (4b)

fine an eigenfunction seri¢wm, om, m=1,2, 3, -- -} by the

I=p,q,r

eigenvalue problem of the operatounder the boundary op- dettij (wm, ki, k2)1 =0, (7
eratorb

with the elements of & 3 matrixt = [t;]1 (I = p, g, andr)
a[wm] = —poiwm, —h<xg<+h, (4a)
blwn] =0, Xs=h, (4b) =08 +k), j=land2

. . . _ tg = (Caskixu + Coskoxa + Caa) i [tan(y ) ¥ .
wherewn, is the eigenfrequency corresponding to the eigen-
mode wm = [wim, wam, wam]'. Because the operat@ is  Here the 1" and “—1” in the elementty correspond to
a self-adjoint operator under the boundary oper&ifothe  antisymmetric and symmetric modes, respectively. The pa-

eigen-function seriefwm} forms an orthogonal set with the rameters in (6a) and (6b) are discussed as follows:
weighting functiono [8], _
(a) The partial wave numbeks (I = p, g, andr) are the roots

+h of the determinant equation

“h

defg;(1)]=0. (8)

This equation is deduced by substituting the partial waves

On the other hand, it has been proven fha#} is also a com- vim = Vi, €XpiAxa) (j =1, 2, and 3) into (4a). The elem-

plete function series [8], so that the displacement column gnis of 3% 3 symmetric matrixg() = [gi ()] are
vector(i can be expanded by the generalized Fourier series !

g11(A) = (pw’, — a11) — Cssh? 5 G1a(A)=021(\) = —au2,
U22(A) = (pwi, — 822) — Casr? ; Ga3(A)=0a1(A)= —au3h ,
(5a) 033(A) = (pw?, — 83) — C33h? 5 Go3(A)=032(A) = —ap3h ,

[](kj_, k27 X37 t) = Z Sm(kl» k27 a)m’ t)wm(kl’ k27 wm» X3) )
m
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(b) The coefficientsy and xa are the partial wave ampli-
tudes, defined by

X1 = (2130224 A12823) / (G11022 — 82,) , (%99)
X2l = (823011 + A10813) / (G11022 — A%y) - (9b) -
(c) The amplitudes and f; (I = p andq) depend ore. and L\)Q
f, by following equations >
>
Z (tj cosih)e = —ety cosih,  (j=1and 3 E
I=p.q °
(10a) ®
> @y sinyh) fi = —fity sinih,  (j=1and3 £
I=p.q
(10b)

Thee or f; is determined by the normalized condition
h

/ pwaS (w2 dxg=1. (12)

—h

Finally, one can obtain a normalized eigenfunction series
{w23} for symmetric and antisymmetric modes.

2 Numerical analyses
For simplicity, a Gaussian line source oriented at the angle
¢ from the x; axis, as shown in Fig. 1, is considered in
the numerical analyses, and the generalized Lamb wave willo
propagate along the direction or thex; axis. The spatial g
distributiono(xy, X2) of laser pulse is expressed by :
0(x1, X2) = 1/(27a2) expl—(x1 COsp + X sing)?/a%] . (12) o
0
wherea is the laser beam radius. The wavenumberand ;
ko are replaced by, = kcosp andk, = ksing, and the dis- @
placement field is s
17
U(X), X5, 1) = Zf desm(kco&p, ksing, wm, t)
o m=1
xwm(kcosg, ksing, wm, X3) explikx;) . (13a) 0 . y . 5 . 3 . 4 . s . 5
Itis easy to obtain the surface normal velocity from (13a) frequency oh /c
0
v3(d, t) = duz(d, —h. t) (13b) Fig. 2a,b. Dispersion curves of two antisymmetrie)(and two symmetric
Y= dt ’ (b) modes for different propagating directiotps= 30° and60°

whered is the source—receiver distance.

For a transversely isotropic plate, the ¢ x3) plane is
isotropic so that there are only five independent stiffnes@.1 Thermoelastic excitation
constants. In the numerical simulations, the five elastic con-

stants aré;; = 15544 GPacz, = 159 GPaCss = 6.08GPa  1pg py 1k and surface forces and s depend on not only the
¢z = 9.10GPa and cx3 = 8.14 GPa The density and the  gnqrqy intensity of the laser pulse, but also the experimental
half of thickness are = 25g/cm® andh =0.15mm re-  :dition. In the thermoelastic regime, a localized tempera-
spectively. The dispersion curves of each mode can be Olyyre yariations in the sample induced by absorption of laser
tained by solving (7). Figure 2 depicts dispersion curveg ooy results in a localized thermal expansion, which, in

of two antisymmetric and symmetric modes along twoy,r, “generates a transient displacement fiel@he thermal
propagating directions of the Lamb wave modés= 30°  gress tensor’. is expressed as [11]
i

and 60°. In Fig. 2, thea; and 5 are two coupled shear

horizontal modes, which is different from the isotropic ,
plate [6, 10]. P T =T (W + B0, (14a)
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where g; is the stiffness expansion tensor. In the principalThe temperature distributiaf(x1, X2, X3, t) satisfies the ther-
axis coordinate system, only three diagonal elemegig ( mal diffusion equation

B22, and B13) are non-zero, which can be expressed by three

elements of the thermal expansion teragr

3
Bii :_Zcijajj (i=12 and3.

=1

(14b)

3 2
v 079
C— — Gi— = y
Pt izjle" oxiox O

(16a)

wherec is the specific heat;; is the thermal conductivity
tensor, and] = q(x1, X2, X3, t) is the heating source due to ab-
sorption of the incident laser pulse, which is expressed by,
assuming that absorption of laser energy is isotropic,

Therefore, the equivalent bulk and surface force densities re-

sulting from the thermal stress are

3w
fi = ; Bi ot (i=12 and3 (15a)
3
s=-) Bin®, (=12 and3. (15b)
j=1
(a): $=00
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q = goBo(X1, X2) eXp—B(x3+h)1g(t) , (16b)
whereq is the totally absorbed laser energyplis the op-

tical penetration depth, anglt) is the temporal distribution

of laser pulse. The laser pulse, whose duration is on the order
of nano-seconds, is extremely short compared to wave propa-
gation times, which is on the order of microseconds, and can
be adequately represented by assungjtty as Dirac’s delta
function 8(t) [12]. Typically, 8 are on the order of fOto
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Fig. 3a—d.Surface normal velocitys of the far-field transient Lamb waveforms propagating along direcigoa<0°, 30°, 60°, and9(° by the thermoelastic
excitation and the oil-coating evaporation generation with the source—receiver didtant® cmin (a), (b), (c), and @), respectively
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10° cm~ for metals and some opaque solids, therefore an ag=or antisymmetric modes, f. ~ 5.94Co/(27h) ~ 6.3 MHz
sumption of surface absorption (i.e., zero absorption depth) Co = 10° m/s andh = 0.15 mn) in the numerical analyses
reasonable. The temporal temperature reaches its maximuior propagating directiop = 3(°. This is greater than the
rapidly on the order of nanoseconds for the laser pélge  maximum frequency componentyax ~ Cp/a = 5.0 MHz
and then decays slowly. This temporal characteristic can bgenerated by the thermoelastic expansion and the oil-coating
approximated by the unit step functid#(t) in the scale of evaporation. Therefore, we need only to consider six modes
microseconds, which means that the second term in (16ajg, a1, a2) and &, s1, &) to calculate the far-field transient
representing the thermal diffusivity, is negligible for small Lamb waveforms for a thin plate. In fact, the contributions
thermal conductivity [12]. In fact, the time dependence ofof the higher modes to the surface normal velocifyare
force sources induced by thermoelastic expansion can be agery small and can be ignored because the plate is thin
proximately byH(t) to predict the observed waveforms [13]. (h = 0.15 mm) in the numerical calculations. In Fig. 3, only
Therefore, for simplicity, three approximations are asthe modesy anda; are calculated because the contribution
sumed in numerical analyses: (a) the laser pulse shag®;is to vz from the symmetric modes is much less than that from
(b) the absorption depth is zerg A~ 0; and (c) the ther- theaganda;.
mal diffusion is neglected. In these conditions, the solution of  Figure 3 shows the typical transient Lamb waveforms,

(16a) is simply which consist of the first arrival of the higher frequencies and

the later lower-frequency signal of the lowest antisymmetric

9= @o(xl, X2)8(X3 +h)H(t) . (17) @ mode. The higher-frequency oscillations at the waveforms
pC in Figs. 3b and 3c come from the contribution of the mage

. . Figure 3 indicates also that the transient Lamb waveforms are
Then, one can obtain the surface normal velocity by comggsitive to anisotropic properties of the materials by compar-
bining (15a) and (15b) with (17). In numerlc%l analyses, the?ng the waveforms at different directions.

thermal expansion coefficiente; = 5.0x 107" /K, a2z = The epicenter waveforms have totally different temporal
1.0x107%/K and o33 = 1.0x 107 /K, and the' width of characteristics for thermoelastic and evaporting generations
Gaussian bea”.“ radium &= 0.20 mm The transient Lamb in bulk materials [13]. But Fig. 3 shows that the transient
waveforms excited by the thermoelastic expansion are showry, 1, \waveforms induced by the former are similar to the
in Fig. 3 for propagating along different directiogs=0°,  \a eforms generated by the latter, although the time depen-
30°, 607, ando0’. dence of force source in two cases are completely different.
The similarity indicates that thay anda; modes can be ex-
cited by both the force sources. This implies that excitation of
ap anda; modes depends weakly on the temporal distribution
he force source for thin plate.

On the other hand, Figs. 3b and 3c show apparently the

2.2 Qil-coating evaporation

In experiments, a thin coating of oil at the generation spo?ft

is used to increase the acoustic generation efficiency from >~ " .
the laser pulse. In this case, both the thermoelastic expafntribution of coupled shear horizontal magie In contrast

sion and evaporation of the oil will generate the force source®ith the results obtainedin [7], the shear horizontal modes are
at the same time. But evaporation of the oil become dominnot coupled to the surface normal velocity as the Lamb waves

ant sources [13, 14]. The generation mechanism of the forc%{opagate along two principal directions in an orthotropic

sources by evaporation of the oil is that momentum is trand?12(€: @s shown in Figs. 3a and 3d.

ferred from the evaporating particles to the solid surface. The

researches by Hutchins et al. [13, 14] showed that the evapo- )

rating force source is dominated by a normal force monopol8 Conclusion

with §(t) time dependence. This implies that the recoil force

from ablation of the oil depresses the surface, and then rapidky theory to simulate excitation of transient Lamb wave prop-

returns to its equilibrium position. Therefore, the bulk forceagating along arbitrary directions in orthotropic plates is pre-
density f = 0 and the surface force density= (0, 0, s3) are  sented by employing the normal mode expansion method

approximately proportional to the incident laser pulse of the Lamb wave modes. The displacement field vector is
expressed by a summation of the symmetric and antisym-
S3(Xq1, X2, t) = no(Xy, X2)8(1) , (18)  metric modes in the surface stress-free orthotropic plate. The

theory is particularly appropriate for waveform analyses of
wheren is the efficiency constant. Substituting this surfaceLamb wave in thin plates because one needs only to eval-
force source into (5b) yields uate the lower several modes. The numerical analyses in-
dicate that the method will provide a useful technique to
(19) characterize anisotropic properties of orthotropic thin plates.
However, it is available to consider not only the higher fre-
. . . __quency components of the lowest Lamb wave modes, but
The transient Lamb waveforms excited by the oil-coating,sq the higher-order Lamb wave modes for thicker plates

evaporation are shown also in Fig. 3 for propagating along, the numerical analyses. The further investigations are in
different directiongp = 0°, 30°, 60°, and9(°. progress.

In an orthotropic plate, each Lamb mode has a cut-off fre-
quency, except for zero-order antisymmetric megland two Acknowledgement§.his work is supported by the National Science Foun-

lower symmetric modes, ands;. The cut-off frequencyfc  dation of China under Grant No. 19574024 and the Natural Science Foun-
depends on the propagating direction and the plate thicknessation of Jiangsu Province under Grant No. BK97031.
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