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Abstract. We study the effect of photon scattering from
a path of a four-beam atomic interference setup, which is
based on a cesium atomic beam and two subsequent optical
Ramsey pulses projecting the atoms onto a multilevel dark
state. While in two-beam interference, any attempt to keep
track of an interfering path reduces the fringe contrast, we
demonstrate that photon scattering in a multiple-path arrange-
ment cannot only lead to a decrease, but− under certain con-
ditions− also to an increase of the interference contrast. The
results are confirmed by a density-matrix calculation. We are
aware that in all cases the “which-path” information carried
away by the scattered photons leads to a loss of information
that is contained in the atomic quantum state. An approach to
quantify this “which-path” information using observed fringe
signals is presented; it allows for an appropriate measure of
quantum decoherence in multiple-path interference.

PACS: 03.65.-w; 03.75.Dg; 32.80.-t

One of the most striking features of quantum mechanics is
that a microscopic particle can exist in a superposition of two
(or more) different eigenstates, as, for example, two different
spatial locations. Any attempt to measure the particle eigen-
state causes a back-action onto the particle, as expressed in
several gedanken experiments on wave-particle duality dat-
ing back to the early days of quantum mechanics [1]. For
example, in a variant suggested by Feynman [2], an elec-
tron wavepacket passes simultaneously through two slits and
forms an interference pattern which manifests the wave na-
ture. However, if one is trying to obtain “which-path” infor-
mation, as, e.g., by scattering a photon off the electron, the
interference pattern is destroyed. This behaviour is suggested
by complementarity. The photon scattering causes a coup-
ling to the environment with its large number of degrees of
freedom. The incomplete knowledge about the environment
(and, indeed, all macroscopic systems) requires an averag-
ing over the degrees of freedom, causing quantum superpo-
sitions to decohere into classical probability distributions. In

recent experimental works, atoms have proven to be attrac-
tive candidates for experimental investigations of the wave-
particle duality and quantum decoherence [3–6]. As decoher-
ence effects are believed to be responsible for the transition
between (microscopic) quantum systems and classical sys-
tems, their study in quantum systems of increasing size is of
interest [7–9].

In this paper, we report on an interference experiment
based on four internal states of the cesium atom in a four-path
Ramsey setup. While in a two-beam interference experiment
the observation of a path always reduces the fringe con-
trast [10], this is not necessarily the case in a multiple-beam
arrangement. We demonstrate that the scattering of a pho-
ton off one of the four paths can also lead to an increase in
the Michelson fringe contrast. This non-intuitive situation can
occur when one attempts to observe a path in an interferome-
ter where the phase difference between adjacent paths is not
constant for all paths. In all cases, the scattering of photons
leads to a loss of information contained in the atomic quan-
tum state, as “which-path” information is carried away by the
photon field. This missing information over the atomic quan-
tum state – corresponding to a nonzero entropy – shows up as
decoherence for the atomic degrees of freedom. Our results
suggest that in multiple-beam interference a single Michel-
son fringe contrast is not sufficient to quantify decoherence.
As a measure of the “which-path” information carried away
by the photon field, we show that the possible path guess-
ing likelihood [10, 11] always increases with a scattering of
photons for the multiple-beam arrangement.

Our experiment employs a multiple-path generalization
of a Ramsey experiment in a cesium atomic beam appara-
tus using optical beams as atomic beamsplitters. Four paths
in state space are realized using different magnetic sublevels
(m F = −3, −1, 1, 3) of theF = 3 hyperfine component of
the cesium electronic ground state, as shown in Fig. 1. Dur-
ing a first optical pulse, cesium atoms are pumped into a dark
coherent superposition of the sublevels. This coherent super-
position can be probed with a second optical pulse, which
again projects the atoms onto a dark state. We observe a sharp
Airy-function-like interference signal in the number of atoms



92

Fig. 1. Schematic of relevant energy levels of the cesium atom

remaining dark in the second pulse as a function of the phase
of the second Ramsey pulse [12]. Between the Ramsey inter-
actions, them F = 3 path can be observed by applying a suit-
able combination of microwave transfer pulses and an optical
pulse to scatter photons on a closed cycling transition.

The aim of this paper is to give a more detailed account of
our previous work on controlled decoherence [13]. In Sect. 1,
we outline a theoretical description of the expected fringe
pattern using a density matrix approach. In Sect. 2, the experi-
mental setup is described. Experimental fringe patterns for
the multiple-beam Ramsey experiment are shown in Sect. 3.
In Sect. 4, we present spectra recorded where photons were
scattered off an interfering path. The fringe patterns are ana-
lyzed and the results are compared to the well-known case of
two interfering paths.

1 Theory

In the following, we consider an atom with a transition from
a ground state of total angular momentumF to an excited
state with total angular momentumF ′, which is irradiated
with two copropagating laser beams ofσ+ andσ− circular
polarization and frequenciesω+ andω− respectively. We as-
sume thatF′ = F, since then a single non-absorbing dark
state exists. This dark state hasN = F +1 components with
only even (or only odd) magnetic quantum numbers, and
a multiple-beam Ramsey experiment withN paths can be re-
alized using such a transition. We use an interaction picture
where the atomic eigenenergies are factored out of the Hamil-
tonian, such that there is no time evolution of the atomic
quantum state between the optical pulses. In the first Ramsey
pulse, performed att = 0, the atoms are optically pumped into
the non-absorbing dark coherent superposition,

|ψD(0)〉 = |ψatom〉 =
N∑

n=1

cn|g2n−(N+1)〉 , (1)

with |g2n−(N+1)〉 describing a ground state of magnetic quan-
tum numberm F = 2n − (N +1). Note that forω+ � ω− and
copropagating laser beams there is no noticeable spatial split-
ting between the paths. The weightscn should be such that
|ψD〉 does not couple to the light field, which yields

cn = c1

(−Ω+
Ω−

)n

· C−N+2
−N+1 C−N+4

−N+3 · · · C2n−(N+2)
2n−(N+3)

C−N+2
−N+3 C−N+4

−N+5 · · · C2n−(N+2)
2n−(N+1)

, (2)

where

Ω+CmF +1
mF

= e

h
〈emF +1|r ·E0,+|gmF 〉 ,

Ω−CmF −1
mF

= e

h
〈emF −1r ·E0,−|gmF 〉 , (3)

with C
mF′
mF as the Clebsch–Gordan coefficients of the transi-

tion from the ground state|gmF 〉 to the excited state|emF′ 〉.
The factorsΩ+ andΩ− denote the Rabi frequencies of the
σ+ andσ− polarized waves respectively for a transition with
a Clebsch–Gordan coefficient of unity (E0,+ andE0,− stand
for the amplitude of the light field). For these weightscn the
absorption amplitudes into the upper electronic states cancel.
The weightc1 can be chosen to normalize|ψD〉. In the follow-
ing, we assume thatΩ+ =Ω− at all times, which will result
in a symmetric dark state.

Let us initially assume that no attempt is made to detect
a path within the interferometer. In this case, a wavefunction
approach is sufficient. The first pumping pulse ends at time
t = 0 and leaves the atom in the coherent superposition given
by (1). The coherent superposition is probed after a timeT
with a second Ramsey pulse again projecting the atoms onto
the dark state. This pulse is applied with a phase of one of its
beams (e.g. theσ+-polarized component) shifted byφ, and
the dark state at this time is

|ψD(T )〉 =
N∑

n=1

cne−iϕ(T )(n−1)|g2n−(N+1)〉 , (4)

where ϕ(T ) = (ω+ −ω− −ωA)T +φ and ωA denotes the
Zeeman splitting between two adjacent even (or odd)m F lev-
els. The second pulse will remove most of the population
that is not in the dark state. After a few fluorescent cycles
these atoms will be pumped to another hyperfine ground state,
which is not detected any more. The part that remains in a su-
perposition dark for the light field is the projection

〈ψD(T )|ψatom〉 =
N∑

n=1

c2
nei(n−1)ϕ(T ) , (5)

where we have neglected a small fraction that is repumped
into the dark state. The interference signal is given by
|〈ψD(T )|ψatom〉|2. With no additional phase (φ= 0) and if the
driving laser fields are exactly tuned to the two-photon res-
onance, the atom is still in the dark state at this time. When,
for example, the phase of the second pulse is varied, the atom
will, in general, be in a coherent superposition of the dark
state and the coupled states. The atom is only completely
dark after the second pulse if the relative phase between the
light field and the atoms has precessed by an integer mul-
tiple of 2π. One expects an Airy-function-like interference
signal with sharp principal maxima in the number of atoms
remaining in the dark state [12].

When light is scattered on theNth path, a detection of the
scattered photons would allow one to obtain knowledge about
this path. The path can therefore only contribute incoherently
to the interference pattern and we expect that the fringe signal
reduces to that of a(N −1)-way interference pattern. Further,
the incoherent background from theNth path leads to a re-
duction of the fringe contrast. A calculation of such a signal
with partial coherence requires the use of the density matrix.
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Let us rewrite the particle wave function before the pulse (1)
as

|ψatom〉 ≡ |ψpart〉+ cN |gN〉 , (6)

where |ψpart〉 = ∑N−1
n=1 cn|g2n−(N+1)〉 (note that in general

‖ψpart〉|2 < 1). The photon scattering can be described as the
coupling of the atom to a detector state [14], after which the
total wavefunction is

|ψ〉 ≡ |ψpart〉|D2〉+ cN |gN〉|D1〉 , (7)

where the state|D2〉 = |0〉 corresponds to no scattered pho-
tons and|D1〉 = a |D2〉+√

1−a2|D2o〉. Here, |D2o〉 is a
superposition of continuum states corresponding to one or
more scattered photons with〈D2|D2o〉 = 0. The overlap of
the two detector states〈D2|D1〉 = a quantifies the coupling to
the environment. Fora = 1, no photons are scattered and full
coherence is maintained, while the case ofa = 0 corresponds
to a complete coupling of theN-th path to the continuum of
photon modes, i.e. the full possible “which-path” information
on this path.

We can evaluate the density matrix of the atomic quantum
state by tracing over the photon degrees of freedom, which
yields

atom= Trlight(|ψ〉〈ψ|)
= |ψpart〉〈ψpart|+a (cN |gN〉〈ψpart|
+ c∗

N |ψpart〉〈gN |)+|cN|2|gN〉〈gN | . (8)

Thus, by omitting the “which-path” information contained
in the scattered photons, the quantum state is converted into
a mixed state. The signal witha = 0 describes the case of
a complete vanishing of all density matrix diagonal elements
related to theNth path. The interference signal

I(ϕ)= 〈ψD(T)|atom|ψD(T)〉 , (9)

can be written as

I(ϕ)= Ipart(ϕ)+a IN↔{1,2,... ,N−1}(ϕ)+|cN|4 , (10)

where Ipart(ϕ) corresponds to the interference of theN −1
paths (e.g. forN = 4 this corresponds tom F = −3, m F = −1

Fig. 2a,b. Theoretical fringe pattern for a four-way interferometera with
constant phase differences between adjacent paths andb with an additional
phase shift ofπ in one outer path. For correspondence with our experiment,
the fringe patterns are derived assuming that the interfering probability am-
plitudes for the two outer paths are a factor 5/3 above those of the two inner
ones

andm F = 1), IN↔{1,2,... ,N−1}(ϕ) to the signal arising from the
interference of pathN (for N = 4 this would bem F = 3)
with paths 1,2, . . . , N −1 and|cN |4 to a background aris-
ing from pathN alone. Figure 2a shows a calculated fringe
signal for N = 4 paths and different couplings to the envi-
ronment. For perfect isolation from the environment (i.e. no
photons are scattered on the 4th path)a = 1, and one obtains
a four-way interference signal with high contrast and small
fringe width. As the coupling to the environment is increased,
the contrast decreases and the width of the principal maxima
broadens. For full coupling (a = 0) to the environment, one
obtains a three-way interference signal with an additional in-
coherent background from the 4th path.

Let us now consider the case of an experiment performed
with the phase of the 4th path shifted byπ. In this case, all in-
terference terms with the path 4 change sign. We can account
for this phase change by choosing a negative prefactora to
I4↔{1,2,3}(ϕ) in (10). When no photons are scattereda = −1,
which corresponds to the signal shown in the very back of the
3D plot in Fig. 2b with small amplitude and a minimum at
zero phase, corresponding to an inverted contrast. If we scat-
ter photons on path 4, this path will contribute more and more
incoherently to the signal, and for full coupling to the envi-
ronment, one obtains the same signal as in Fig. 2a witha = 0.
This corresponds to the counterintuitive situation of a larger
fringe contrast with increased photon scattering, shown in
Fig. 2b for different couplings to the environment.

2 Experimental setup

Our experimental setup is shown schematically in Fig. 3.
In a vacuum chamber, cesium atoms are emitted from an
oven and form a thermal atomic beam. The atoms enter
a magnetically shielded region, in which they can interact
with a series of optical and microwave pulses. A homoge-
neous 0.54 G magnetic bias field is applied oriented along
the optical beams. To induce transitions between atomic sub-
levels, the atoms are irradiated by optical pulses consisting
of two copropagating beams in aσ+ −σ− polarization con-
figuration tuned to theF = 3 → F ′ = 3 component of the
cesium D1 line. Typically, these pulses are 15µs long. Dur-
ing a first Ramsey pulse, the atoms are optically pumped
into a nonabsorbing “dark” coherent superposition of the
four ground state Zeeman sublevels with magnetic quan-
tum numbersm F = −3, −1, 1 and 3 of the 6S1/2(F = 3)
ground state. This coherent superposition is probed with a
second projection pulse after a timeT , at which interfer-
ence is observed [12, 15]. The phase of the second Ramsey
pulse can be varied during the pulse sequence. The number
of atoms left in the dark state after the second optical pump-

atomic beam

optical
pulses

PM

interaction
region

cesium
oven MH

Fig. 3. Experimental setup. PM: photomultiplier tube, MH: microwavehorn
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ing pulse is measured by irradiating the atoms with an optical
detection beam tuned to the 6S1/2(F = 3)− 6P3/2(F′ = 2)
transition and collecting the fluorescence on a photomulti-
plier tube. As this transition is not a cycling transition, we
maximize the number of scattered photons by varying the po-
larization of the detection beam with a Pockels cell driven by
a radiofrequency of a few MHz. This beam copropagates with
the thermal atomic beam to allow Doppler selection of slowly
moving atoms.

Between the Ramsey interactions, a coupling to the en-
vironment can be achieved for them F = 3 path using the
following pulse sequence: a microwaveπ pulse resonant with
the 6S1/2(F = 3,m F = 3)−6S1/2(F = 4,m F = 4) transition
first transfers this component into the other hyperfine sub-
level. The microwave pulses are derived from a microwave
antenna connected to a radio-frequency (RF) synthesizer. For
our magnetic bias field, the microwave transfer was observed
at a frequency of 9193.830 MHz. We then irradiate the atoms
with a σ+-polarized optical pulse of variable length resonant
with the closed cyclingF = 4→ F ′ = 5 component of the ce-
sium D2 line in order to scatter photons. Subsequently, the
atoms are irradiated with a second microwaveπ-pulse induc-
ing transfer between the hyperfine components and bringing
the path back into the ground state levelF = 3,m F = 3. Thus,
by the time of the second Ramsey interaction, the atoms are
in the same internal level as they were before the microwave
pulses.

The double microwave transfer induces a phase shift of
π for the m F = 3 path. For some of the experimental spec-
tra, we have compensated for this effect by introducing an
additionalπ phase shift for the second microwave pulse, re-
sulting in an overall phase shift of 2π with no observable
effect. In addition to this pulse sequence for photon scatter-
ing, we irradiated the atoms with aσ−-polarized repumping
pulse tuned to the 6S1/2(F = 4)−6P3/2(F′ = 4) transition of
the cesium D2 line during and a few microseconds after the
first Ramsey pulse. This light removes all the population of
the intermediate stateF = 4, m F = 4 before the microwave
pulse sequence.

3 Multiple-beam Ramsey spectroscopy

Before moving to our studies of quantum decoherence, let
us discuss the technique of multiple-beam Ramsey interfer-
ence [12]. For these measurements, an initial Ramsey pulse
generates a coherent superposition of four Zeeman sublevels,
which is then probed by a subsequent Ramsey pulse, all
other optical and microwave pulses being omitted. A typi-
cal recorded spectrum is given in Fig. 4, which shows the
number of atoms in the dark state after the second Ramsey
pulse as a function of the phase of this pulse. One observes
a sharply peaked four-way interference signal with two side
maxima. The spectrum was recorded using a timeT = 68µs
between successive light pulses. In order to allow a measure-
ment of the number of atoms in the dark state that is free from
background due to, for example, stray optical light, we have
determined the background level experimentally by recording
the signal measured with an additional two-photon detuning
of typically 300 kHz for the Raman beams in the first Ramsey
pulse before and after each spectrum. After subtraction of the
measured background, the fringe contrast of the experimen-
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Fig. 4. Multiple-beam interference spectrum recorded with a sequence of
two Ramsey pulses projecting the atoms onto a multilevel dark state. The
plot gives the number of atoms in the dark state after the pulses as a func-
tion of the phase of the second Ramsey pulse

tal signal is very close to unity (Fig. 4). The observed width
of the principal maximum is 0.22×2π, which is close to the
theoretical value of 0.21×2π, and clearly below the 0.5×2π
observed in conventional two-beam interferometers. Similar
spectra can be recorded for a five-beam interferometer when
using the 6S1/2, (F = 4)→ 6P1/2, (F′ = 4) transition, where
the equivalent dark state consists of five magnetic sublevels.
One observes five-beam interference signals [12] correspond-
ing to the interference of five magnetic sublevels. Let us note
that when orienting the optical beams in a counterpropagating
geometry rather than a copropagating one, an atom interfer-
ometer with five spatially separated paths can be realized
using three optical pulses. Multiple-beam atom interferom-
eters have more recently been realized in other laboratories
using other techniques [16–18].

Besides the fringe sharpening effect, further interest-
ing effects occur in multiple-beam interference experiments
when the phase difference between adjacent paths is not
a constant for all paths. Such nonlinear phase terms lead,
for example, to the Talbot images long known in near field
optics [19, 20], where quadratic phase terms occur in the
Fresnel approximation of the wave equation. In a multiple-
beam interferometer, nonlinear phase terms cause collapse
and revival effects of the fringe pattern. If adjacent paths
are out of phase by 2(n +1)×π (n = 1,2, . . . ), the fringe
signal collapses. However, the signal is revived if the accumu-
lated quadratic phase equals 2n ×π. These non-linear phase
terms can be due to the photon recoil in an atom interferome-
ter [15, 17, 18] or an additionally applied potential [21].

In addition to in the experiments described in the next sec-
tion, the technique of multiple-beam Ramsey spectroscopy
could be used to measure small magnetic fields, or, when ap-
plying a strong static electric field, in experimental tests for
a permanent electric dipole moment (EDM) of an atom [21].
Besides the increased resolution compared to experiments
determining the splitting between two adjacent Zeeman sub-
levels, this technique can also have benefits in terms of sys-
tematic effects. Since terms scaling linearly and nonlinearly
in m F can be measured simultaneously, one expects that the
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quadratic Stark effect – a significant source of systematic un-
certainties in most atomic EDM experiments – could be better
characterized in this scheme.

4 Studies of quantum decoherence

4.1 Initial measurements: state preparation

Our studies of quantum decoherence were based on photon
scattering off a path of the multiple-beam Ramsey scheme.
An important experimental issue remained to ensure that
the required resonant optical pulse performed on theF =
4,m F = 4→ F′ = 5,m F = 5 cycling transition did not affect
the interference signal in an unwanted way. Most importantly,
this pulse might a priori optically pump additional popula-
tion into the stateF = 4,m F = 4, which would then give an
additional background to the interference signal. The dou-
ble microwave transfer, described in Sect. 2, allowed us to
largely suppress excitation of the other paths, which were
left in the lower (F = 3) hyperfine state. As described ear-
lier, a coherent superposition of different magnetic quantum
numbers in this lower ground state is generated by the first
optical Ramsey pulse, which is tuned to theF = 3 → F ′ = 3
transition of the cesium D1 line. When not applying any re-
pumping laser, we expect to find a significant population also
in the upper (F = 4) hyperfine state after this pulse, arising
from its initial population and atoms being hyperfine pumped
into this state by the Ramsey pulse. We have recorded a se-
ries of microwave spectra with applied magnetic bias field
to measure the population of the different Zeeman levels in
this upper hyperfine ground state. Figure 5a shows a spectrum
recorded after applying only the first Ramsey pulse; one ob-
serves all of the 15 possible microwave transitions between
the different Zeeman sublevels. Let us point out that the used
microwave power was adjusted to obtain maximum transfer

Fig. 5a–d. Microwave spectra in a magnetic bias
field for different powers of the photon scattering
laser. The plot gives the measured fluorescence
signal from atoms transferred to the lower hy-
perfine ground state as a function of the applied
microwave frequency, and allows the population
in the different Zeeman sublevels of the upper
(F = 4) hyperfine ground state to be extracted.
For the actual microwave frequency, one has to
add an offset frequency of 9.192632 GHz. The
spectra were recorded with:a no repumping light
and no photon scattering beam;b with repump-
ing light; c with repumping light and 0.28 mW
power in the photon scattering beam; andd with
1.66 mW power in the photon scattering beam

efficiency for theF = 3,m F = 3 to F = 4,m F = 4 compon-
ent which corresponds to the peak on the right associated
with the highest microwave frequency. The microwave power
for the other transitions is not necessarily optimized and
could to some extent account for the different peak heights.
For the spectrum shown in Fig. 5b,σ−-polarized repump-
ing light tuned to theF = 4 → F ′ = 4 was additionally ap-
plied during and slightly after the first optical Ramsey pulse.
The repumping laser optically pumps most of the population
left in the F = 4 hyperfine state to them F = −4 sublevel
(yielding a peak at the lowest side of the microwave spec-
trum), which is a dark state for the repumping laser. For the
spectra shown in Fig. 5c and d, we additionally applied the
σ+-polarized resonant photon scattering laser to test if this
pulse transfers atoms into other Zeeman states. For small
power levels, we do not measure any observable optical
pumping between the Zeeman states, as shown in Fig. 5c for
a laser power of 0.28 mW and a 12µs pulse length. The opti-
cal pumping between those levels is suppressed by the com-
paratively small Clebsch–Gordan coefficients of transitions
starting from negative Zeeman levels forσ+-polarized light,
as, for example, theF = 4,m F = −4 → F′ = 5,m F = −3
component is a factor of 45 weaker than the cycling transi-
tion F = 4,m F = 4→ F′ = 5,m F = 5. Nevertheless, optical
pumping certainly occurs for higher laser powers. Figure 5d
gives a spectrum recorded at a laser power of 1.66 mW, where
a small, but clearly visible peak corresponding to them F = 4
state is observed. In the experimental runs where we imple-
mented a coupling to the environment by this pulse, we kept
the optical power well below 1.66 mW to avoid significant
optical pumping.

4.2 Scattering photons off an interfering path

In the next experimental step, we moved on to scattering
photons off an interfering path of the multiple-beam Ram-
sey experiment, and we applied the complete sequence of
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Fig. 6a,b. Multiple-beam interference fringes as a function of the phase of
the second Ramsey pulse. The signals are shown for the different lengths
of the optical pulse scattering photons from themF = 3 path: without opti-
cal coupling pulse (solid), with an applied 4µs long optical pulse (dashed),
with a 6µs long pulse (dotted) and with a 9µs long optical pulse (dash-
dotted). a Signal measured with constant phase difference between adjacent
paths. The fringe pattern loses contrast for longer pulse times.b In add-
ition, a phase shift ofπ is applied to themF = 3 path. Again, the spectra
are shown for the same set of interaction times. Here, the contrast increases
with larger interaction time. The principal maxima ina and b are slightly
shifted from phases 0 and 2π, because the difference of the two frequencies
of the Ramsey pulses did not precisely match the energy splitting between
the Zeeman substates

microwave and optical pulses described in Sect. 2. Figure 6
shows typical recorded multiple-beam interference patterns.
For the spectra shown in Fig. 6a, the phase shift of the
mF = 3 path due to the double microwave transfer has been
compensated, and the phase difference between adjacent
paths is constant for all paths. The solid line gives a fringe
pattern measured without any attempt to keep track of an
interfering path (i.e. no applied optical pulse resonant with
the F = 4 → F′ = 5 transition). One observes a sharply
peaked four-way interference signal with two side peaks be-
tween the principal maxima. The background arises from
the additionalσ−-polarized repumping light tuned to the
F = 4 → F′ = 4 component of the cesium D2 line applied
during and slightly after the first Ramsey pulse. When ap-
plying an optical pulse to scatter photons from them F = 3
path, we measure fringe signals as shown by the dashed line
(4µs long pulse), by the dotted line (6µs long pulse) and
by the dash-dotted line (9µs long pulse). With increasing
length of the optical pulse, the measured signal loses contrast.
This is similar to what is observed in conventional two-beam

atom interferometers. However, the contrast for this four-
beam interference signal does not approach zero for large
photon scattering, as the three remaining beams can still in-
terfere phase-coherently. One experimentally observes that
the widths of the principal maxima increase and the signal
becomes more and more similar to that of a three-path inter-
ference pattern. The spectra shown in Fig. 6b were recorded
without compensating for the phase shift from the double mi-
crowave transfer, such that them F = 3 path is phase shifted
by π respectively to the other paths, as in the theoretical
plot of Fig. 2b. With no photon scattering (solid line), the
observed fringe contrast is significantly smaller than that ob-
served for the spectrum of Fig. 6a. When scattering photons
off the m F = 3 path, the counterintuitive situation occurs
that the interference contrast increases. Again, the dashed
line corresponds to a 4µs long optical pulse, the dotted to
a 6µs long pulse and the dash-dotted line to a 9µs long
pulse. Qualitatively speaking, the destructive interference of
the m F = 3 path with the other paths is replaced by a more
and more incoherent contribution of the path to the fringe pat-
tern. When the photon scattering laser is fully applied, one
expects the same interference patterns with and without an
additional phase shift of them F = 3 path. The experimental
signals show this correspondence qualitatively for the longest
pulses.

An analysis of the experimental signals shows that the
measured fringe patterns are slightly broader than the theoret-
ical ones (shown in Fig. 2), which we believe to be mainly due
to magnetic fields inhomogeneities. Furthermore, the finite
transfer efficiency of the microwaveπ pulses of roughly 70%
causes deviations mainly for the signal with negativea, where
the two microwave pulses are applied with the same phase.
At present, theπ-pulse efficiency is believed to be limited
by a spatially inhomogeneous microwave field. Imperfections
in the microwave pulse area partly cancel when the second
pulse is applied with aπ phase shift (as done for the spec-
tra with positive values ofa), since the second transfer pulse
then has an effective pulse area of−π. Using a simple theor-
etical model, one finds that the finite transfer efficiency can
– to the first order – be accounted for by assuming effective
values for the parametera, with |a| ≤ 1. In the present experi-
mental stage, the range of the effective parametera that can
be investigated is roughly between−0.4 and 1.

In order to quantify our results, we have recorded fringe
patterns for various optical pulse lengths and examined the
fringe contrast of the spectra. Let us point out that the defin-
ition of the contrast is not unique for multiple-beam interfer-
ence signals. Contrast definitions based on the autocorrela-
tion function have been introduced [22], and these also allow
a quantitative description of signals with inverted contrast.
Such an inverted contrast shows up in the theoretical signal
with one path phase shifted byπ in the absence of a “which-
way” detection (a = −1 in Fig. 2b). However, all our experi-
mental spectra recorded so far have a principal maximum at
zero phase and do not show a contrast inversion (mainly due
to the finite efficiency of our microwave transfer pulses). We
have analyzed our spectra using the most common definition
of the contrast (or visibility) introduced by Michelson, which
is

cM = Imax− Imin

Imax+ Imin
, (11)
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Fig. 7. Fringe contrastcM of interference patterns recorded for different
pulse lengths of an optical beam scattering photons off themF = 3 path.
The data points were measured without (squares) and with (crosses) a π
phase shift of themF = 3 path

whereImax (Imin) denotes the maximum (minimum) value of
the interference signal. The squares in Fig. 7 show the con-
trast of interference patterns recorded with constant phase
differences between paths for different coupling to the en-
vironment of them F = 3 path. This data was fitted with a
theoretical model for the fringe contrast that is based on (8),
and in addition accounts for a finiteπ pulse efficiency, an
additional background caused by the repumping light, and
a technical broadening of the interference fringes modeled
by a Gaussian. As was already qualitatively seen in Fig. 6,
the contrast decreases with a larger number of scattered pho-
tons off them F = 3 path (solid curve) when there is a con-
stant phase difference between all paths. A feature that is not
present in conventional two-beam interferometers is shown
by the crosses in Fig. 7, corresponding to data recorded with
the m F = 3 path phase shifted byπ. Here, the fringe con-
trast increases with photon scattering off them F = 3 path.
For a larger coupling to the environment, the contrast for the
two different preparations converges to the same value, as was
already shown qualitatively in Fig. 6.

4.3 Decoherence and “path” information

The preceding section showed that the scattering of photons
on a path of a multiple-beam interference experiment can –
if the phase difference between adjacent paths is not constant
for all paths – not only lead to a decrease but also to an in-
crease of the fringe contrast. Obviously, in all cases (i.e. for
the data recorded both with and without an additional phase
shift of them F = 3 path), there is a loss of coherence when
scattering photons off a path. This suggests that in a multiple-
beam interferometer the Michelson fringe contrast alone is
not sufficient to quantify decoherence.

In order to obtain a further measure, we have attempted to
estimate the “which-path” information that is contained in the
emitted photons. This approach is inspired from discussions
on complementarity in two-beam interferometers [1, 23, 24].
It is clear from information theory that the information that is
lost in the atomic degrees of freedom when scattering photons
off a path equals the “which-path” information obtainable

from the emitted photons. This in turn allows us to estimate
the “which-path” information carried away by the photon
field from the atomic signal. Mathematically, the escape of
the photons can be described by performing a trace operation
over the photon degrees of freedom, which has yielded the
density matrix of (8).

To quantify the “which-path” information contained in
the scattered photons, we follow earlier works [6, 10, 11]
and introduce the path guessing likelihoodL. This quantity
gives the probability of determining the path of the atom in
an interferometer when detecting the scattered photons with
unity quantum efficiency. In a symmetric two-path interfer-
ometer, it is easy to see that the likelihood equals1

2 and 1
for no “which-way” information and all possible “which-
way” information respectively. However, the expected fringe
contrast here equals unity for no possible “which-path”
information and zero in the latter case. To account for
the intermediate case of partial “which-path” detection in
a two-beam interferometer, a relation between fringe con-
trast and path distinguishability has been developed [10].
For our four-beam interference arrangement, the optimum
path guessing likelihood with no “which-path” detection
equals the highest probability of finding an atom in a distinct
Zeeman sublevel, corresponding to the maximum path weight
(c2

n)max. Usingc2
n = 5

16 for statesmF = −3 and 3 andc2
n = 3

16
for statesmF = −1 and 1, we obtain(c2

n)max = 5
16. Certainly,

one can improve the guessing likelihood when irradiating,
for example, them F = 3 path with light and detecting the
scattered photons. A reasonable path guessing strategy then
would be: when detecting a photon, choosem F = 3, and if
not, choosem F = −3. This strategy yields a path guessing
likelihood

L = 5

16
· (1+ Pphoton,3) , (12)

wherePphoton,3 denotes the probability for an atom in the path
with mF = 3 to scatter a photon. From (7) it follows that
Pphoton,3 = 1−a2, which then links the expected fringe pat-
tern (10) to the maximum possible value of the path guessing
likelihood.

In order to derive the possible path guessing likelihood
from our measured fringe patterns, we first estimate the mod-
ulus of the value ofa from the spectra. As discussed earlier
(Fig. 6), the fringe signals with and without an appliedπ
phase shift for the path inm F = 3 differ considerably for no
scattering of photons (|a| = 1), whereas for large photon scat-
tering (i.e. |a| � 1) the fringe signal hardly changes when
introducing this phase shift. In the latter case them F = 3 path
only contributes incoherently to the fringe pattern, while it
contributes coherently when|a| is close to unity. Let us define
the presumed modulus ofa at a given pulse time of the photon
scattering laser as

ap = I+(ϕ = 0)− I−(ϕ = 0)

(I+(ϕ= 0)− I−(ϕ = 0))max
, (13)

whereI+ andI− denote the measured fringe signals with and
without an appliedπ phase shift of them F = 3 path. Further,
(I+ − I−)max specifies the maximum difference of the signals,
i.e. the differential signal measured without photon scatter-
ing. When we additionally account for a constant background
to the fringe patternK = (N/2)[(1/cM,max)−1], as estimated
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from the Michelson fringe contrastcM,max measured with no
scattering of photons and a constant phase between paths, we
find

Lap = 1

1+ K

(
c2

3 + K

N

)[
1+

(
1−a2

p

)]
(14)

as an estimate for the maximum possible guessing probability
using the above described strategy. This enables us to quan-
tify the “which-path” information that is carried away by the
photon field solely from a measurement of the atomic degrees
of freedom. Note that this approach relies on our model for
the fringe pattern, as we at present do not apply full quantum
tomography of the atomic quantum state.

It should be stressed that the maximum value ofL de-
pends on the basis that has been chosen for the betting strat-
egy, as has been pointed out in [10, 14]. In our case, the
strategy described so far corresponds to a “which-path” meas-
urement in the detection basis of the photon vacuum state
|D2〉 and an orthogonal state|D2o〉 with one or more photons.
However, the basis in whichL reaches its maximum value is
in general given by a coherent superposition of the eigenstates
of the detection basis. One can show that in this optimum
basis the guessing probabilityLap is given by (14) with the

term 1−a2
p replaced by

√
1−a2

p. From that value, the path
distinguishability can be derived. However, it is not immedi-
ately clear how a measurement in this rotated basis could be
performed experimentally when one of the basis states corres-
ponds to a continuum state. This optimum case can certainly
be realized when the “which-path” information is decoded,
for example, in an additional internal atomic state [6].

The presumed value for the path guessing likelihoodL ap,
as extracted from our data, is shown in Fig. 8 for different
photon scattering pulse times. The solid circles give values
derived for the detection basis. As expected, the likelihood,
being a measure for the possible “which-path” information
contained in the photons, increases for larger pulse length.
Extracting the value ofa from our data gives the presumed
value. If we instead base our analysis on a use of the optimum
basis and replace the term 1−a2

p in (14) by
√

1−a2
p, we ob-

tain the open circles in Fig. 8. Both data sets in Fig. 8 have
been fitted with a theoretical model that is based on (14).

0 4 8 12
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0.6

L a
P

interaction time ( µs)
Fig. 8. Presumed path guessing likelihood in the detection basis (solid cir-
cles) and the theoretically optimum basis (open circles)

Finally, we wish to point out that our experiment can be
seen as a model system for the study of controlled decoher-
ence in quantum systems, as, for example, quantum logic
gates. In quantum computation science, the study of deco-
herence is of high interest, as such experiments aim towards
the realization of complex entangled quantum systems (see,
for example, [25]). For such “larger size” quantum systems,
an understanding of the role of decoherence becomes in-
creasingly important. In our experiment, the four paths of the
Ramsey interference setup can represent two-quantum bits,
and, from a quantum information science viewpoint, theπ
phase shift of them F = 3 path performed for some of the
measurements equals the operation of a phase gate, which is
an elementary quantum gate. It is appropriate to argue that
the photon scattering corresponds to the coupling to an en-
gineered reservoir (see also [9]). For large couplings, this
results in an output state that is independent of the input pa-
rameters of the quantum gate.

5 Conclusion

We performed a study of quantum decoherence in a multiple-
beam generalization of a Ramsey interference experiment.
The experiment was performed by scattering photons off
one of the four interfering paths. In contrast to the situ-
ation observed for two-beam interferometers, the scatter-
ing of photons on a path can here not only lead to a de-
crease but also sometimes to an increase of the Michel-
son fringe contrast, depending on the circumstances. This
suggests that in the multiple-beam case the Michelson
contrast is not sufficient to quantify decoherence. The re-
sults are in agreement with a density matrix calculation.
In all cases, the atomic quantum state looses information
with light scattering, as the emitted photons carry away
“which-path” information. A measure of this information
is a key issue in such considerations. We used the pre-
sumed path guessing likelihood to quantify the amount of
“which-path” information contained in the emitted pho-
tons, which involves the measurement of more than a sin-
gle output state of the interferometer. For the future, an
important issue would be to detect the photons scattered
by the atoms with high quantum efficiency, as this would
permit a direct verification of the derived path guessing
likelihood. A further perspective would be to extend the
measurements towards an interferometer with an increased
number of interfering paths, or also other quantum systems
of larger size.
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