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Abstract. A quantitative theory for modeling the laser-
generated transient ultrasonic Lamb waves, which propagates
along arbitrary directions in orthotropic plates, is presented
by employing an expansion method of generalized Lamb
wave modes. The displacement field is expressed by a sum-
mation of the symmetric and antisymmetric modes in the
surface stress-free orthotropic plate, and therefore the theory
is particularly appropriate for waveform analyses of Lamb
waves in thin plates because one needs only to evaluate sev-
eral lower modes. The transient waveforms excited by the
thermoelastic expansion and the oil-coating evaporation are
analyzed for a transversely isotropic thin plate. The results
show that the theory provides a quantitative analysis to char-
acterize anisotropic elastic stiffness properties of orthotropic
plates by laser-generated Lamb wave detection.

PACS: 43.35.+d; 81.60.Hv; 81.70.Dw

The technique of laser-generated Lamb waves has potential
applications to non-contact and nondestructive evaluation and
characterization of the sheet materials in industry. It was
demonstrated that the thickness and moduli of isotropic thin
plates could be measured experimentally without any prior
knowledge of the acoustic properties [1, 2]. In determining
the plate thickness and moduli it was assumed that the ob-
served waveform was composed of the lowest order sym-
metric and antisymmetric Lamb modes, due to existence of
a cut-off frequency. On the theoretical front, Spicer et al. [3]
presented a theoretical formulation for laser–ultrasonic wave
generation in an isotropic thin plate by using the numerical in-
version of the Hankel–Laplace transform solution to the time-
dependent thermal diffusion problem in the hyperbolic form.
The effectiveness of this formulation was shown in extract-
ing plate thickness and modulus values by direct comparison
of theory with experimental waveforms. Dubois et al. [4] de-
veloped a model of the thermoelastic excitation of ultrasound
in an orthotropic thick plate based on the temporal Laplace
and spatial two-dimensional Fourier transforms for materials

having orthotropic symmetry. However, all these theoretical
works involved an inverse Laplace integral, which is usually
evaluated by the calculus of residues. The evaluation of the
inverse Laplace integral in the first approach involves the un-
derstanding of the intricate behavior of dispersion relations
for real as well as complex wavenumbers, and its physical
sense is hard to understand [5].

Another approach, called the normal mode expansion
method, has been proposed by Cheng et al. [6] for model-
ing the thermoelastic generation process of elastic waveforms
in an isotropic plate. Cheng and Berthelot [7] have extended
this method to Lamb wave propagation along two principal
directions in an orthotropic plate. In the principal directions
of the orthotropic material, there exist three types of free-
plate modes; namely, the pure shear horizontal, dilatational,
and flexural modes. The shear horizontal mode polarized par-
allel to the plate surface is not coupled to the dilatational
and flexural modes, which simplifies greatly the Lamb wave
motion. However, only seven of the nine independent elas-
tic coefficients of the orthotropic materials are involved, as
analyzed in [7], as the Lamb waves propagate in the princi-
pal directions. These seven coefficients arec11, c22, c33, c44,
c55, c13, andc23 in the principal axis coordinate system. In
order to extract the other two elastic coefficients (c12 and
c66) by fitting comparison of theory with experimental wave-
forms, we had to consider the Lamb wave propagation in
the nonsymmetric directions. The Lamb wave propagation in
nonsymmetric directions is more complex than that along the
principal directions, because there will no longer be a fam-
ily of shear horizontal modes independent of the dilational
and flexural modes in the nonsymmetric directions. All partial
waves are coupled, and the free-plate modes can only be clas-
sified as symmetric and antisymmetric modes with respect to
the median plane. Therefore, it is necessary to develop the
work in [7] to Lamb wave propagation in the nonsymmetric
directions.

The interest in an orthotropic plate has been motivated
by fiber composite material. For the propagation of elastic
waves in composite reinforced with large-diameter fibers, the
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dynamic effects of the microstructuring must be considered,
if the fiber is large enough to equal a longitudinal acoustic
quarter-wavelength in the range of 10 to20 MHz. However,
in most fiber composite systems, the fiber diameter is small
enough to permit modeling of the material as a homoge-
neous, but anisotropic, medium, which retains the symmetry
of the composite, but ignores its microstructural nature. For
a [0/90] cross-ply composite with a unidirectional lamina,
the composite plate is considered usually as an equivalent
homogeneous orthotropic material and the characteristics of
the elastic waves are studied by using the effective stiffness
matrix.

In this paper, a quantitative theory to simulate the laser-
generated transient Lamb wave propagating along an arbi-
trary direction in an orthotropic plate is presented by em-
ploying the normal mode expansion of generalized Lamb
wave modes. The displacement is simply expanded into both
the symmetric and antisymmetric wave modes in the surface
stress-free orthotropic plate. All factors, such as spatial and
time distributions of the incident laser beam, optical penetra-
tion, thermal diffusivity, thickness of the plate, and source–
receiver distance, can be taken into account. This method is
particularly appropriate for waveform analyses of the tran-
sient Lamb wave in the thin-sheet materials since we need
only to calculate contributions of the lower few antisymmet-
ric and symmetric modes. The transient Lamb waves, excited
by thermoelastic expansion and evaporation of the oil, are
analyzed numerically for a transversely isotropic thin plate
modeling unidirectional composite materials. The numerical
analysis shows that the theory provides a quantitative an-
alysis to characterize anisotropic elastic stiffness properties
of the orthotropic thin plates by laser-generated Lamb wave
detection.

1 Theory

1.1 Basic equations

We consider an infinite plate of finite thickness 2h of an or-
thotropic material. The coordinate axesx1, x2, andx3 of the
model are chosen as to be parallel with the principal axesx,
y, andz of the material, withz being the optical axis of the in-
cident laser. Thex3=±h are the lower and upper surfaces of
the elastic plate, respectively, withx3= 0 being the midplane
of the plate, as shown in Fig. 1. The displacement field vector
u= (u1,u2,u3) satisfies

ρ
∂2ui

∂t2
=

3∑
j=1

∂τij (u)
∂xj

+ fi , (i = 1,2, and 3) (1a)

with the boundary conditions at surfacesx3=±h

3∑
j=1

τij (u)nj = si , (i = 1,2, and 3) (1b)

where f = ( f1, f2, f3) and s= (s1, s2, s3) are the bulk and
surface force densities, respectively, induced by the incident
laser pulse,ρ is the volume density,(n1,n2,n3)= (0,0,±1)
are the normal vectors at the lower and upper surfaces, respec-
tively, andτij (u)(i , j = 1,2, and 3) is the stress tensor. The

Fig. 1. Geometry of an orthotropic plate, showing Gaussian line oriented in
the angleφ and Lamb wave propagating alongφ direction

stress tensor can be expressed by nine non-zero independent
elastic constants for an orthotropic material in the symmetric
coordinate system

τ11= c11u1,1+c12u2,2+c13u3,3 ,

τ22= c12u1,1+c22u2,2+c23u3,3 ,

τ33= c13u1,1+c23u2,2+c33u3,3 ,

τ23= c44(u2,3+u3,2) ,

τ13= c55(u1,3+u3,1) ,

τ12= c66(u2,1+u1,2) ,

By the two-dimensional Fourier transform for variablesx1
andx2

ui (x1, x2, x3, t)= 1

2π

∞∫
−∞

ũi (k1, k2, x3, t)

×exp[i(k1x1+k2x2)]dk1dk2 , (2)

Equations (1a) and (1b) are reduced to forms of the matrix
operators

ρ
∂2ũ
∂t2
= a(ũ)+ f̃ , (3a)

b(u)= s̃ , at x3=±h , (3b)

where ũ = (ũ1, ũ2, ũ3)
t is the displacement column vector,

f̃ = ( f̃1, f̃2, f̃3)
t ands̃= (s̃1, s̃2, s̃3)

t are the body and surface
force column vectors, respectively, the superscriptt repre-
sents the transpose, and the elementsaij andbij of the 3×3
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matrix operatorsa= (aij ) andb= (bij ) are follows

a11=−(c11k
2
1+c66k

2
2)+c55

∂2

∂x2
3

;
a12= a21=−(c12+c66)k1k2 ,

a22=−(c66k
2
1+c22k

2
2)+c44

∂2

∂x2
3

;

a23= a32= i(c23+c44)k2
∂

∂x3
,

a33=−(c55k
2
1+c44k

2
2)+c33

∂2

∂x2
3

;

a13= a31= i(c13+c55)k1
∂

∂x3
,

and

b11= c55
∂

∂x3
; b12= 0 ; b13= ic55k1 ,

b21= 0 ; b22= c44
∂

∂x3
; b23= ic44k2 ,

b31= ic31k1 ; b32= ic32k2 ; b33= c33
∂

∂x3
.

1.2 Expansion in normal modes

Usually, (3a) is solved by employing temporal Laplace trans-
formation [3, 4]. However, this technique requires a numer-
ical inverse transform integral evaluated by the calculus of
residues, which in the first approach involves the understand-
ing of the intricate behavior of dispersion relations for real
and complex wave numbers. Here we employ the method of
expansion in normal modes to solve this equation. We de-
fine an eigenfunction series{wm, ωm,m= 1,2,3, · · · } by the
eigenvalue problem of the operatora under the boundary op-
eratorb

a[wm] = −ρω2
mwm , −h< x3 <+h , (4a)

b[wm] = 0 , x3=±h , (4b)

whereωm is the eigenfrequency corresponding to the eigen-
mode wm = [w1m, w2m, w3m]t . Because the operatora is
a self-adjoint operator under the boundary operatorb, the
eigen-function series{wm} forms an orthogonal set with the
weighting functionρ [8],

+h∫
−h

ρwnw
∗t
m dx3= δmn . (4c)

On the other hand, it has been proven that{wm} is also a com-
plete function series [8], so that the displacement column
vectorũ can be expanded by the generalized Fourier series

ũ(k1, k2, x3, t)=
∑

m

ξm(k1, k2, ωm, t)wm(k1, k2, ωm, x3) ,

(5a)

whereξm(t) are the generalized Fourier coefficients

ξm = 1

ωm

t∫
0

sinωm(t− τ)
 s̃w∗tm

∣∣
x3=±h+

∫
ν

f̃w∗tm dν

 dτ ,

(5b)

whereν represent the body of the plate and the superscript
“*” represents complex conjugation.

1.3 Lamb wave modes

In fact, (4a) and (4b) mean that the eigen-functions of the
operatora are the generalized Lamb wave modes and the re-
lations betweenωm and (k1, k2) are dispersion equations of
the Lamb wave modes. The eigenfunctions can be classified
as antisymmetric and symmetric modes with respect to the
median plane (x3= 0) [9],

wa
jm = i

∑
l=p,q,r

χjlλl el sinλl x3 , j = 1 and 2,

wa
3m =

∑
l=p,q,r

el cosλl x3 , (6a)

for antisymmetric modes and

ws
jm =−i

∑
l=p,q,r

χjlλl fl cosλl x3 , j = 1 and 2,

ws
3m =

∑
l=p,q,r

fl sinλl x3 , (6b)

for symmetric modes. The generalized Rayleigh–Lamb equa-
tions for determining the relations between eigen-frequency
ωm and the wavenumbers (k1 andk2) can be obtained by com-
bining (6a) and (6b) with (4b)

det[tij (ωm, k1, k2)] = 0 , (7)

with the elements of 3×3 matrixt = [tij ] (l = p, q, andr )

tjl = (λ2
l χjl +kj ) , j = 1 and 2,

t3l = (c13klχ1l +c23k2χ2l +c33)λl [tan(λl h)]±1 .

Here the “+1” and “−1” in the elementt3l correspond to
antisymmetric and symmetric modes, respectively. The pa-
rameters in (6a) and (6b) are discussed as follows:

(a) The partial wave numbersλl (l = p, q, andr ) are the roots
of the determinant equation

det[gij (λ)] = 0 . (8)

This equation is deduced by substituting the partial waves
νjm = ν0

jm exp(iλx3) ( j = 1, 2, and 3) into (4a). The elem-
ents of 3×3 symmetric matrixg(λ)= [gij (λ)] are

g11(λ)=(ρω2
m−a11)−c55λ

2 ; g12(λ)=g21(λ)=−a12 ,

g22(λ)=(ρω2
m−a22)−c44λ

2 ; g13(λ)=g31(λ)=−a13λ ,

g33(λ)=(ρω2
m−a33)−c33λ

2 ; g23(λ)=g32(λ)=−a23λ ,
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(b) The coefficientsχ1l andχ2l are the partial wave ampli-
tudes, defined by

χ1l = (a13g22+a12a23)/(g11g22−a2
12) , (9a)

χ2l = (a23g11+a12a13)/(g11g22−a2
12) . (9b)

(c) The amplitudesel and fl (l = p andq) depend oner and
fr by following equations∑

l=p,q

(tjl cosλl h)el =−er tjr cosλr h , ( j = 1 and 2)

(10a)∑
l=p,q

(tjl sinλl h) fl =− fr tjr sinλr h , ( j = 1 and 2)

(10b)

Theer or fr is determined by the normalized condition

h∫
−h

ρwa,s
m (wa,s

m )∗t dx3= 1 . (11)

Finally, one can obtain a normalized eigenfunction series
{wa,s

m } for symmetric and antisymmetric modes.

2 Numerical analyses

For simplicity, a Gaussian line source oriented at the angle
φ from the x1 axis, as shown in Fig. 1, is considered in
the numerical analyses, and the generalized Lamb wave will
propagate along theφ direction or thex′1 axis. The spatial
distributiono(x1, x2) of laser pulse is expressed by

o(x1, x2)= 1/(2πa2) exp[−(x1 cosφ+ x2 sinφ)2/a2] , (12)

wherea is the laser beam radius. The wavenumbersk1 and
k2 are replaced byk1= k cosφ andk2= k sinφ, and the dis-
placement field is

u(x′1, x
′
3, t)=

1

2π

∞∫
o

dk
∞∑

m=1

ξm(k cosφ, k sinφ,ωm, t)

×wm(k cosφ, k sinφ,ωm, x
′
3) exp(ikx′1) . (13a)

It is easy to obtain the surface normal velocity from (13a)

ν3(d, t)= du3(d,−h, t)

dt
, (13b)

whered is the source–receiver distance.
For a transversely isotropic plate, the (x2− x3) plane is

isotropic so that there are only five independent stiffness
constants. In the numerical simulations, the five elastic con-
stants arec11= 155.44 GPa, c22= 15.9 GPa, c55= 6.08 GPa,
c12 = 9.10 GPa, and c23= 8.14 GPa. The density and the
half of thickness areρ = 2.5 g/cm3 and h = 0.15 mm, re-
spectively. The dispersion curves of each mode can be ob-
tained by solving (7). Figure 2 depicts dispersion curves
of two antisymmetric and symmetric modes along two
propagating directions of the Lamb wave modes:φ = 30◦
and 60◦. In Fig. 2, the a1 and s0 are two coupled shear
horizontal modes, which is different from the isotropic
plate [6, 10].

Fig. 2a,b. Dispersion curves of two antisymmetric (a) and two symmetric
(b) modes for different propagating directionsφ= 30◦ and60◦

2.1 Thermoelastic excitation

The bulk and surface forcesf and s depend on not only the
energy intensity of the laser pulse, but also the experimental
condition. In the thermoelastic regime, a localized tempera-
ture variationϑ in the sample induced by absorption of laser
energy results in a localized thermal expansion, which, in
turn, generates a transient displacement fieldu. The thermal
stress tensorτ ′ij is expressed as [11]

τ ′ij = τij (u)+βijϑ , (14a)
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whereβij is the stiffness expansion tensor. In the principal
axis coordinate system, only three diagonal elements (β11,
β22, andβ13) are non-zero, which can be expressed by three
elements of the thermal expansion tensoraij :

βii =−
3∑

j=1

cijαjj (i = 1,2, and 3) . (14b)

Therefore, the equivalent bulk and surface force densities re-
sulting from the thermal stress are

fi =
3∑

j=1

βij
∂ϑ

∂xj
, (i = 1,2, and 3) (15a)

si =−
3∑

j=1

βij njϑ , (i = 1,2, and 3) . (15b)

Fig. 3a–d.Surface normal velocityν3 of the far-field transient Lamb waveforms propagating along directionsφ= 0◦, 30◦, 60◦, and90◦ by the thermoelastic
excitation and the oil-coating evaporation generation with the source–receiver distanced= 4.0 cm in (a), (b), (c), and (d), respectively

The temperature distributionϑ(x1, x2, x3, t) satisfies the ther-
mal diffusion equation

ρc
∂ϑ

∂t
−

3∑
i, j=1

κij
∂2ϑ

∂xi∂xj
= q , (16a)

wherec is the specific heat,κij is the thermal conductivity
tensor, andq= q(x1, x2, x3, t) is the heating source due to ab-
sorption of the incident laser pulse, which is expressed by,
assuming that absorption of laser energy is isotropic,

q= q0βo(x1, x2) exp[−β(x3+h)]g(t) , (16b)

whereq0 is the totally absorbed laser energy, 1/β is the op-
tical penetration depth, andg(t) is the temporal distribution
of laser pulse. The laser pulse, whose duration is on the order
of nano-seconds, is extremely short compared to wave propa-
gation times, which is on the order of microseconds, and can
be adequately represented by assumingg(t) as Dirac’s delta
function δ(t) [12]. Typically, β are on the order of 105 to
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106 cm−1 for metals and some opaque solids, therefore an as-
sumption of surface absorption (i.e., zero absorption depth) is
reasonable. The temporal temperature reaches its maximum
rapidly on the order of nanoseconds for the laser pulseδ(t),
and then decays slowly. This temporal characteristic can be
approximated by the unit step functionH(t) in the scale of
microseconds, which means that the second term in (16a),
representing the thermal diffusivity, is negligible for small
thermal conductivity [12]. In fact, the time dependence of
force sources induced by thermoelastic expansion can be ap-
proximately byH(t) to predict the observed waveforms [13].

Therefore, for simplicity, three approximations are as-
sumed in numerical analyses: (a) the laser pulse shape isδ(t);
(b) the absorption depth is zero 1/β ≈ 0; and (c) the ther-
mal diffusion is neglected. In these conditions, the solution of
(16a) is simply

ϑ = q0

ρc
o(x1, x2)δ(x3+h)H(t) . (17)

Then, one can obtain the surface normal velocity by com-
bining (15a) and (15b) with (17). In numerical analyses, the
thermal expansion coefficientsα11 = 5.0×10−6 /K, α22 =
1.0×10−6 /K and α33 = 1.0×10−6 /K, and the width of
Gaussian beam radium isa= 0.20 mm. The transient Lamb
waveforms excited by the thermoelastic expansion are shown
in Fig. 3 for propagating along different directionsφ = 0◦,
30◦, 60◦, and90◦.

2.2 Oil-coating evaporation

In experiments, a thin coating of oil at the generation spot
is used to increase the acoustic generation efficiency from
the laser pulse. In this case, both the thermoelastic expan-
sion and evaporation of the oil will generate the force sources
at the same time. But evaporation of the oil become domin-
ant sources [13, 14]. The generation mechanism of the force
sources by evaporation of the oil is that momentum is trans-
ferred from the evaporating particles to the solid surface. The
researches by Hutchins et al. [13, 14] showed that the evapo-
rating force source is dominated by a normal force monopole
with δ(t) time dependence. This implies that the recoil force
from ablation of the oil depresses the surface, and then rapidly
returns to its equilibrium position. Therefore, the bulk force
density f = 0 and the surface force densitys= (0,0, s3) are
approximately proportional to the incident laser pulse

s3(x1, x2, t)= ηo(x1, x2)δ(t) , (18)

whereη is the efficiency constant. Substituting this surface
force source into (5b) yields

ξa,s
m =−ηõ(k1, k2)

sinωmt

ωm
w

a,s
3m

∣∣
x3=−h . (19)

The transient Lamb waveforms excited by the oil-coating
evaporation are shown also in Fig. 3 for propagating along
different directionsφ = 0◦, 30◦, 60◦, and90◦.

In an orthotropic plate, each Lamb mode has a cut-off fre-
quency, except for zero-order antisymmetric modea0 and two
lower symmetric modess0 ands1. The cut-off frequencyfc
depends on the propagating direction and the plate thickness.

For antisymmetric modea3, fc ≈ 5.94C0/(2πh)≈ 6.3 MHz
(C0 = 103 m/s andh = 0.15 mm) in the numerical analyses
for propagating directionφ = 30◦. This is greater than the
maximum frequency componentfmax≈ C0/a ≈ 5.0 MHz
generated by the thermoelastic expansion and the oil-coating
evaporation. Therefore, we need only to consider six modes
(a0, a1, a2) and (s0, s1, s2) to calculate the far-field transient
Lamb waveforms for a thin plate. In fact, the contributions
of the higher modes to the surface normal velocityν3 are
very small and can be ignored because the plate is thin
(h= 0.15 mm) in the numerical calculations. In Fig. 3, only
the modesa0 anda1 are calculated because the contribution
to ν3 from the symmetric modes is much less than that from
thea0 anda1.

Figure 3 shows the typical transient Lamb waveforms,
which consist of the first arrival of the higher frequencies and
the later lower-frequency signal of the lowest antisymmetric
a0 mode. The higher-frequency oscillations at the waveforms
in Figs. 3b and 3c come from the contribution of the modea1.
Figure 3 indicates also that the transient Lamb waveforms are
sensitive to anisotropic properties of the materials by compar-
ing the waveforms at different directions.

The epicenter waveforms have totally different temporal
characteristics for thermoelastic and evaporting generations
in bulk materials [13]. But Fig. 3 shows that the transient
Lamb waveforms induced by the former are similar to the
waveforms generated by the latter, although the time depen-
dence of force source in two cases are completely different.
The similarity indicates that thea0 anda1 modes can be ex-
cited by both the force sources. This implies that excitation of
a0 anda1 modes depends weakly on the temporal distribution
of the force source for thin plate.

On the other hand, Figs. 3b and 3c show apparently the
contribution of coupled shear horizontal modea1. In contrast
with the results obtained in [7], the shear horizontal modes are
not coupled to the surface normal velocity as the Lamb waves
propagate along two principal directions in an orthotropic
plate, as shown in Figs. 3a and 3d.

3 Conclusion

A theory to simulate excitation of transient Lamb wave prop-
agating along arbitrary directions in orthotropic plates is pre-
sented by employing the normal mode expansion method
of the Lamb wave modes. The displacement field vector is
expressed by a summation of the symmetric and antisym-
metric modes in the surface stress-free orthotropic plate. The
theory is particularly appropriate for waveform analyses of
Lamb wave in thin plates because one needs only to eval-
uate the lower several modes. The numerical analyses in-
dicate that the method will provide a useful technique to
characterize anisotropic properties of orthotropic thin plates.
However, it is available to consider not only the higher fre-
quency components of the lowest Lamb wave modes, but
also the higher-order Lamb wave modes for thicker plates
in the numerical analyses. The further investigations are in
progress.
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