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Abstract. Light experiences a moving medium as an effect-
ive gravitational field. In the limit of low medium velocities
the medium flow plays the role of a magnetic vector poten-
tial. We review the background of our theory [U. Leonhardt
and P. Piwnicki, Phys. Rev. A60, 4301 (1999); Phys. Rev.
Lett. 84, 822 (2000)], including our proposal of making opti-
cal black holes.

PACS: 42.15.-i; 04.20.-q; 03.65.Bz

Light propagation in moving media is an old topic. The first
relevant result was achieved by Fresnel in 1818 [1], long be-
fore the theory of relativity or Maxwell’s theory of electricity
and magnetism had been developed. He used the ether model
of light propagation to obtain

v = c

n
±

(
1− 1

n2

)
u (1)

for the velocity of a light ray propagating in a moving trans-
parent medium. Herev is the velocity of the light as seen
from the laboratory system,c the velocity of light in vac-
uum,n the medium’s index of refraction andu the velocity of
the medium. The factor in parentheses is usually called Fres-
nel’s drag coefficient (Mitführungskoeffizient), as according
to Fresnel’s interpretation this coefficient defines the fraction
of the ether that is dragged by the medium. The sign in the co-
efficient depends on whether light and medium are moving in
the same or in opposite directions. Fresnel’s result was veri-
fied experimentally by Fizeau in 1851 [2]. As long as we are
considering the effects only to the first order inu/c and light
and medium are propagating in parallel directions, (1) gives
the correct expression even in the light of modern physics. It
is fairly easy to obtain this formula using the expression for
the relativistic velocity addition,

v = u+v′

1+ (u ·v′)/c2
, (2)
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which is valid whenu and v′ are parallel. As the question
of velocity transformations is a problem of only geometrical
transformations, the light in the medium can be simply seen
as “something” moving with the velocityc/n. The actual na-
ture of the moving signal is of no importance. In the same
sense wave fronts and elementary waves transform simply ac-
cording to normal Lorentz transformations:

x ′ = (x −ut)γ , y′ = y , z′ = z , t′ = (t −ux/c2)γ ,
(3)

with

γ = 1√
1− (u/c)2

. (4)

Thus light in a dielectric is a very special thing. On one hand
it has an important feature of light in vacuum – a fixed vel-
ocity c′ = c/n; on the other hand, as it is not propagating
with the vacuum velocity of light, it is subject to the normal
Lorentz transformation used for massive particles. Conse-
quently, the velocity as seen in the laboratory system depends
on the velocity of the medium, and elementary waves are
Lorentz contracted. But note that due to the fixed velocity of
the light in the medium frame the velocities in the laboratory
system are fixed as well. They now depend on the direction of
propagation, but as soon as the direction is fixed, the modu-
lus of the velocity is known. The explicit formulae allowing
these velocities to be calculated are rather cumbersome, as the
velocity transformation in its full three-dimensional form is
needed.

Let us consider an elementary wave emitted at some point
within the medium. In the medium’s rest frame this elemen-
tary wave is obviously a sphere fulfilling

x ′2 + y′2 + z′2 − c′2t ′2 = 0 , (5)

where the primed quantities are those in the rest frame of the
medium. Using the Lorentz transformation (3) we can trans-
form this equation to the laboratory frame to obtain

(x −at)2/b+ y2 + z2 −bc′2t2 = 0 , (6)
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with

a = v
1−1/n2

1−u2/(c2n2)
and b = 1− (u/c)2

1−[u/(cn)]2
. (7)

Thus an elementary wave that is emitted at timet at some
point P = (x0, y0) in the xy-plane of the laboratory system
will at time t +∆t have a curve of intersection with thexy-
plane that is described by

(x − x0 −a∆t)2/b+ (y− y0)
2 −bc′2∆t2 = 0 . (8)

This is an ellipse with its center at the pointQ = (x0 +
a∆t, y0) and its short semiaxis in the direction of the medi-
um’s motion. The elementary waves are thus dragged by the
medium and contracted in the direction of motion (see Fig. 1).

One more important point should be noted here. In the
case of a light ray propagating in a moving medium, the vel-
ocity vectorv and the wave vectork are not parallel, except
for the cases when they are parallel to the velocity of the
medium or the light ray has the velocityc, i.e. the medium has
no influence on the light or is simply not present. In a techni-
cal sense this is due to the fact that these vectors are parallel in
the rest frame of the medium but transform to the laboratory
frame according to different laws. The actual calculation is
straightforward but complicated. To understand the physical
background, recall the interpretation of the two vectors. The
velocity vector is tangent to the ray, whereas the wave vec-
tor is orthogonal to the wave fronts of the light wave. The fact
that they are not parallel means that the velocity has a com-
ponent that is parallel to the wave fronts.

Being a wave phenomenon, light has to fulfill a wave
equation. When the medium is at rest we can write the equa-
tion as

(
∇2 − n2

c2

∂2

∂t2

)
Fµν = 0 , (9)

whereFµν is the field strength tensor of the light field (40).
This equation differs from the equation for light in vacuum
only by the factorn2 that multiplies the time-derivative term.

Fig. 1. An elementarywave in a moving dielectric. The medium is moving
to the right with the velocityu. A light wave isemitted at point P and after
having propagated the elementarywave has theform of an ellipse centered
at Q. Thus thewave isdragged by the medium and simultaneously Lorentz
contracted

The equation can be rewritten in the form
(

∇2 − 1

c2

∂2

∂t2
− n2 −1

c2

∂2

∂t2

)
Fµν = 0 . (10)

The first two terms in the parenthesis of (10) form the
d’Alembert operator that is invariant under Lorentz trans-
formations. As the medium is assumed to be at rest, its four
velocity

uµ = γ
(
1,

u
c

)
(11)

is of the form

uµ = (1, 0) . (12)

This allows us to interpret the time derivative as a term of the
form ∂µuµ with the four gradient

∂µ =
(

1

c

∂

∂t
,∇

)
, (13)

and thus we obtain a covariant form of the wave equation,
because we can rewrite it in the form
[
∂α∂

α + (n2 −1)(uα∂α)
2] Fµν = 0 . (14)

Here and throughout the paper we apply Einstein’s summa-
tion convention. When transforming the equation into a new
frame we also have to transform the field strength tensor. But
in this case the Lorentz transformation does not depend on
space and time, and hence there are no additional contribu-
tions from differentiating the transformation included in the
field strength tensor.

1 Geometrical optics and general relativity

In the previous section the problem was rather simple and
could be handled well with the different kinds of special
relativistic transformations. The calculations might become
rather tedious, particularly when the general velocity trans-
formation is involved, but everything is absolutely straight-
forward. For the problem we are interested in and which is
discussed in [3, 4], we go one step further and allow for a de-
pendence of the velocity on space and time. For example,
imagine a transparent fluid in nonuniform motion – e.g. in the
form of a vortex. This fluid can be considered to be built up
of small volume elements, each of them moving at a well-
defined velocity. Thus in the rest frame of every volume
element, light propagates in all directions with the velocity
c/n, and by using the Lorentz transformation we can find out
the possible kinds of motion as seen from the laboratory for
every element. But what we are interested in is the motion
through several volume elements, and we have the problem
that we should match smoothly the velocities of the different
elements. This is not a trivial task: in every volume element
there exists only one permitted value of velocity for every di-
rection of motion and it might happen that these values “do
not match” for neighboring elements and the light ray has to
change its direction to allow for a smooth propagation.

Let us discuss the propagation of light rays in a medium
with a slowly changing velocity profile. The assumption of
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a velocity profile that does not significantly change over sev-
eral wavelengths is central for the approximations made in
this work.

We assume the light field to be of the form

Fµν = Fµν exp(iS)+c.c., (15)

whereFµν is a slowly varying envelope and

S =
∫

(−ω dt +k · dx) (16)

is the action. Here we introduce the wave four vector

kν =
(ω

c
,−k

)
(17)

and the line element

dxν = (c dt, dx) . (18)

Now we can apply (14) to the field (15). For a general field,
we would now have to take into account the tensor nature of
Fµν, as it has to be transformed to different frames at dif-
ferent points and thus the derivatives would also operate on
the velocities involved in the Lorentz transformation. But as
we have assumed that the velocity profile changes slowly, we
neglect all the derivatives of the profile in comparison with
the quadratic wave vector contributions. Thus we arrive again
at (14) as the wave equation for the field and we finally obtain

kµkµ + (n2 −1)(uµkµ)2 = 0 . (19)

This equation can be rewritten in the form

kµkνgµν = 0 , (20)

with

gµν = ηµν + (n2 −1)uµuν , (21)

where

ηµν = diag[1,−1,−1,−1] (22)

is Minkowski’s metric tensor of special relativity. Relation
(20) strongly resembles the relation for the wave vector of
light used in the general theory of relativity. In that casegµν

is the metric tensor describing the structure of space–time. In
our case this tensor reflects the velocity profile of the moving
medium. But the formal analogy of these two cases allows us
to interpret the motion of light in a dielectric in the spirit of
general relativity and to call the tensor introduced in (21) the
metric tensor of the system. We can conclude that the light’s
propagation will formally be governed by exactly the same
principles.

What should be noted here is that due to the structure
of the metric tensor the spatial components of the co- and
contravariant forms of thek four vector will be different; in
particular they will not be parallel anymore. This takes us
back to our discussion of the difference between velocity and
momentum vectors in a moving medium. According to (17),
the space components of the covariant wave vectorkµ form

the three-dimensional wave vector, whereas the space com-
ponents of the contravariant vectorkµ ≡ gµνkν are parallel
to the velocity. Thus the difference between wave vector and
velocity can be understood as following from the difference
between co- and contravariant four vectors.

Light rays in a moving medium propagate according to
the rules of general relativity with the metric (21). Since this
is a central point here, let us briefly repeat the main ideas of
motion in general relativity. In a flat space–time described by
the Minkowski metricηµν, particles will move along straight
lines according to

duµ

ds
= 0 , (23)

with s being the proper time anduµ the particle’s four vel-
ocity. The proper times can be introduced via the line element

ds2 = gµν dxµ dxν , (24)

with

gµν = ηµν = diag[1,−1,−1,−1] (25)

in the flat empty space and

gµν = ηµν +
(

1

n2
−1

)
uµuν (26)

in the moving medium,gµν being the covariant version of the
space–time metric (21). One can easily check that (21) and
(26) are exactly inverse. In this form the equation is only valid
for massive particles because the four velocity is not defined
and the line element ds vanishes in the case of a massless
particle.

Equation (23) simply means that we require the four vel-
ocity to have the same coordinates at all points in a coordinate
system that seems to be “natural” in a sense as the Cartesian
coordinates seem to be a “natural” choice in the case of a flat
space. The situation becomes much more involved as soon
as we go to a curved space. In this case we can still attach
a tangent space to our space–time at every point and require
the velocity vectors to be elements of these spaces. But the
tangent spaces at different points are not parallel anymore,
and thus there is no natural way of saying that two vectors
at two different points are “the same”.1 Here one introduces
the notion of parallel transport, a method of defining corres-
ponding vectors in different tangent spaces. It is obviously not
a good idea to require the coordinates of the vector to be con-
stant, as we can arbitrarily choose the systems of coordinates
in the different spaces and thus this requirement would not be
covariant; the equation would not have the same form in all
systems of coordinates. In this sense not even (23) is a good
equation, as it will not keep its shape when transformed into
curvilinear coordinates. The solution is to generalize the no-
tion of a derivative by introducing covariant derivatives. We
will only state the result for the covariant derivative, a deriva-
tion can be found in the book by Landau and Lifshitz [5] or
for a more mathematical discussion see the book by Wald [6].

1 “All tangent spaces are isomorphic, but there is no canonical isomorph-
ism,” as a mathematician would put it.
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In the case of a contravariant vectoraµ one replaces the nor-
mal derivative in the following way:

∂νaµ → Dνaµ = ∂νaµ +Γ
µ
λνaλ , (27)

and analogously for covariant vectors

∂νaµ → Dνaµ = ∂νaµ −Γ λ
µνaλ , (28)

whereΓ λ
µν are the Christoffel symbols,

Γ λ
µν = 1

2
gλσ

(
∂gσµ

∂xν
+ ∂gσν

∂xµ
− ∂gνµ

∂xσ

)
. (29)

We can use this definition to introduce the notion of the par-
allelly transported vector. A vectoraµ is said to be parallel
transported along a curve if its directional derivative along
this curve vanishes, i.e.

tν Dνaµ = 0 , (30)

wheretν is tangent to the curve. In the physical situation of
a particle moving in a curved space–time, this curve is the
particle’s world line. In order to generalize the equation of
motion for a particle, we have to require that it moves in a way
allowing its own velocity vector to be parallel transported
along this world line, i.e. it is always “the same” according to
the covariant derivative. We obtain the condition

uν Dνuµ = 0 , (31)

or written out in components

d2xµ

ds2
+Γ

µ
λν

dxν

ds

dxλ

ds
= 0 . (32)

This is the geodesic equation for a massive particle. When
we look at it from another perspective, this formula reflects
the variational principle behind general relativity: the path ac-
tually chosen by a particle is the one where the proper time
becomes maximal. As mentioned above, this kind of equation
cannot be applied for light. In that case we have to replace the
four velocityuµ by the contravariant wave vectorkµ, which is
also tangent to the world line. We then obtain for the geodesic
equation

dkµ

dτ
+Γ

µ
λνkνkλ = 0 , (33)

whereτ is some parameter along the curve. Due to the for-
mal equivalence this is also the condition that will define the
trajectories for light rays in a moving medium.

In the actual calculation [3] we have chosen a Hamiltonian
approach instead of explicitly solving the geodesic equation.
We started from the wave equation (19) in the explicit form

ω2 − c2k2 + (n2 −1)γ 2(ω−u ·k)2 = 0 (34)

and definedω to be the Hamiltonian. The details of the calcu-
lations can be found in [3].

In order to get an impression of what happens to a light
ray in a moving dielectric we have chosen a concrete example
of a velocity profile and calculated the trajectories of light

rays for this case. The velocity profile we used was that of
a vortex. We have slightly modified the profile in comparison
to the usual vortex [7], denoted in polar coordinates

u = W

r
eϕ , (35)

in order to avoid the velocity of the flow becoming superlumi-
nal. The profile we used had the form

u = W

γr
eϕ , (36)

with

γ =
√

1+ W2

c2r2
. (37)

HereW denotes the vorticity: a constant fixing the velocity
of the vortex. This profile is similar to the usual velocity pro-
file of a vortex in the sense that the space components of the
velocity four vector are equal to the velocity three vector of
the nonrelativistic vortex. For low velocities, i.e. for large dis-
tances from the vortex’s core, the two kinds of vortices can be
considered equal.

Let us sum up the results in a few words. The main re-
sult is that the vortex attracts light rays passing by. Light rays
that are far away are deflected, rays coming very close to the
vortex’s core can even fall into it. In this sense a vortex acts
like a black hole. But only light rays propagating in the direc-
tion opposite to the flow will fall into the black hole, whereas
rays propagating with the flow can always escape. Further-
more one should note that every motion with light falling into
the vortex has a time-reversed counterpart with light coming
out of the vortex and vanishing to infinity. The trajectories
corresponding to these motions are mirror pictures of each
other. The full Schwarzschild metric of general relativity does
not only contain a black hole, but also a white hole. The white
hole is a time-reversed version of the black hole; no particles
can enter the event horizon and every particle present within
the horizon has to leave it. A comprehensible discussion of
the full Schwarzschild metric and its two singularities can be
found in the book by Misner et al. [8]. Using the concept of
a white hole, we might interpret the situation encountered in
our model as a black and a white hole in one. One should
emphasize that it is a risky enterprise to interpret our model
in the spirit of “real” black holes. Up to now we did not in-
vestigate the relation between our metric and the metrics of
the different kinds of black holes. But there is an intuitive ar-
gument showing why our metric does not describe a black
hole [9]. The medium flow has no radial component. A real
event horizon would be created if the flow velocity would
have a radial component larger than the velocity of light in the
medium. In our model there is always a direction the light can
take in order to come to regions with a lower flow velocity.

2 Gordon’s approach

The idea of using a general relativistic description for light in
a moving medium was discussed for the first time by Gordon
in his 1923 paperZur Lichtfortpflanzung in der Relativität-
stheorie [10]. His approach was different from ours, but he



55

arrived at the same results for the metric tensor. As his cal-
culations show the theory from a different perspective, it is
worthwhile to briefly present the calculations that led Gordon
to his results. In his calculations he started from the classical
description of electric and magnetic fields in matter.

In a situation without free charges the fields obey Max-
well’s equations in the form

∇ · B = 0 , ∇ × E = −∂B
∂t

∇ · D = 0 , ∇ × H = ∂D
∂t

. (38)

In a medium at rest we have the additional constitutive
equations

D = εε0E, B = µ

ε0c2
H (39)

describing the properties of the medium. In order to be able
to consider fields in a moving medium we have to rewrite the
theory in a covariant form. In relativity the electric and mag-
netic fields can be combined in the form of antisymmetric
tensors. The fieldsE andB form the tensors

Fµν =



0 Ex Ey Ez
−Ex 0 −cBz cBy
−Ey cBz 0 −cBx
−Ez −cBy cBx 0


 ,

Fµν =



0 −Ex −Ey −Ez
Ex 0 −cBz cBy
Ey cBz 0 −cBx
Ez −cBy cBx 0


 . (40)

The tensorsHµν and Hµν are defined in an analogous way,
with E replaced byD andcB by H/c. With these definitions
Maxwell’s equations (38) can be written in the covariant form

∂Fλµ

∂xν
+ ∂Fµν

∂xλ
+ ∂Fνλ

∂xµ
= 0 (41)

for the first pair of equations and

∂Hλµ

∂xµ
= 0 (42)

for the second one. Considering a medium that moves at the
three velocityu, i.e. the four velocity

uµ = γ
(
1,

u
c

)
, (43)

we can rewrite (39) in the form

Hλ�u� = εε0Fλ�u� ,

Fλ�uν + F�νuλ + Fνλu� = µ

ε0
(Hλ�uν + H�νuλ + Hνλu�) .

(44)

In the case of a medium at rest, i.e. foruµ = (1, 0), this is
simply (39). But, as (44) is valid in one frame of reference
and is written in a covariant form, it is valid in all systems.
It thus yields a connection between the tensorsF�ν andH�ν

that is correct irrespective of the relative velocity of the ob-
server and the medium. These equations were published by

H. Minkowski in 1908 [11]. They form the starting point for
the investigations made by W. Gordon.

Using (41), (42) and (44) and the fact that

u�u� = 1 , (45)

we can reexpress the fieldH�ν in terms ofF�ν ,

µ

ε0
H�ν = F�ν + (1− εµ)(u�Fνλuλ −uν F�λuλ) , (46)

or in contravariant notation

µ

ε0
H�ν = F�ν + (1− εµ)(u�Fνλuλ −uν F�λuλ) . (47)

This result can be rewritten in the form

µ

ε0
H�ν = Fλι

[(
ηλ�ηνι

)+ (
n2 −1

) (
ηλ�uνuι +ηνιuλu�

)]
,

(48)

where we have used the identityεµ = n2. We are free to add
the term(n2 − 1)2uλu�uνuιFλι. It vanishes being simultan-
eously symmetric and antisymmetric when the indicesλ and
ι are interchanged. Now we can write (48) in the form

µ

ε0
H�ν = (

ηλ� + (
n2 −1

)
uλu�

) (
ηνι + (

n2 −1
)

uνuι
)

Fλι .

(49)

Introducing here the tensor (21), allows us to write this in the
final form

µ

ε0
H�ν = g�λgνιFλι . (50)

Thus we can again interpretgµν as an effective metric ten-
sor and(µ/ε0)H�ν as the contravariant counterpart ofF�ν.
To denote this, Gordon puts parentheses around the indices
whenever an index has been moved with the metric (21), and
so we obtain in his notation

F(�)(ν) = g�λgνιFλι . (51)

When changing equations from special to general relativ-
ity one has to change normal derivatives to covariant ones.
In the case relevant here – that of second rank tensors – one
obtains

∂l Aik → Dl Aik = ∂l Aik +Γ i
ml A

mk +Γ k
ml A

im (52)

and

∂l Aik → Dl Aik = ∂l Aik −Γ m
li Amk −Γ m

kl Aim . (53)

Considering Maxwell’s equations in free space, i.e. for
F�ν = H�ν/ε0, we see that the introduction of covariant
derivatives does not change the first set of Maxwell’s equa-
tions (41). This is due to the fact that the Christoffel symbols
are symmetric in the lower indices, whereas the field strength
tensor is antisymmetric. The second set (42) can be rewritten
in the form ([12])

1√−g

∂
√−gFλ�

∂x�
= 0 , (54)
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where g is the determinant of the metric tensorgµν. We
can obtain Maxwell’s equations in the moving medium into
this form by using (42) and introducing additional factors of√−g, which is permitted as long asg is a constant. Then we
obtain

∂F(λ)(�)

∂x�
= 1√−g

∂
√−gF(λ)(�)

∂x�
= 0 . (55)

The determinantg takes the the valueεµ = n2. That can
be seen from the fact that the metric tensor in the moving
medium (21) can be obtained from the metric tensor in the
medium at restgµν

0 = diag[n2,−1,−1,−1] via a Lorentz
transformation. The determinant of a Lorentz transformation
is ±1 because the Minkowski metric is Lorentz invariant.
Consequently, the determinant ofgµν does not depend on the
frame of reference and is thus equal to−n2 = det(gµν

0 ) in
all frames. Thus electromagnetic fields in a moving dielectric
can be described within the framework of general relativity as
long as the index of refraction is constant.

3 Optical Aharonov–Bohm effect

The theory discussed up to now is valid for almost all vel-
ocities. When velocities become very high and change fast,
spectacular effects such as optical black holes can be ob-
served. However, although velocity profiles as extreme as
those needed here cannot be realized in practice, there is an-
other regime where interesting effects might be observable.

One can go far away from the vortex where the velocities
are low. As is shown in [3], we can expand the Hamiltonian
for light in the moving medium to first order inu/c to obtain

H = c

n
k +

(
1− 1

n2

)
u ·k . (56)

Applying Hamilton’s equations

dx
dt

= ∂H

∂k
,

dk
dt

= −∂H

∂x
(57)

gives the velocity

v = dx
dt

= c

n

k
k

+
(

1− 1

n2

)
u . (58)

We are free to rescale the velocity by multiplying it byk, the
modulus of the wave vectork and thus obtain

w = kv . (59)

Rewriting the equation of motion in terms ofw yields

dw

dt
=

(
1− 1

n2

)
(∇ ×u)×w . (60)

This resembles strongly the equation of motion for a charged
particle moving in a magnetic field. In this analogy,u cor-
responds to the vector potential andw to the velocity. In
case we choose the vortex (35) as the velocity profile we
arrive at an analogy to the Aharonov–Bohm effect [13].

Charged particles moving in an Aharonov–Bohm potential
acquire only a phase shift, but the velocity is unchanged.
In our casew is constant, but the modulus of the real vel-
ocity v changes. That the velocity cannot stay unchanged
is already clear from Fresnel’s formula (1), because the ray
passes through regions with varying flow velocities. In par-
ticular, rays passing on two different sides of the vortex’s
core will move with different velocities, as one of them
propagates with the flow and the other against it. But it is
still remarkable that the rays are not bent, as would happen
even in most other nontrivial velocity profiles in this approx-
imation. As long as we are only interested in trajectories
or stationary wave phenomena, light in the vortex and the
Aharonov–Bohm effect are fully equivalent. It is also possible
to introduce a new Hamiltonian for light in the vortex cor-
responding to a rescaled time parameter. In order to find this
Hamiltonian we start from the wave equation (14) to the first
order in u/c and choosen2ω2/c2 as our new Hamiltonian.
We obtain

H = k2 +2ω
n2 −1

c2
u ·k . (61)

But as long as we want to be exact only to the first order in
u/c, we can always add a quadratic term and obtain

H =
(

k+ω
n2 −1

c2
u
)2

, (62)

a Hamiltonian having the same structure as that of a charged
particle propagating in a magnetic field. This shows the
analogy between light and charged matter waves. In writ-
ing the last expression, one should keep in mind that the
quadratic term has been added only to make the expres-
sion look nicer and to show the similarity with the mag-
netic case. In fact, this expression is different from the
correct second-order expansion of the Hamiltonian and
may be used only when the second order term can be
neglected.

Note that we again arrived at a situation where velocity
and momentum are not parallel. Here they differ by a term
proportional to the velocity of the flow.

4 Remarks

We have shown a very far-reaching formal analogy between
the motion of light in a moving medium and in a gravita-
tional field. The gain from this equivalence is twofold. On one
hand we have reduced the problem of light rays in a moving
medium to the known problem of light rays in gravitational
fields, a topic where a substantial amount of work has been
done already. On the other hand, general relativity with its
ideas of curved space–time and geodesics is very abstract
and hard to grasp intuitively. With the picture of a flowing
medium in mind, one can understand general relativity more
easily, a gain that is not at all dependent on the possibility of
an experimental realization of those ideas. One should note
that already ideas have been sketched to interpret general rel-
ativity in a spirit similar to our work. Harrison describes in
his popular book on cosmology [14] the idea to interpret grav-
itation as flowing space. In this picture, elementary waves
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emitted from a point source are dragged by the flowing space
and thus move away in relation to their source, exactly as in
the case shown in Fig. 1. Because this is not a motion within
space but rather the motion of space itself, velocities higher
than the velocity of light would be permitted. This is ex-
actly what will happen within the Schwarzschild radius, and
hence even light propagating in the opposite direction than
the space will be still dragged by it and unable to escape. As
it is well known in general relativity, one can always choose
a system of coordinates in such a way that space–time is flat
at exactly one point. This would then correspond to the rest
frame of some droplet. We have not yet followed this path
further, but it seems to be a very fruitful approach towards
a deeper understanding of light in a moving dielectric. In our
approach, we varied the velocity of the medium but kept the
index of refraction constant. The situation where only the
index of refraction is varied is described in textbooks. Lan-
dau and Lifshitz [5] use a variational approach, whereas the
method described by Born and Wolf [15] is similar to ours.
A particularly interesting remark can be found in a footnote
of the book by Born and Wolf where they mention a 1926
paper by Bortolotti [16]. He showed that the light trajecto-
ries in a resting medium with variable index of refraction are
geodesics in a three-dimensional space with the metric tensor
diag[n2, n2, n2].

5 Slow light and optical black holes

In the previous sections we discussed spectacular effects of
light in a moving medium, such as deflection of light rays
in the vicinity of a vortex or the optical Aharonov–Bohm ef-
fect. For these effects to become strong high values of the
index of refraction and high medium velocities are necessary.
In order to create an optical black hole, one needs veloci-
ties of the medium that are comparable to the velocity of
light in the medium, which is incredibly large. It should be
clear that in no laboratory can vortices with such velocities
be created. Thus the effects of general relativity in a glass
of water seem to be nonobservable. Modern interferomet-
ric techniques would allow for the observation of the optical
Aharonov–Bohm effect, however.

Last year reports were published regarding experiments
with light moving at extremely low group velocities [17, 18].
The velocities mentioned in the first publication [17] were
as low as 17 m/s. These effects have been seen in alkali
Bose–Einstein condensates and in noncondensed atomic va-
pors. The low group velocities are not due to a very high
value of the nondispersive index of refraction. They are a re-
sult of the very strongly dispersive character of the medium,
i.e. the index of refraction depends strongly on the frequency
of the light. Light in a dispersive medium obeys the wave
equation

k2 − ω2

c2
−χ(ω)

ω2

c2
= 0 , (63)

whereχ = n2 −1 is the susceptibility. A wave group in a dis-
persive medium moves with the group velocity

vg = dω

dk
=

(
dk

dω

)−1

. (64)

Using (63), we obtain for the group velocity

dω

dk
=

(√
1+χ

c
+ ω

c

dχ

dω

1

2
√

1+χ

)−1

. (65)

Consequently, a strong dependence of the susceptibility on the
frequency leads to a small value of the group velocity. To
achieve the strong dispersion an effect called electromagneti-
cally induced transparency (EIT) has been applied.

Electromagnetically induced transparency is an effect of
quantum coherence with three atomic levels in an approxi-
mateΛ configuration being involved (see Fig. 2).

For the creation of EIT two lasers are needed. One of them
– the probe laser – is tuned to the frequency of the transition
between the upper level (a) and one of the lower levels (b). It
is the propagation of this beam we are actually interested in
when performing the experiment. With only the probe laser
present, its light would be absorbed by the medium very
quickly. The situation changes as soon as the second laser –
the drive laser – is used. The drive laser light is strong and it
is tuned to the transition between the upper state and the sec-
ond of the lower states (c), creating a quantum interference
that makes the medium effectively transparent to the probe
beam. When both lasers are tuned exactly to their respec-
tive transition energies, both the real and imaginary parts of
the susceptibility vanish. Thus the probe light will propagate
through the medium without loss and at the vacuum velocity
of light.

In Fig. 3 the dependence of the susceptibility on the detun-
ing is shown. A detailed discussion of the effect can be found
in the book by Scully and Zubairy [19]. What is most import-
ant here is that the real part shows a strong linear dependence

Fig. 2. Three-level system needed for the creation of electromagnetically
induced transparency. A strong drive laser field couples the levels a and
c, making the medium transparent for the weak probe laser tuned to the
transition a↔b

∆

1

χ
IMAGINARY PART

REAL PART

Fig. 3. Susceptibility for the probe laser beam in electromagnetically in-
duced transparency. The plot shows the dependence of the real (solid lines)
and imaginary (dashed lines) parts of the susceptibility χ on the detuning ∆

of the probe beam. The drive beam is assumed to be on resonance. Arbitrary
units are used
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on the detuning of the probe. In [4] we used a simplified
model of EIT. We assumed the susceptibility to be of the form

χ(ω′) = 2α

ω0
(ω′ −ω0)+ O

(
(ω′ −ω0)

3) , (66)

with ω0 being the resonance frequency of the a ↔ b transi-
tion. We neglected the imaginary part of the susceptibility χ
and assumed the real part to be linear close to resonance.

In the experiment we discuss in [4], the medium is moving
relative to the light source. Consequently the light frequency
in the rest frame of the medium is different from the fre-
quency in the frame of the light source. But it is the frequency
in the medium frame that fixes the value of the susceptibil-
ity, and so the susceptibility will depend on the velocity of the
medium. Thus the frequency dependence of the susceptibil-
ity comes into play. Although the probe light is assumed to be
monochromatic, while transforming the wave equation (63)
into the laboratory system we have to keep in mind that the
frequency appearing in the argument of the susceptibility is
still the frequency in the rest frame of the medium. We obtain
for the wave equation

k2 − ω2
0

c2
−χ(ω′)

ω′2

c2
= 0 , ω′ = ω0 −u ·k√

1−u2/c2
, (67)

where ω0 is the frequency of the probe laser. In (67) the re-
lation between frequency and wave vector can become very
involved. For our purpose we use the susceptibility in the
form (66) and expand the wave equation (67) to the second
order in u, and thus we obtain

k2 −4
(

k · u
c

)2
α+2

u
c

·kα
ω

c
−

(
1+ u

c

2
α

)
ω2

c2
= 0 . (68)

Since this equation is quadratic in k and ω we can rewrite it in
the form

gµνkµkν = 0 , (69)

with the definition

kν =
(ω

c
,−k

)
(70)

and the metric tensor

gµν =

1+αu2

c2 αu
c

αu
c −1+4αu⊗u

c2


 . (71)

Note that the precise result for the wave equation (68)
strongly depends on the approximations made. Using higher
orders in the expansion of the wave equation (67) or in the
expansion of the susceptibility would create higher terms in
k and ω. In that case, no relativistic model would be valid
anymore. Note also that the susceptibility (66) is only valid
within a narrow frequency range. If the frequency detuning
due to the Doppler effect of the moving medium exceeds
this range our analysis is not applicable anymore. However,
one may compensate for the overall Doppler detuning in the
particular region of the flow where one is interested in by ad-
justing the frequency of the probe light. As long as we accept

our model and the approximations made, all the techniques
used in the case of the nondispersive medium can be used
once again.

The particular example for a flow is the same one we
used in the case of the nondispersive medium. Again we con-
sider the velocity profile in the form of a vortex (35). As
discussed in the previous section light rays are null geodesics
of the metric (71), and the vortex acts as a black hole
that can swallow light rays coming too close to it. Note
a small difference of the black hole when compared to the
nondispersive case. In the nondispersive case only light rays
propagating in the direction opposite to the flow can fall
into the black hole. They do so when they come to close
to the core of the vortex. Light rays propagating with the
flow could come arbitrarily close to the vortex’s core and
still escape. In the dispersive medium this is not the case.
Here two kinds of critical radii are possible. Whereas the
soft critical radius corresponds to that encountered in the
nondispersive case, the hard critical radius is a new fea-
ture. All light rays coming to the core closer than the ra-
dius fall into it. But even this radius does not constitute
a real event horizon [9]. There are still solutions with light
coming out of the vortex and escaping to infinity, as has
been discussed in the preceding chapter. Numerical exam-
ples show that hard critical radii are far beyond feasibility.
But the soft critical radius might become realizable with the
methods of today’s experimental techniques. As relativistic
effects in the moving medium become visible when the vel-
ocity of the medium becomes comparable to the velocity
of light in the medium, it is clear that the strongly reduced
group velocity will make the observability of optical black
holes much more likely. Thus the ideas of optical black
holes in highly dispersive media provide us with an interest-
ing prospect of observing general relativistic effects in the
laboratory.

6 Summary

A moving medium appears to light as a change in the met-
ric of space and time, i.e. as an effective gravitational field.
When the medium moves at moderate velocities the flow acts
similar to a vector potential, and so the medium appears as
an effective magnetic field. A vortex flow will generate the
optical analogue of the Aharonov–Bohm effect. Spectacu-
lar relativistic effects are expected when the medium moves
faster than the local speed of light. The advent of extremely
slow light shows that this is not an entirely unrealistic regime
and thus opens the prospect of making artificial astronomical
objects in an earthly laboratory.
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