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Abstract. The U(1,1) and U(2) transformations realized by Fock states, for which possible imperfections of the optical

three-mode interaction in the respective parametric approxeomponents are analysed.

mations are studied in conditional measurement, and the cor- The paper is organized as follows. In Sect. 1 appropri-

responding non-unitary transformation operators are derivedtely factorised representations of the unitary U(1,1) and U(2)

As an application, the preparation of single-mode quantuntransformation operators are introduced. They are used in
states using an optical feedback loop is discussed, with sp&ect. 2 in order to derive the non-unitary transformation oper-

cial emphasis on Fock-state preparation. For that examplafors realized by conditional measurement. In Sect. 3 the re-
the influence of non-perfect detection and feedback is alssults are applied to the generation of specific quantum states,

considered. with special emphasis on Fock states and simple superposi-
tions of Fock states. Finally, a summary and some concluding
PACS: 42.50.Ct; 42.50.Dv; 03.65.Bz remarks are given in Sect. 4.

1 Parametrically approximated three-wave mixing
Conditional measurement offers a promising way to manip-
ulate the state of a given quantum system. The basic idea it us consider the transformation
to entangle the state of the system under consideration with ) R
the state of an auxiliary system and to prepare the system @}, = UdancUT Q)
the desired state owing to the state reduction associated with
an appropriate measurement on the auxiliary system. In whaf the quantum statéan: of three travelling optical modes
follows, we restrict our attention to travelling optical fields. (denoted bya, b, andc), with U = e 'H/" being realized by
The quantum states of two travelling modes can be entara three-wave mixer,
gled by mixing them at an appropriately chosen multiport.
Possible basic transformations are the U(1,1) transformatioH = hw.a'a+ hwpbb+ hwtie+hy @ @&fb'e+e'ba),

as realized by a non-degenerate parametric amplifier and the (2
U(2) transformation as realized by a frequency converter or
a beam splitter. where x@ corresponds to the second-order non-linear sus-

The aim of this paper is to generalize and unify previ-ceptibility. In what follows, we discuss three different para-
ous work on conditional measurement at U(2) and U(1,1)metric approximations (for details on the conditions under
couplers. This includes the description of the quantum-statehich such approximations hold, see [11]).
transformation in terms of a non-unitary operator [1,2] as
well as possible applications such as the generation of Fock o )
states [3], optical qubits [4], Schrodinger-cat-like states [5] 1.1 U(1,1) mixing of modes a and b: parametric
and photon-subtracted or photon-added Jacobi polynomial amplification

states [6] or the measurement of specific overlaps [7, 8], . :

By combining a theoretical concept for preparing single- W€ assume that the modds PFePafgS' in a coherent state,
mode quantum states by alternate coherent displacement affgc = Gab ®ly){rl, then in the limity ' — 0 and|y| — oo
photon-adding [9] with an experimental proposal to employWith x @'y =const. the reduced density operadgs=Trco4

a 2-photon down-converter inside a feedback loop [10], a wayeads

is offered to prepare quantum states without non-classical in-, - -

. S . .5 T
put. In particular, emphasis is placed on the generation Fab =UadabUp, 3
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where Up=e~HAtN s a U(1,1) transformation realized by
a non-degenerate parametric amplifier,

Ha = hw,afa+ hwpb b+ hx(z)(yéTE)T—i—y*Bé). (4)

Introducing the quantities

where now

[L;, |:k]=i280j|<||:|- (14)
I—0

We apply the respective disentanglement theorem [12] to

$o = —(@a— ), Ro = 3(aaf - b'b), obtain
pr1=—(y+ V*)X(Z)t, Ky= l(bTéT + ab) (5) OC — e—“:'ct/h — ei(¢o|10+¢1|:1+<p2|:2+<ﬂ3|:3)
— (v — )y @ < l At — . . . .
$2=—1(y —yIxL |§2 2 (b al —ab), — dwolod@r+erLs2ivlad(eT—¢R)L3
$3 = —(wa + wp)t, Kz= (aéT +b'b),
— (ng)éTée—O(ﬂ*éTéef*(‘RéTﬁ(gj*rf)—éTﬁ’ (15)

where the commutation relation

3 where

Ki, K] =i i OImK 6
(K, K =1 Z £0jk G m ©) T = cospe*T = cos? +1 % sin? (16)
I.m=0 2 ¢ 2"

) . . . . . o po+ipr . @
is valid ((gm)=diagl, 1, 1, —1), jju is the four-dimensional R =sinye¥R = Z2—T=sin< | (17)
Levi—Civita symbol), and applying the respective dlsentan— 2 2
glement theorem [12], we may factorislg as follows: =¢gvo/2 (18)

UA e iHat/h _ elwatel(¢oKo+¢1K1+¢2K2+¢3K3)

— g1 (@0+93)/2ddoKod T +oRIK3 it Ko di (o7 —¢R)K3

— -I:*_l(PT)*_éTée_P*RBTéTePR*aB(P T*)—BTB (7)
where
- ¢ .93 . @
— T — i A
T = coshye cos2 +i p sin 5 (8)
R= sinhodvr = $21191 5 @ )
¢ 2
p = /2 (10)

andT = Te %3/ (¢p=,/p3 — 3 — $?). Note the hyperbolic
behaviour of (8) and (9) foix @y|> (wa+wp)/2. Forgo=

we haveP =1 andU, in (7) reduces to a SU(1,1) transform-
ation operator; compare [13].

1.2 U(2) mixing of modes a and c: frequency conversion

If, alternatively, we assume that the moldés prepared in
a coherent stat@anc =0ac ® |8) (8], then in the limity @ — 0

((p:%(p%—i—(p%—i—(pf). For go =0 we have? =1 and Uc
in (15) reduces to a SU(2) transformation operator; com-

pare [14].

1.3 Transformation properties of U(1,1) and U(2)

From (7) and (15) the transformation matrices for the respec-
tive mode operators are deduced to be

Ar AN A T — a
4 (5) =P (= ) (5)- @)
A A\  ~ T R a

In turn, (19) and (20) can themselves be used to define the
four-parametric action of a parametric amplifier and a fre-
guency converter. In this case we consifleR, P and7, R,

& as six complex numbers that satisfy the four conditions

andlﬁl — oo with x® g=const. the reduced density operator and are otherwise arbitrary. Using (19) and (20), it is not dif-

0nc = Trb0y, reads

~

04 = UcdacUl, (11)

Whereljc=e‘“qct/ his a U(2) transformation realized by a fre-
guency converter,

Hc = hwaafa+hoctTe+hy @ (peTa+ p*a’e). (12)
In order to factoriséJc, we introduce the quantities

g0 = —(wa+wot, Lo=i@ta+cfe),

p1=—(B"+Px?t, [, =f@e+eta),

p2=—i(B*—Px@t, L= z(@&c-tla),
@3 = —(wa— wo)t, Ly3= %(éTé—@T@),

(13)

>

ITP=IR?*=|P?= 1 =|P>=|T*+|R|? (21)
ficult to verify that
(afa—btb, Ua1= 0 = [a'a+¢'e, Ucl. (22)

The inverse transformations are obtained by replagjngith
—¢j andy; with —¢; in (8)—(10) and (16)—(18), respectively,
ie.,

UNT, R P)=Ua(T*, —R, P¥), (23)
UcHT, R, #) =Uc(T*, —R, P, (24)

and interchanging signal and idler modes leads to

Ua(h, & T,R P)=Ua& b; T, R, P, (25)
Uc(e, & 7, R, ) =Uc(a, & T*, —R*, P). (26)
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1.4 Coherent displacement of mode a |G)

If we assume that modésandc are simultaneously prepared /4 D \
in coherent stateQapc = 0a® |8) (Bl ® |y)(y|, then in the

limit x@ — 0, || — o0, |y| — oo with x@ By* =const. the

reduced density operat@t, = Tryc0,,. readsgy, = UpdaU], 8
where | ’
) : Y ' '
Up = g ileadla+x@ (g val +py 8t o b > &
e Lo M
— eieatd’apy ()it R - I
) . Bob
can be written as the product of a U(1) transformatior
gi@atd’a and a coherent displacemebt(a = iF*) :.e'F, ]F)
where F = Fa+ F*a' and F =ix®@ gy w;1(1— e ieat)
(éfis an irrelevant phase factor Fig.1. Scheme of controlled quantum-state _e_ngineering by cqn_ditional
measurement at a U(1,1) or U(2) coupler realizing the transformatien
Ua or U = Ug, respectively. If Alice’s measurement device has detected
.. a desired statgG), she informs Bob who opens the aperture S and ‘stores’
1.5 U(p,q) mixing of p+ g modes the pulse in the medium M until needed [17]

Linear coupling of more than two modes can be reduced to

a successive ap_pllcatlon of two-mode couplers.' For instanc@enerating the stat#,. Introducing the non-unitary (condi-
as a generalization of (19) and (20), let us considergd}  tional) operator

coupling of two sets of modes, - - -,a, andapy1, - - -, an

(N=p+a). V= (GIU|F) (30)

o iaTHaggaTHa _ JGHg (28)
acting in the signal-mode Hilbert space, we can rewrite (29)
whereé is a column vector whose elements &@g- - -, &, as

éf)ﬂ, e éf\, anda’ is a row vector with elementéi, e

. . . . 1. -
éﬁ,épﬂ, --+,an. H is a HermitianN x N matrix, andG is ¢} = =Y, YT, (31)
N x N diagonal matrix whose uppegr (lower q) diagonal p

elements are equal to J.—(Tl) (see Appendix A) Correspond-
ing to a factorisation of '@ "2, (28) can be implemented by where the probability now reads = Tr1(Y$:1Y"). In prac-
successive application céfzd) two-mode couplers, each con- tice, synchronized sequences of light pulses could be fed into
necting two of theN modes by either a U(2) transformation the input ports of the two-mode coupler, each pulse being
(if the two modes belong to the same set) or a U(1,1) tranggrepared in the respective state, and the modes are thus non-
formation (if the two modes belong to different sets). Themonochromatic ones. In what follows we assume that the
special case of implementing Nj = U(N, 0) by means of U(1, 1) and U(2) transformations do not vary with frequency
beam splitters is discussed in [15]. Note th&t& can al-  within the spectral bandwidth of the pulses, so that the formu-
ternatively be factorised into U(2) transformations and singlelas given in Sect. 1 directly apply.
mode squeezing operations [16]. In order to writeY as function of the signal-mode oper-
ators, we first represent the staiéy and|G) in the form
of
2 Conditional measurement at U(1,1) and U(2) couplers

Let us consider the scheme in Fig. 1. The signal mo@ie-  |F) = F(b)[0) =) Fub™0), (32)
dex 1) prepared in a stai@ and the idler model( or c, m=0

index 2) prepared in a stat€) are mixed at a U(1,1) para- A ©

metric amplifier or a U(2) frequency converter, and a device DG) = G(b")|0) = Z Gnb"|0) (33)
performs some measurement on the output idler mode. (The n=0

pump modee or b, respectively, prepared in the strong coher-

ent state is not shown in the figure.) Under the condition thagor with bt being replaced bg') and substitute these expres-

D has detected a stai&), the reduced state of the output- gions into (30). Using (7) and (15), applying te@rdering
signal mode becomes rule [18]

Tmn= |
{ama}s Zk.k ‘ 5

k=0

N 1 A a1 A .
0y =501 IF)(FIO'D), (29) minm (m) (n) <t—_5)k

whereT=|G)(G|. The normp=Tr;Tr,(...) is the proba- tm—k ank
bility of measuring the statgG) and thus the probability of x {a" " a ", (34)
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and introducingh = 474, we obtain (see Appendix B) x — 0 and|«a| — oo with «|«|? = const., _thez reduced gignal
. At AP £t state becomeg] = Tr (Ug)|a)(a|UT) = gkl p! giklal™n,
Ya =(0IG"(b")UaF(b)[0) By choosing|«a|? we can therefore control the refractive in-

— {GT (—RT14) B(P* R*é)} T+4pT)h (35 dexandwithitthe optical length and time delay caused by the
SA cross-Kerr medium.
Yo = (0|GT(€HUcF (&")0)

= HGT (—RT*1a) If(?méT)}SC(g"f)ﬁ, (36) 3 Preparation of single-mode quantum states

where the respective ordering parameters are givenby 3.1 Displaced photon-adding for generating qubits

sa=(TI?+1) |R2, (37) Inorderto illustrate the general results derived in Sect. 2, let
_ 12 -2 us first study the generation of a single qubit. When a para-

So=(TI+DIRIT (38) metric amplifier as described in Sect. 1.1 is fed with an idler

pulse prepared in a single-mode coherent sfate-|«4) and

a single photon is detecteld;) =|1), then (35) and (41) yield

the non-unitary (conditional) operator

A consequence of (21)) i§°|2<1<|T|?, from which we see
thatsa, sc> 1. Note that the arguments BfandG in (36) are
the adjoints of the corresponding arguments in (35).

Coherent displacements can be separated from the ordeft _  Hos++-18/ pp+—1
ing procedure. To see this, we derive from (19) and (20()?\4({A =—RPT D(?R a")
together with (23) and (24) the transformation formulas for x (PT)y"aiD(-T*R o) (43)

the displacement operators of the signal and idler modes, _ o
(the indexk=1is introduced for later purposes). Let us fur-

Ua D1(a)Da(B) U} ther assume that the signal input channel is unudedQ) (0|
(for notational convenience we omit the mode index). The

= Da[P(Ta — REH] D[ P* (= Re* + TH)1, (39) outgoing signal pulse is then prepared in a state
N 1 7 7
Uc Da(a)Ba(B) UL o = BYSHO) OV T = |y, (44)
CR.rora N. TP (_ @* %
= Di[P(Ta+ RB)ID2[ P (=R '+ T B)]. (40) where
Combining (39) and (40) with (35) and (36), respectively, |0) +q|1)
yields V) = —= (45)

V1+1aP

v — 01&T BN DI (B)Ua Do () F (b
Ya=(0G (E )Dz(f)UA Dz(oz)F*(li )|O>* i is a superposition of the vacuum and a single-photon Fock
_5 Po*—Tp VD P*g* — T« (a1) State. The parametgr= — PR/« can be controlled by vary-
. ATT R* ’ ing Ror «s. It is however convenient to choo$B| and |« |

Vi = (06T @&h [32(5)0(;[32(01) F@&h|o) such that for a desiregithe probability
B 61(%) %m(%) ’ @2)  P=IVI0)12 = (IRZ+ laafD)| T| e (46)

. . . . , ?)||=/(@|®)) of generating the qubit (45) attains a max-
i.e., a coherent displacement of the idler mode 'Seq”'Vale”tt&uun)J.'This(is|th2ca3e for gtheq (45)

a corresponding coherent displacement of the signal mode.
Since each trial in Fig. 1 yields a desired measurement_, /(|q|=2+1)2+4|q|2— (|9| 2+ 1)
outcome only with some probability, a lockable aperture SRI“= TE . (47)
is needed in order to extract the properly transformed out- q
going signal modes and dump the others. The desired outpghe maximum values op together with the corresponding
states are thus available at random times. It may howeveflues of| R| and|«1| are shown in Fig. 2.
be demanded to provide them at certain times. In this case,
a quantum-state memory M has to be used into which the
pulses can be fed and released when desired. One possil#2 Repeated displaced photon-adding for generating
ity to realize M is offered by electromagnetically induced  arbitrary superpositions of Fock states
transparency [17]. If, in particular, a pulse train of a certai . .
repet?tion frgq[uer]my is rgquired, onepmay apply, e.g., an arl he scheme can be extended to the generation of an arbitrary

ray of delays with variable optical path lengths which stepSUPerposition of a finite number of Fock states

by step adjust the waiting periods between the pulses to each N
other. Besides electromagnetically induced transparency, t 8 — il 4
cross-Kerr effect should also offer a way to realize a variabl )= nX(:) I {n1). (48)

optical delay. In the latter case the outgoing signal mode in
the state) is mixed with a reference mode (indejprepared  Since the states of that type are completely determined by the
in a coherent statie) at a cross-Kerr mediutd =", For N zeros of theQ-function, i.e., theN solutionsg, - - - , BN
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Fig.2. The maximized probability (46) of generating a qubit (45) and the
corresponding values of the parametgRs and |« | as functions ofq| ’O&k>

Fig.3. Scheme for preparing a travelling optical field in a quantum state
. (48). A parametric amplifier A is fed with a sequence of idler pulses pre-
of the equation(¥|B) =0, they can be generated from the pareq in appropriately chosen coherent stadgs The idler pulses arrive
vacuum by alternate application of the coherent displacement A simultaneously with the produced signal pulse circulating in the ring
operator and the creation operator, resonator consisting of mirrors,;MM3 and a (removable) mirror M (The
pumping of A by a synchronized sequence of pump pulses is not shown in
the figure.) The desired quantum state is generated if in each round trip of

N 3 . R 4
(N|@) the signal field the detector D registers a single photon
¥) = — [ [@" - 8010
VNI g k
(N|@) N paring (51) with (49), we see that for
=——]]|BB0a' b’ |0), (49)
VNI kljl[ ] _(PTON K Py =T, 52)
| . . | =" L pTy
which may be realized repeating the procedure in Sect. 3.1 =k

according to Fig. 3. The pulse prepared in the state (45) ig, equivalently
sent back through a ring resonator to the amplifier and used

as a signal input. Simultaneously, an idler pulse prepared in PR N
a coherent statgy) is fed into the second input port of the oy = —————— Z T (B — Bo) (53)
amplifier. If the detector again registers a single photon, then (P T)*(P T )™ 4=

the outgoing signal pulse is prepared in a staté” Y. |0). _ . , _
Under the condition that in each round trip a single photon igAn+1=0) the desired stat@) is just realized. The probabil-
detected, afteN round trips the signal pulse is prepared in 'Y Of generating the state is given by

a state A
p=Yal0)|?
1)~ Tal0) = Vi YN0 (50) NU RPN N
= TN s SR = 2 led® | (54)
k=1

If the preparation of the desired state has been successful, the

mirror My in Fig. 3 can be removed in order to open the cavityas js seen by comparing the norms of both sides of (51) and
and release the pulse. Otherwise the pulse is dumped in Ordﬁ%erting (49). It decreases rapidly with increaskign gen-
to start the next trial from the very beginning, with the S|gnal—era|, so that the applicability of this method is effectively

input port of the amplifier being unused. restricted to low numbers of round trips.
Inserting (43) and rearranging the operator order such that

the photon-creation operators are on the left of the exponen-
tial operators, we derive 3.3 Possihility of generating Fock states independently of
coincidence measurements

N
5 - _ 1 In order to generate a Fock stgt®, no feeding with idler
_d& pIN N(N+3) /2 _- 2 ,
Yal0) =€ |RITIT] ex 2 Z otk ) modes is necessary, since all fhein (49) are zero. Accord-
N k=1 ing to (54), the probability of detecting one photon at each of

N . .
PT)*N P*ay — T then round trips is
<o - By oo g sy P
R (P T )*I 2n —n(n+3)
k=1 1=k p=n!R?T| (55)

(eng1=0; € is an irrelevant phase factor). In the deriva-and becomes maximal for fixeulif IRI2=2/(n+1). Sub-
tion of (51) we have used the relatioi¥«) f(&, ahDf(a)  stituting this expression into (55) and applying Stirling’s for-
= f(a—a, &' —o*) anda” (4, &Moo "= f(« 14, «&"). Com- mula yields the asymptotic behavioprax~ ae~", where
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a=+/2r/e andb=2—1In2, i.e., the probability of preparing wherenr = | R1R2R3|?> determines the feedback efficiency.
ann-photon Fock state decreases exponentially with increassombining (60) and (58), we obtain the recursion relation
ing n. Note that exactly the same asymptotic behaviour is

observed when the state is generated by conditional measurgq+1) _ 1 Z b (76)
ment at a beam-splitter array [9]. M T2 p(kj41) — mi U1F
However, the scheme considered here offers the possibil- ’ _2 ()
ity of circumventing the problem of low preparation prob- X D1 1-n ()b (IT 1) ol - (61)

ability. Since the idler field remains in the vacuum state,

lwe) = |0), the circulating signal pulse is always in a FockIf we start from the vacuum state(?) = sno, and measure
state whose number is simply the sum of detected idler phdhe numbers; of (outgoing) idler photons detected at tjté

tons. This means that every trial sooner or later results in thepund trip, the circulating pulse therefore evolves into a mix-
desired stat@), provided that the respectivas not skipped, ture of Fock states, which depends according to (61) on the
and thus there is no need to wait for a sequenceaainsecu- respective sequengky, ka, - - - }. For this reason, some arbi-
tive single-photon clicks. The idler detector is simply used fortrariness has to be introduced if the state evolution needs to be
photon book-keeping and the cavity is opened in that momergimulated.

when the sum of all detected idler photons has reached the Let us therefore first consider the evolution of tinean
desired value. photon number of the circulating pulse, which can be ob-
tained by considering the case when no measurement is per-
formed in the idler-output channel. Equation (61) together
with np =0 andk;;1=0 (and the initial conditiom®) = §r0)

3.4 Influence of non-perfect photodetection and non-perfect then yields a thermal state

cavity feedback on Fock-state generation

1 ~ 1
If the idler detector and the feedback mirrors are not perfec®™’ = A1 b0ﬁ< T 1) . (62)
the situation becomes more complicated. Let us assume that
the state of the signal pulse after thén round trip is a sta- \yhere the mean photon number
tistical mixture of Fock states described by a density operator
o). This pulse now enters the signal-input port of the para- (eI TN -1
metric amplifier whose idler-input port is unusg&) = |0). (AN = 77F|R|2ﬁ
Whenk outgoing idler photons are detected with efficiency nelTIE =
np, then the statg!) " of the outgoing signal field is given by can be deduced from the (general, compare (19) and (20))

(63)

(29), where now recursion relation

A\ (j+1) _ 2\ () 2
A ] . ~ A = T2 +|RJ7]. 64
Kk =: (nDk') € ™" : = b (7p). (56) ) e [ITIER) IR’] (64)

If ne|TI? > 1, then (A)N) increases exponentially with
Here, the symbal: introduces normal ordering, and N, while for 7¢|T|? < 1 a stationary value is observed,
lIMNo oo (AYN) = ne|RIZ/(1—ne|TI?). The critical value
n - ne| TI?=1 leads to a linear increas@) ™) =|R/T|?N.
bin(2) = <k>2 1-2"" (57) To give an example, let us now consider the generation
of the statgn=4). Since the amplification is typically weak
5(| RI? « 1), a large number of round trips is likely and a high-
quality cavity is demanded. Note thidR|%2 = s(vada'éjvacs
= s(vadbfblvags characterizes the mean photon numbers
, 1 o (i of a two-mode squeezed vacuurags = Ua|0, 0) that is
O = ITpK) Zbk,m—l )b (ITI" )0}, (58)  generated by means of a parametric amplifier. In order to
! provide a rough estimate of the required efficiemgy we
approximate the numbeM of cycles needed on average by
identifying ()N in (63) with n and assume a linear increase
L o ) (AYN = |R/T|?N (we have|T|?~ 1 and further assume
p(k) = [T| Zbk,m—l (mp)bim(ITI™)gy (59) 5~ 1; thereforeng|T|2 ~ 1), so thatN ~ |[R~2n. We
l.m now estimateng from the requirement that after that num-
) - . ber of round trips in an empty resonator (i.e., without the
is the probability of detecting photons. Next, the pulse pre- ampilifier) an initially present photon can still be found with
pared in the statg! is fed back by the mirrors M - - - , M3 probability L; thusne=2-R?/" Forn=4 and|R|2=3 x 10-2
into the 'signal-input port of thg amplifier. If the reflectancesiy;g yields SF ~ 0.999. We insert these quantities into (63)
of the mirrors M, Mz, M3 are given byR1, Ro, Rs3, the state 5 (arbitrarily) consider the case when the first idler photon
of the pulse after thej + 1)th round trip is still a mixture of ;& qetected ifye(A) exceeds 1, the second jf(A) exceeds
Fock states with 2 and so on, until eventually the cavity is opened after de-
(4D Gy tecting the 4th idler photon. The resulting density matrix
oY =Y bume)ay’”, (60) s then obtained from (61) together with? = 8,9. Exam-
[ ples are shown in Fig. 4. The plots confirm the sensitivity

Inserting (56) into (29), we find that the prepared state i
a mixture of Fock states with

where
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1 0 N) 1 Q(N) After writing
nn nn
0.8 (a) 0.8 (b) éeiéTHé —uU-lu éeiéTuTqulHU*lua
0.6 0.6 -
0.4 0.4 H —U-LUadUaTUTTHU LY (A.2)
0.2 n 0.2 H n
. we choosel such thatU~THU~! becomes diagonal, i.e.,
1 2(:/3\,% 5678910 1 2(?\3 5678910 (U*lTHU*l)M = (U"YTHU1),,6;,. Now making use pf
1 y 1 o4 ahe™ = f(a 14 ad), we see that the relation
0.8 On 0.8 Onn A% A
o ¢l (C) o e (d) 8,6°%% =d &8 gCuagy, holds. Inserting it into (A.2) with
0. al 0.4 o = (U~THUY),,, we obtain together with (A.1)
0.2 Hﬂﬂﬂmﬁ n 0.2 ﬁﬂﬂHﬂmﬁ n add’Ha _ y-1ua) l—[ dUHTHUY, L] wa),
12345678910 12345678910 A
Fig.4a—d. Computer simulation of the preparation of a desired Fock state — UfleiéTHéeiG(U_” HU‘l)(U a)
In = 4). The density-matrix elemeng’ obtained according to (61) are Lt et
shown for|R2=3 x 10~3 and different feedback efficiencies and detec- =g H'é‘U _1e'GU HU Ua
tion efficienciesnp. The cavity is assumed to be opened after detecting the At )
4th idler photon, which determines the number of round thpsa =1 = ¢a'HadGHy (A.3)

andnp =1 (N =538),b np=0.999 andnp =1 (N =652),c ne =1 and

o =07 (N =636),d 5 = 0.999 andyp = 0.7 (N = 788) Note that &H itself is just a U@, q) matrix, because

(eiGH)—l — GT(éGH)TG

to cavity loss for smallR|2. Note that the Mandel param-

ter Q=((AR)?)/(A) —1 of the mixt lotted in (d) i
3290.5(2(7. e of the mixture plotted in (d) is Appendix B Derivation of equation (35)

Applying (19), we first write
4 Conclusion . N . R
b"Ua = Ua(U}6/Ua) " = Ua(—P*RAT + P*TH)".  (B.1)

In this paper we have studied conditional quantum-state en-
gineering at parametric amplifiers and frequency converterd)singe” f(4, aha "= f(«'4, d'), we see from (7) that for
regarding each apparatus as being effectively a two-port dé0) = |0)2
vice, whose action in conditional measurement can be de- )
scribed by a non-unitary operatoft definedAin the Hilbert (0, = T*—l(pT)*—é‘Té(me%éb, (B.2)
space of the signal mode. We have presemddr arbitrary
quantum states of the incoming idler mode and arbitrary dewith the help of (B.1) and (B.2) we now get
tected quantum states of the outgoing idler mode aslered
products of the operators that generate the quantum states _ #0180 . [{m
from the vacuums being entirely determined by the device = ;n: FnGn (OIb"UABT0)
parameters. ' B e R

To illustrate the results, we have proposed a scheme al- = Z FmG;:T**l(PT)**"’1 40T+
lowing the generation of arbitrary finite single-mode quantum m.n.k
states of travelling waves by a parametric amplifier equipped n . "
with a ring resonator as an optical feedback loop. We have  x <k)(P*Tb) (—P*RaNH"*biM|0)
applied the method to the problem of Fock-state preparation,
for which we have also addressed the influence of non-perfect _ Z FnGiTL(PT )*—é‘Ték! <T> <E) (P*T)K

photodetection and non-perfect cavity feedback. —

x—la\m—K, _ pxpatyn—k
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gemeinschaft. _ Z FmGﬁ'I:*_lk! m\ /n (P*T)k
k ) \k

m,n,k

Appendices x (P* R*é)m*k(_ RT*fléT)n—k(P T )*4‘1
* * *—1

Appendix A Derivation of equation (28) = Z FmGp(P*R)™(=RT*™)"

m,n
The commutation relation betweéranda' is invariant under m\ /n T2\ m—katn_k
a U(p,q) transformation, i.e., fot =1 = GTUTG we have X Z k!<k> <k) 'ﬁ ara

k

[(U&),, (UB)]]=[4.8}]=G,. (A1) xTHPT)" (B.3)
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Applying (34) witht = —1 (denoting antinormal order) and
S =3y gives

Ya =) FnGj(P*R)M(—RT* 1"
m,n
x {é‘fném}SA-I_—*fl(P T )*7ﬁ

=1> GH~RTM"Fy(P*RQ™

m,n

x T Y PT)",

sa

(B.4)

from which (35) directly follows. Equation (36) can be de-
rived analogously.
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