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Abstract. We present a steady-state analysis of a generddsers. See for instance the frequency-doubled Nd:YAG laser
model for a bipolarized Nd-doped fiber laser including the[6], VCSEL [7, 8], and Nd-doped fiber lasers [9, 10]. Most
slow longitudinal variations of the dynamical variables. Theof these theories are oriented toward the study of the tempo-
combined effects of pump-induced, distributed, and localizedal evolution of the system and not the spatial aspect. Indeed,
anisotropies are studied versus the fiber length. In particaiwhether or not, the optical coherence is taken into account,
lar, the evolution of the thresholds versus the pump-inputhe z-dependence of the fields is ignored. This approach is
polarization angle, for different fiber lengths, is investigatechowever justified when the interest lies only in the temporal
in depth. Approximate analytical results are derived for thesvolution of the laser for a given configuration, i.e. for fixed
thresholds and the output intensities. A good agreement withalues of both the active medium length and the reflection co-
the numerical simulations is achieved in a large range of peefficient of the mirrors. However under such conditions, the

rameters. steady-state description of the system, in particular the in-
fluence of either localized or distributed parameters (losses,
PACS: 42.55.Wd; 42.25.Ja; 42.55.Ah gain, polarization-dependent loss), cannot be complete and

thus the theory cannot be predictive.

In the case of fiber lasers, the fiber length can be con-
The simplest model for a single-mode laser, owing to the fasdidered as a control parameter since it can be easily changed
relaxation of the medium polarization (class-B laser), reduced, 15]. Moreover, diode end-pumping leads to an unsaturated
to two rate equations [1]: one for the population inversion andjain which varies along the fiber length. Therefore, length-
the other for the laser intensity. A different approach, origi-dependent steady-state properties deserve a particular atten-
nally described by Rigrod in 1963 [2], consists in taking intotion. In the previous paper we have derived a general model
account the forward and the backward fields inside the cavor the Nd-doped fiber laser which keeps the slow variations
ity. This early model includes the longitudinal variations of of the dynamical variables both in time and along the longitu-
the laser field along the resonant cavigyakis) and allows dinal coordinate [16]. The model assumes a linearly polarized
to introduce localized losses (mirrors or others), distributegpump-field interacting with randomly distributed anisotropic
losses, and inhomogeneous pumping. The rate equations ali@oles. The output intensity consists of two groups of modes
obtained using the mean-field approximation in which thdinearly polarized along the eigenaxis of the doped fiber.
laser properties as well as dynamical variables are averag@tiese modes have a random phase with respect to each other
along the cavity and by assuming that the forward and thand, under the mean-field approximation, the model reduces
backward fields are-independent. Rigrod’s model can be to classical bipolarized laser equations which allows for dy-
adapted to diode-pumped solid-state lasers where the longitnamical studies [9, 10, 17]. Hereafter the ternmafdewill be
dinal pumping leads to an unsaturated gain decreasing alomlgvoted to the polarization modes of the laser. At steady-state,
the cavity. This model has been used for the study of th¢he general model is a generalization of the Rigrod’s theory
steady-state properties of solid-state lasers, doped superfluo-the case of a bipolarized laser. It is very useful to inves-
rescent fibers and fiber lasers [3—5]. The major inconveniend&ate combined effects of length, localized, and distributed
of this approach is that, in general, it does not lead to analy{polarization-dependent loss or gain on the steady-state prop-
ical results. However it has the advantage of describing therties of a fiber laser. The aim of this paper is to propose
slow variations of the fields along the amplifying medium andan approximate analytical solution at steady-state to our gen-
of taking into account both inhomogeneous (distributed) ané@ral model. This solution allows us to establish tiperating
localized phenomena. regime diagranwhich offers a synthetic view of the different

There are now numerous theoretical works on bimodeegimes characterizing a bipolarized laser and to investigate
lasers dynamics [6—14], and in particular, on bipolarizedength-dependent polarization effects.
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The general model is briefly presented in Sect. 1. It take X M,
into account: (i) the forward and the backward intensities in-
side the cauvity, (ii) both localized and distributed losses, ani . B
(iii) both localized and distributed loss anisotropies. We are¢g, iEX Ex
only interested in the steady-state analysis of the problen----->------ o S 7R
Section 2 is devoted to the study of the single-mode (scala E; E
case. As mentioned above, even in the single-mode case the
is no analytical solution to the problem. We propose here ay Z
approximation that yields closed-form expression for the out :
put intensity of the laser in all cases investigated, i.e. single
mode and two-mode (vectorial) cases. The assumption col
sists in considering that the total intensity inside the cavity is
z-independent whereas the forward and backward intensitie €
arez-dependent. The validity of this approximation is deter-
mined by a direct comparison with exact numerical results
The bipolarized model is investigated in Sect. 3. Approximate 0 /
analytical results for the output intensities are obtained in alfiy 1 schematic representation of the problem
cases of interest. As in Sect. 2, a direct comparison of analyti-
cal and numerical solutions is made. The combined effects of
pump-polarization angle and fiber length on the thresholds offhere ¢y is the angle between the pump-input polarization
the two modes are further studied. and thex axis (Fig. 1) ands the cross-saturation parameter

for the pump field. The damping coefficients are written:

3 NZ

1 The general model kx =k(1—1y),

In the previous paper [16], we have derived a general modely = «(1+ ),

for a bipolarized fiber laser that keeps the temporal and longi-

tudinal slow variations of the fields. A schematic representawherey is the distributed loss anisotropy. Together with
tion of the system under study is given in Fig. 1. We considethe model allows us to introduce localized loss anisotropies,
a Fabry—Rrot cavity which supports two counterpropagatingespecially on the mirrors. The boundary conditions on the
fields. Each of them is decomposed on the basis of the eig#nirrors are:

naxis of the fiber X and Y. The unsaturated gain is assumed

— RX|— — RY[-
to be exponentially decreasing along the fiber. This is equivalx (@ = Rilx (@), 150 =Ryl (0), @)
lent to considering a non-saturated pump transition. At steady, (1) = R¥1;7 (1), Iy ()= R%’|;r(|) )
state, the equations for the normalized intensities are:

. o1 ., 1 (1+8) Ae—2 The reflection coefficients are written:
X =
x T2 1+ 15+ 1+ 85 +1y) Rix = (1+t)Ry, Ry=(01-t)Ry, @)
1-8)Ae? Rox = (1+1t2) Re, Ry =(1-t)Re,
Jrﬂ/l ,(|+ I)‘ Iy I‘)I)‘i’ (12)
AU+ LO+ 1y +ly wherety > are localized loss anisotropies on the mirrors and
al}ﬂf L1 (1—8) Ae? Ry 2 the average reflection coefficients.
0z 2\1+B8U+ 100+ 1y + 1y
(1+8)Ae ez 2 Analysis of the single-mode model
s )Y (1b)
1+ 1+ I +8 Uy +1y)

In order to simplify our analysis, we may first consider the
The superscriptt (—) means for the forward (backward) single-mode case, i.e. when polarization properties of the
laser field componentk, , are the damping coefficients for laser are not taken into account. This simpler model can be
the intensities associated with the X and Y field componentsieduced from the general model by assuming tiat 1

A represents the pumping parameter (normalized pumpnd writing the new system for the varialié = (1+ﬂ’)/2
input intensity),« the pump absorption coefficieng’ the [l + Iyi] after having normalized and « respectively by
cross-saturation parameter between the X and Y polarizatiortd + 8')/2 and 2(1+ ). System (1) reduces to :

of the laser field, and the parameter associated with the

pump-induced gain anisotropy, which we will call the gain d1* Ae*? |+ 5
anisotropy.8’ is a measure of the microscopic anisotropy of gz — 1+ 1++1- K : )

the dipole [10]. In the following we shall be interested in lin-

ear pump polarization. In this case the gain anisotropy takebhe boundary conditions on the mirrors become:

the form [16]:

1-8 1*(0) = Rul~(0), (6a)
d=€CcosPy= —1+/3C0527>°’ (2) =) = Rol (). (6b)
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Basically, (5) is the set of equations studied by Rigrod at thi 5.4[

early stage of laser physics [2]. The difference is that, in ou > 5o (a)
case, we consider longitudinal variations of the unsaturate = "I |+
gain resulting from the pump absorption mechanism. Not~ 5.0
that system (5) with constraint (6) does not admit any ana=2 44 I(2)
lytical solution. Our aim in this section is not to reproduce 2
the analysis of Rigrod but rather to consider a simple case i ©
order to derive approximate analytical solutions and to detel S 4.4+

4.61

mine the range of validity of our assumption which will be 44 '@
used for the analysis of the general model. ad, . . . . .
Let us introduce normalized variables: ) 0.002 0.004 0006 0.008 0.0
z
7 =«z o =2 a=24 I"(2) (b)
=Kz, =—, =—. z
K K ~—~ 5.0
. S \\
The saturated gain can be expressed as: G
T a5l
Ae? 2
G2)=——— D I(2)
1+1++1 c
o 40}
where the primes have been omitted in order to simplify th(§
notations. The exact expression of the threshold can be e,
ily obtained by equalizing the total losses to the unsaturate '

gain integrated over one round-trip in the cavity (oscillation

condition). Its expression is: 10

| 1
Y/ P (1— IR R2> . @) 08

l—e 2l
0.6

2.1 Numerical simulations 0.4

Intensity (a.u.)

Before considering the analytic development, we give som— o.2|
numerical solutions of system (5) which will be useful to —
justify our assumption. Figure 2 represents the evolution o oL : @, - : :
the intensitied *(z) along the cavity together with the local 0 02 04z 06 08 1
average intensity defined &&) = (1 (2) +17(2))/2. Three  Fig. 2. Evolution of the forward (*(2)) and backward I("(2)) intensi-
different normalized Iengths are considered:l(a)0.0l, (b) ti_es together with the local average _intensity(z]{) along the cavity in the

| =0.1, and (c)l = 1. The parameters used for this ca|cu-3ﬁgée;2§e_°isiaﬁdof§r d[felrggt;r%{ lfg%tgs (see 1ex). The parameters
lation are:R; =1, R, = 0.8, & = 100, andA = 200. This LT TR -
means that, for physical values of= 0.01 n7* (43 dB/km)
anda =1m* (43dB/m) (which are realistic values for

- Note that this hypothesis is less restrictive than the mean-
a 500ppm Nddoped fiber, for example), the real Iengths’field approximation [3,19] since the latter requires that

used in the calculation, ar&:m, 10 m and100 m 17 (2) = |- (2) — ant. In addit thi .
For the case (a) the fields are amplified within the whole, (@ =!"(2) = constant. In addition, this approxima-

fiber length, whereas for cases (b) and (c) the forward (bac?'—On should be, a priori, good for short medium lengths

ward) intensity exhibits a maximum (minimum) resulting see Fig. 2a,b). The saturated gain becomes:

from the combined effects of the decreasing unsaturated gain Ae ¥z

and the distributed losses. Indeed, for short lengths the sd&(2) = T (8)

urated gain is locally higher than the losses along the whole .

fiber while for higher lengths, the saturated gain become¥ is well known that in homogeneously broadened systems,

locally lower than the losses beyond a particular propagathe total gain does not depend on the pumping parameter

ing length. Moreover, the results of Fig. 2 show that the locafibove threshold [1], that means:

average intensity remains practically constant over the fiber |

length excepting case (c). 9 f G@dz=0 ©)
dA o
0

2.2 Analytical results . . L
yH ) Integrating (8) along the fiber length and taking into account

This fact suggests we assume that the local average intensf§/ation (9) yields:
is uniform along the fiber: 1+1— Ag—' (1—e‘“')
A
=0

(10)

| =1%(2)+ 1~ (2) = constant (1+1)2 o
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Equation (10) becomes: 1,0

di 1+ 0
+ (12) 08}

da~ A °l \_//

Using the fact that the intensity vanishes at threshold, the sc 5|
lution of (11) is: |
- 10 %

A 04+

where the threshold is given by (7). 0.2 .
Relation (12) is valid at ang, in particular ataz =1, and, : 1%
using the boundary condition (6), the output intensity can bt 54 . . . .
calculated: 0,0 0,2 0,4 0,6 0,8 1,0
R

I=1TO+1"O=A+R)IT(D), 2

Fig. 3. Validity of the analytic solutions in the plang R»), whatevera
1) = (1= R 1* ().

Hence, the output intensity is: 15[

1-R [/ A
oY1) = ——1). 1
O 1+ R (Ath ) (13)
Relation (13) contains the factoy @ + Ry) which does not
appear in the mean-field apprOX|mat|on where it is replace
by 1/2 which is the value of the previous factor wiiy = 1.

We find the well-known result that the mean-field approxima-

tion holds only for good optical cavity. 0.0 ‘ ‘ ‘ ‘
0.0 0.1 0.2 | 0.3 0.4 0.5

numeric
analytic

intensity (a.u.)
e

2.3 Validity of the analytical solution

The analytical expression (1) is a linear function versus

the pumping parameter. The approximate analytical expre: 1.0
sion differs from the exact numerical solution only by the =
slope of the output intensity. Let us define an error func- g
tion, Ae, which represents the relative shift between the twc >
slopesAe depends on the parametetd, andR,. For afixed 2057

numeric

pumping rate, the error function is given by: g analytic
19Uty — 1241
Acall, Ro) = 1out(l) %90 02 04 06 08 1.0

R
2

where the superscripts n and a respectively mean numerlcal
and analvtical solutions. g 4. al°= f(l) analytic @otted and numerical olid) solutions with

Yy =0.8. b 1°4'= f(Ry) analytic dotted and numerical folid) solutions
We arbitrarily consider that for a given set of parame—wnh =01, Ry =1, =100, andA = 200

ters(a, I, Ry), there is a good agreementife, (I, Ry)| < 0.1
and a very good agreement|ife, (I, Ry)| < 0.01. Numeri-
cal studies ofA¢, (I, Ry) show that for any value of the pump as a function of the fiber length for the same normalized (and
absorption coefficientr, there exists a zone, included be- physical) parameters as previously. The approximate analyti-
tween the curvebs= f(Ry) solutions of Aep(l, R2) = —0.1  cal results (dotted curve) are very close to the exact numerical
and Aejpo(l, R2) = 0.1, for which the shift between the an- solution (solid line), especially for short fiber lengths which
alytical and numerical results is always beld@®%6. In the is in agreement with what was previously expected. More-
same manner, we can define a range for which the error funover, there exists an optimum value for the fiber length. This
tion does not exceetl. Figure 3 summaries these studiesis directly connected with the existence of a minimum for the
and represents the range of validity for a good and a very goddser threshold [5]. Similar results have been reported for cw
agreement, in the plare Ry). These results demonstrate thatend-pumped lasers [20]. The evolution of the output inten-
whatever the value af, there exists couplgs, Ry) for which  sity versus the output mirror reflectivity is given in Fig. 4b for
the assumption, allowing analytical results to be obtained, is= 0.1. In this case, the agreement is good for high reflection
valid with a good accuracy. coefficients.

Let us now compare directly the analytical and numerical At this stage of our study, it would be easy to analyze
results. Figure 4a shows the evolution of the output intensityhe influence of the fiber length on the optimum output-
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coupling. This is not the purpose of this paper, and, moreoveupon the respective values of the anisotropies, so the first las-
it has been already investigated theoretically [21, 22] and exng mode (strong mode) can be polarized either alrray
perimentally [5]. However, let us recall the main result: fory and the second lasing mode (weak mode) can be polarized
long and high-gain lasers, such as fiber lasers and particeither alongy or x. therefore, we have to distinguish several
larly double-clad fiber lasers, the optimum output couplingcases of interest [10, 11]:
(TP = 1— RS™) is relatively high (over96%). This means strong mode X:
that the output mirror reflectivityr, must be very low. This _th th _
is connected to the important background losses that occur ﬁg?ﬁ ;/l‘y ;Olgr?glo ingly =0,
in this kind of lasers. Thus, our approximate solution is not y X =
adapted for fiber lasers which are used to reach maximunf Strong mode Y:
output power. However, it is worthwhile to point out thatthe ~ — AT < A < AT'= I, # 0 andl, =0,
exact numerical solution remains very helpful for these lasers — A > AN = ly # 0 andly # 0.
and that not all fiber lasers attempt to achieve high powein the following we first assume, without loss of generality,
High reflectivity of the output mirror can be used for examplethat the strong mode is polarized along gexis. In appendix
to reduce threshold for more fundamental studies. C we will give a summary of analytical results in all cases.

In summary, the study of the well-known single-mode
case has allowed us to define the range of validity for whiclg ; } ; th th
both the analytical results and the assumption used are vali Zl Single-mode solutionst’ < A < 4,
In the following section we will restrict the analytical study \we assume here that the strong mode is polarized along the
of the general model to the range of parameters for which thg axis. The range of parameters for which this is true will be
assumption can be used with a good approximation. determined later. Let us first evaluate the threshold for the X

mode starting from the oscillation condition which writes

: th
Rix Rox exp 2/ ((1+ §+p(1-9) ATXe*O‘Z -1+ y) dz

In this section we are interested in finding approximate ana- 0
lytical solutions to the general problem. The influence of the
fiber length on the thresholds evolution versus the pump po- = =
larization angle is also investigated in depth and discussed. The threshold is straightforwardly calculated from (16) and

The general equations, normalized exactly as in the previ[-akeS the form:
ous section, can be written: )

3 Analysis of the general model

(16)

A 2 al
E)Ii x = / _ R _ @l
= (G@ -1+ 15 (14a) 1+p+A-p)1-e
1
Al x[(l— y— = In[L+t)(1+t)RR } . 17
H Let us define
where: C1p g
ol rpae =1y (183)
U214 I+ AT+ 1Y) . ol (18b)
1, (1—5) Ae™o? Pm1—ed”
MY S s Ea (152) 1
T you Iy= (1_1/)_5In[(1+tl)(l+t2)RlR2] , (18c)
1 (1—8)Ae? _
Gy(2 = T g I I 1 whereIy represents the total losses for mode X. Using (18),
AU+ + 1y +1y relation (17) can be written in condensed form as
1 (1+8) Ae™? ,
+58 - —. 15b th_ 1+e
20 I+ K+ I+ AUy +1y) (130) A=l 5o (19)

Gx y(2) represent the saturated gains experienced by the twidote that (19) is the exact expression of the threshold asso-
polarized eigenmodes. At this stage we do not give the numegiated with the strong mode. In order to find an analytical
ical solutions of system (14) but a direct comparison with theexpression for the output intensity, again we assume that
analytical results will be done throughoutthis section. As pre- n _
viously mentioned the parameters used in this section lie ifx = |x (&) + I (2) = constant
the range of validity of our hypothesis. . -

The different anisotropies introduced in our model (gain'writl—gr? saturated gain experienced by the X mode can be
8, distributed loss:y, localized losst; ) lead to a loss of '
symmetry between the modes X and Y. In particular, their reg @) = 1(1+8Ae** 1 (1-8Ae
spective thresholdg! andAg‘ are often differentand depend ~* 2 141y 2 1+ 81«
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We follow now the same procedure as that used in the prewhererl is given by (18c) and’y represents the total losses
vious section. The derivative of the saturated gain versus thfer mode Y:

pump parameter is:

dGx(@) _ 14+81+4 1k~ Agx
da 2 (1+1y2

A=81+B—BAGE o
2 1+ 12

+8

The integral along the laser length must vanish accordlngw

to (9). After some algebra, we find:

da _ A+HA+A10+ A=A+ 103
A <1+6)(1+|x)(1+ﬁ’lx>2+ﬁ’<1—8)(1+ﬁ'|xx1+lx)2( )
20

1
Iy= (1+V)—E In[1-t)(1-t)RR] .

As a consequence of the use£f we have to introduce the
mean losses coefficient, = (I'y+ I'x)/2, in order to express
I'y and Iy as a function ofA:

Ix=@1A-A)r,
A+A)r.

A andI” can be expressed as a function of both localized and
distributed loss anisotropies:

_ 1-t7 1-tp
4VI In I:l-Hl l-‘rtz]

Equation (20) can be directly integrated from the threshoIdA “A—In [A-tHA-tHRRZ]’

" to A. Its solution is :

A A4+ +3A=-p)NA+ 100+ 1)
A 1+ +8(1—p)+2B1x

(21)

Relations (21) and (18) finally allow us to exprdssas
a function of the pumping parameter:

L_ 4 1
T 2Lplk 1-¢
A ¢ \? €l-8)A
- + _gd=-94 (22)
Lol 1—¢ (1—¢)Lplx

The last step is the evaluation k(1) using the relations:
=10+ 0 =A+R)lED),
190) = 1= R0 15 ().

The last relation allows us to find the output intensity:

jouty — 1— Ry A _ 1
X 1+ R2X 2LpFX 1_6/
A € \° €l-6)A
- + - ( ) (23)
2Ll 1-¢ A—-€e)Lplx

3.2 Bimode solutions 4 > A‘;‘

=1- % In[1-t)(1-t)RRS] .

Let us note that for weak localized loss anisotropy, i.e.
t?, < 1, A andI” may be written as:

_ 1-t7 1-tp
4VI In I:l-Hl l-‘rtz]

A=
4-In[RRS]

1
'=1-—In[RR].
o [RiR]

The threshold for the Y mode is derived in Appendix A and
its expression is:

1 ’ /2_A2
AL (A+€)(e )
y "2_8e'(1—A)— A

The output intensities are (Appendix B):
1-(1+t)R 1+¢€

IOutl —
<O T R 2
2
2451+ A)+A A
€+ e(-i; )+ _1]. (242)
(1+e)(e°—A2) Lol
oy _ L= A-0R, 14+¢€
y 1+ (1-t)Ry 2
12 o ren o
BE 56(12A) a4 ] (240)
(I+e)(e°—A%) Lol

Previous results have been obtained assuming that the strong
mode is polarized along the axis. It can be easily shown

We derive in this section approximate analytical expressiongsing relation (A.3) that this is the casesff > —A. In the
for the threshold for the weak mode and for the intensitie®pposite case wheré’ < —A, the strong mode is polar-
above this second threshold. Let us first introduce an |m|-zed along they axis. The single-mode solution, in the range

portant parameter, called the cavity loss anisotrapwhich
include both localized and distributed loss anisotropitess
given by:

_ Fy - FX

B I'y+1Tx '

A < A < A is then slightly different from relation (23).
The bimode solutlon above the second threshall)(has

the same analytical expression as the bimode solution (24)
obtained in the case of a strong mode polarized aleng

A summary of the analytical expressions of output intensities
and thresholds is given in Appendix C.
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4 Discussion 0.12

numeric

4.1 Operating regime diagram 0.10L - analytic

As mentioned above, the respective values of the threshol(—> 0.081 : :
associated to the two polarization eigenmodes depend upt off - monomode; bimode
both the passive and pump-induced anisotropies. In orde— 0-06F—— @ —==—" =

to have a synthetic view of the different operating regimes 2 s
(single-mode X or Y, bimode X% Y or Y > X) we show in : :
Fig. 5 the boundaries between the different regimes in th © Ath Ath %
plane (A, §). The straight line (solid curve) corresponds to § 0.02}- X y

the exact values of the total passive loss anisottapyhich l l

compensate the gain anisotrapy.e. s’ = —A. In this case, . . . . . . .
intensities and thresholds of both modes X and Y are equs 20 30 50

For higherA or §, the strong mode is polarized along thke ) ) N )
Fig. 6. Evolution of the output intensitie, and Iy versus the pumping pa-

. L ver S
axis and the curve, V\./h(.)se equatlom& €€ —3)/(1-3¢) rameter. Analytic dotted and numerical solutionss¢lid) coincide so well
corresponds to the limit above which the Y mode cannot 0sgey cannot be distinguished

cillate. In this case the numerical value of the threshold of the
Y mode becomes negative resulting in a single-polarization
operating regime whatever the pumping ratio.Nd-doped  agreement is obtained in this case (one cannot distinguish
fiber lasers, this is the case when, for example, a prism ighe analytical case from the numerical one). The values of
inserted in the cavity [23]. Because of the symmetry of thehe parameters used are= 100,R; =1, R, = 0.8, = 0.1,
operating regime diagram, the same arguments may be ag-— 0.005,t, = 0.005,y = 0.005(— A =0.026), ¢ = 0.01,
plied in the half-plan below the straight line for mode Y. In ande’ = 0.33. These parameters lie in the range for which the
this case the equation of the boundary curv is —¢'(¢'+  nitial assumption is valid and will be used hereafter except
8)/(1+5€"). _ when specified. We also have verified that the range of valid-
For a given cross-saturation parameter for the pdfhp ity of the analytical results, for both the general model and the
which fixes the value of, § is varied in the rangé—e, +¢] single-mode model, is the same.
simply by a rotation of the pump-input polarization angle,  As in the previous section, we investigate the evolution
see (2). Note that sincg ranges from zero to unityj is  of the output intensities for the two polarized eigenmodes
bounded by+1. On the other hand for a fixed pump polar- s functions of the fiber length (Fig. 7a) and the output mir-
ization angle, the total passive gain anisotrogy,can be ror reflectivity (Fig. 7b). The results are given in Fig. 7 for
changed by either a tilt of one mirror or a variation of thepoth the exact numerical results (solid lines) and the approx-
fiber length. In addition, previous works have demonstrategmate analytical results (dotted lines). Beyond the fact that
the stability of these different operating regimes under the
mean-field approximation [10].

regime

0.04}

ns

0.00

1.00

4.2 Comparison of analytical and numerical results

(@)

numeric
analytic

As a first test for the analytical results, we can compart§°'75’

them with the exact numerical solutions giving the evolution g
of the output intensities versus the pumping ratio. An ex: > 0501
ample of laser characteristics is given in Fig. 6. A very gooc 2

3]

€025
£=0.25
0.3 OOO L L L L
...................................................................................................... 8' 0.0 0.1 0.2 0.3 0.4 0.5
0.2} X=Y monomode X !
0.1 bimode X > Y 0751 . (b)
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Fig. 5. Operating regime diagram in the pla@® A). The parameter used is Fig.7. a lxy = f(I) analytic @otted and numerical golid) solutions.
B =0.6 (¢ =0.25) b Ixy = f(Ry) analytic fotted and numericalgolid) solutions
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there is a good agreement, especially for short fiber lengtt 1 4
and high output mirror reflectivities, our results show es-
sentially two features. First, there exists an optimum fibe R mode Y
length, for the two modes, which maximizes the output inten
sities, this is a direct consequence of a decreasing unsatural
gain and distributed losses and this result is well known fo _
a single-mode laser [2, 20]. Moreover, the old problem of out'<
put coupling optimization [2] reveals new results since the
optimum value ofR; is different for the two modes. This is
connected with the various dichroic losses experienced by tF
two eigenmodes.

0.0m 0.2m 04m 061 0.8 10T
9, (rad)

4.3 Influence of fiber length

In addition to previous results related to optimization prob-
lems, pump-polarization effects can also be investigated wit
our formalism, in particular the influence of the fiber length
on the evolution of the thresholds versus the pump-input pc
larization anglepo. Recall that we have considered a linearly g
polarized pump field. The evolution of!" and A" ver- <
sus the angley is a well-known result both experimentally
and theoretically [10,18]. In contrast with [10] our model
allows us to take into account length effects. Indeed, let u .
consider a localized gain anisotropy on the output mirror = s . . .
which favors the mode polarized along thexis (t, = 0.01) 00m 02m 04m 0.6m 08T 10m
and a distributed gain anisotropy which favors the Y mode @, (rad)

(y = —0.02). One can reasonably expect that what fixes the
strong mode is the combination of the gain anisotropy ani 1.3
the total passive loss anisotropy. Figure 8 gives the evoll

tion of A as a function of the fiber length The effect of
the passive loss anisotropy is as follows: for short length. 1.2
A > 0 and the X mode is favored, whereas for increasing
lengths A becomes negative, resulting in a lower threshs
old for the Y mode. These facts are verified in Fig. 9a—c ™ 1.1
which give the evolution ofAf and A" versus the angle

¢o for three increasing lengths: (&=10.1, (b) | = 0.275,
and (c)l =0.5. In all cases, the threshold values are nor- 10F e
malized with respect to the lowest threshold value. Figure ! : . . .
shows that the range for which! > A" increases for in- 00T 0zmo 04w g 08w dom

creasing lengths. This is a direct consequence of the evL

lution of the total passive loss anisotropy. Moreover, notérig. 9. Evolution of the thresholds of the two modes versus the pump polar-
that, although for short lengths > 0, there exists a range of ization angle for different fiber lengths. Tiselid (dotted line corresponds
pump-input polarization angles (in the vicinity ¢f = /2)  t© e X mode (Y mode)

for which A" > A", This is due to the competing effect be-
tween the pump-induced anisotropy and the total passive loss
anisotropy. In particular, when the pump polarization is par-
allel to they axis, the Y-mode threshold is always lower than
the threshold of the X mode whatever the active medium
length (for the parameters used, of course). Different evolu-
tions may be observed for lower values of the pump-induced
anisotropy.

There exists a particular fiber lengthy £ 0.275 for our
parameters) for whiclt vanishes (see Fig. 8). Its analytical
expression is:

0.05
0.04
0.03
< 0.02

0.01

0.00
1 1-t)(A-t
-0.01 I I 1 I IO =—1In [M] . (25)
0.0 0.1 0.2 0.3 0.4 0.5 % A+t)(1+1t)

I Relation (25) shows that such length exists if distributed and
Fig. 8. Evolution of the total passive loss anisotropy versus the fiber lengtlocalized loss anisotropy have opposite signs. Under such
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conditions and for this fiber length the evolution 4" and  obtained in all cases, using the same approximation as in
Ag‘ is the same with merely @/2 angle shift resulting from the single-mode case. A good agreement has been obtained
the periodicity of the gain anisotropy. This means that anyetween the exact numerical and approximate analytical so-

mode is favored by the passive loss anisotropy. lutions for the laser characteristic and for the evolution of the
For vanishing fiber lengths, the asymptotic value of theoutput intensities versus both the fiber length and output mir-
passive loss anisotropy is: ror reflectivity.
The evolution of the thresholds versus the pump-input po-
In [%] larization angle for increasing fiber lengths has been studied
Ao = v ) using the analytical expressions. We have demonstrated that
In[(1-t2)(1-t5) RZRS] these evolutions depend on the competing effect between the

gain anisotropy and the total passive loss anisotropy. The
latter represents a global parameter including localized and
1t distributed loss anisotropy. We have shown that for short
T+t (T+tp) iber lengths the total passive loss anisotropy is mainly im
Ao= In [R2 R%] : posed by the localized processes, whereas for high lengths
1 it is mainly monitored by distributed loss anisotropy. These

In our case we haveo ~ 0.045 which is positive thus fesults could be easily expected from simple physical and in-

Or, for weak loss anisotropies:

resulting in a strong mode polarized along thaxis. tuitive arguments. _ o
On the other hand for extremely long fibers, the asymp-  The analytical results obtained in this paper are of great
totic value of the passive loss anisotropy is: interest for the experimental determination of pump-induced,
localized and distributed anisotropies in fiber lasers but
A =7. Ialso in the more general case of end-pumped solid-state
asers.

In our caseA,, = —0.02 is negative and the strong mode is
polarized along thg axis. AcknowledgementsThe authors are very grateful to Dr. B. Meziane for
stimulating discussions and his comments on the manuscript.

5 Conclusions Appendix A: Threshold for the weak mode

This paper has been devoted to the investigation of the comy g appendix, the threshold for the Y mode is derived. The

bined effect of the length, passive loss anisotropy, and 93i8rong (weak) mode is polarized along thaxis (y axis). Let

anisotropy on the steady-state properties of a fiber laser. Thi consjder the gain experienced by the Y mode at its lasing
formalism used is a generalization of Rigrod’s theory to th

case of a bipolarized laser. This approach is well adapted &hreshold (the saturation by the X mode has to be taken into

introduce the characteristics of the Nd-doped fiber laser. ln_ccount).
deed, we have taken into account an exponentially decreasirg 1 (1- 8)A§E‘e“"Z 1, (1+8)Atyhe“"Z
unsaturated gain along the fiber (proportional to the variation§y(2) = §1+,3’(I++|‘) 2P A s
of the pump intensity), a localized loss anisotropy on the mir- x X x T
rors, and a distributed loss anisotropy. The general problemvherel; andl, are the forward and backward intensities of
only admits numerical solutions. In order to obtain analyticathe mode X forA = Atyh. Let:
results we have proposed an assumption, less restrictive than
the mean-field approximation, which consists of consideriniO 4 Ath ot
that the local average intensity remains constant over the fibéx = Ix (Ay) + 1, (Ay).
Iength, whereas the forward and backwar'd intensities are NQt o oscillation condition is:
uniform. In order to validate our hypothesis, we have investi-
gated the simple case of a single-mode laser. The results have ! 15 148\ A
shown that, depending on the desired agreement, there exiuﬁ, Ray €Xp 2/ ( +p )_V 21 y)dz
some range of parameters (fiber length and output mirror re- 1+p10 7 1+12) 2
flectivity) for which the approximation is valid. Typically, the
agreementis very good for short fiber lengths and high output  _ 1 (A.1)
reflection coefficients.

Furthermore, the general model has been investigated fquation (A.1) leads to:
view of determining the combined effects of the pump-input 0 0
polarization angle and the fiber length on the thresholds evolly 1 =&A+ 1)+ A+HA+AT) _ | . A2)
lution of the two eigenmodes. The various anisotropies con-2 A+19HA+p19) ey '
sidered lead to a loss of symmetry between the two polarized, . . th . .
eigenmodes. Therefore, one has to distinguish different podx IS calculated from relation (22) at = A,'. The inclusion
sible situations: the strong mode can be polarized along tH¥ the latter expression in (A.2) leads, after some cumbersome
x or y axis. In addition, the existence of the second thresh@/9ebra, to an equation for the second threshold:
old (associated with the weak mode) also depends on thgin 14 8¢ 2 A2
respective values of the anisotropies. Analytical expressionsy. — )
for both the thresholds and the output intensities have beedy 1—4 €2—38€(1—4)—A

)

(A.3)
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Appendix B: Output intensities above the second
threshold

In order to derive analytical expressions igr(l) and 1 (1),
we assume that :

lky =I5y @+1; (@ =C. (B.1)
The saturated gains can be written:
1(1+8)Ae‘“z 1 ,(1-8Ae?
Gx(2) = = B.2a
x(2) 21+ Ix+p1y 2/3 1+ B0+ 1y’ (B-23)
11-8)Ae 2 1 (1+8)Ae“?
Gy =19 1yA+9) (B.2b)
21+ p810x+1y 20 14+ 1+l
The derivative versus the pump parameter yields:
’ dly ,dl
dGx(@ 1481t hxtply—A ( +8 y) w
da ~— 2 L+ Ix+B1y)?
1_31+,3,|x+|y_/1 (ﬂ/dIX+dly)
+p e,
2 L+ 1+ 1y)?
(B.3a)
1 dlx ,dl
dGy(@) 1451t k+ply—4 ( +8 y) "
da ~— " 2 A+ Ix+B'ly)?

15 1+Bx+1y— (ﬂ”"* d'y) ,
e ¥
2 L+ B+ 1y)?

(B.3b)

Appendix C: Summary of analytical results

e Single-mode operation with X:

This occurs where’A > —§ and eitherA < Ath or A>
€' (€ —8)/(1—8€') whateverA.
Output intensity:

1- 1+ )R A 1
1+(1+t)R | 20— AL, 1—¢

A € 2
B (2(1— ML, + 1-4) B

Threshold:

194 =

¢(1—8)A
(1—e)(1— ML,

1+¢

AN=TLp1-A .
pl )1+8’

e Single-mode operation with Y:

This occurs whene’A < —§ and eitherA < A or A <
—€' (€' +8)/(1+ 8¢’) whateverA.
Output intensity:

1—-(1-
1+1-tm)R

A € 2
— + —
\/(2(1+A)FLp 1—e/>

)R A 1
21+A)IL, 1-¢

194 =

€(1+8)A
1-e)A+ )T,

The previous expressions are integrated along the laser lengfipeshold:
and matched to zero. This procedure leads to the following

expressions:

, dlyx ,dly\
1+IX+,3Iy—A<H+ a)_o, (B.4a)
, dl dl
14815+ 1y — (,3 X4 d—X) 0. (B.4b)
The previous relations lead to:
dA 1+ 4
- - -7 B.5a
A 1+A4+p)k (B.52)
da 1+p
___-F B.5b
A 1+A+p)]y ( )
The integration of (B.5) fronn‘;‘ to A yields :
1 , A
1 A
ly=——+|—-1 B.
y 1+,3/[A§5‘ ] (B.6b)

whereIQ is the particular value off; for A = A‘;‘.
The output intensities are easily deduced from (B.6).

1+¢€

th
AV =L+ A)

e bimode operation:

This occurs when-¢’(€' 4+ 68) /(1+8¢') < A < €' (¢
3¢’) and A > treshold of the weak mode.
Output intensities:

—8)/(1-

[ 2456/ (1+A)+A A
(14+€¢)(e?=A2) TLp

1I-(I4+t) R 14 €
HA4+t)R 2

12Uy =

[ €2 8¢/(1-A)—A A
(I+€)(€?—A2) TLp

1-(1-t)Ro 1+ ¢
H(1-tHR 2

1=

Threshold:
If €A > §, the strong mode is along

(1+€)(€2— 22
2_s(1—A)— A

A= r
y = el

If €A < 8, the strong mode is along

(1+€) (€2 — A?)
€24 86/(A+A)+ A"

th
AX == LpF
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