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Abstract. The U(1,1) and U(2) transformations realized by
three-mode interaction in the respective parametric approxi-
mations are studied in conditional measurement, and the cor-
responding non-unitary transformation operators are derived.
As an application, the preparation of single-mode quantum
states using an optical feedback loop is discussed, with spe-
cial emphasis on Fock-state preparation. For that example,
the influence of non-perfect detection and feedback is also
considered.

PACS: 42.50.Ct; 42.50.Dv; 03.65.Bz

Conditional measurement offers a promising way to manip-
ulate the state of a given quantum system. The basic idea is
to entangle the state of the system under consideration with
the state of an auxiliary system and to prepare the system in
the desired state owing to the state reduction associated with
an appropriate measurement on the auxiliary system. In what
follows, we restrict our attention to travelling optical fields.
The quantum states of two travelling modes can be entan-
gled by mixing them at an appropriately chosen multiport.
Possible basic transformations are the U(1,1) transformation
as realized by a non-degenerate parametric amplifier and the
U(2) transformation as realized by a frequency converter or
a beam splitter.

The aim of this paper is to generalize and unify previ-
ous work on conditional measurement at U(2) and U(1,1)
couplers. This includes the description of the quantum-state
transformation in terms of a non-unitary operator [1, 2] as
well as possible applications such as the generation of Fock
states [3], optical qubits [4], Schrödinger-cat-like states [5],
and photon-subtracted or photon-added Jacobi polynomial
states [6] or the measurement of specific overlaps [7, 8].
By combining a theoretical concept for preparing single-
mode quantum states by alternate coherent displacement and
photon-adding [9] with an experimental proposal to employ
a 2-photon down-converter inside a feedback loop [10], a way
is offered to prepare quantum states without non-classical in-
put. In particular, emphasis is placed on the generation of

Fock states, for which possible imperfections of the optical
components are analysed.

The paper is organized as follows. In Sect. 1 appropri-
ately factorised representations of the unitary U(1,1) and U(2)
transformation operators are introduced. They are used in
Sect. 2 in order to derive the non-unitary transformation oper-
ators realized by conditional measurement. In Sect. 3 the re-
sults are applied to the generation of specific quantum states,
with special emphasis on Fock states and simple superposi-
tions of Fock states. Finally, a summary and some concluding
remarks are given in Sect. 4.

1 Parametrically approximated three-wave mixing

Let us consider the transformation

�̂′
abc = Û�̂abcÛ† (1)

of the quantum statê�abc of three travelling optical modes
(denoted bya, b, andc), with Û = e−i Ĥt/h being realized by
a three-wave mixer,

Ĥ = hωaâ†â +hωbb̂†b̂+hωcĉ†ĉ+hχ(2)(â†b̂†ĉ+ ĉ†b̂â) ,
(2)

whereχ(2) corresponds to the second-order non-linear sus-
ceptibility. In what follows, we discuss three different para-
metric approximations (for details on the conditions under
which such approximations hold, see [11]).

1.1 U(1,1) mixing of modes a and b: parametric
amplification

If we assume that the modec is prepared in a coherent state,
�̂abc = �̂ab ⊗|γ 〉〈γ |, then in the limitχ(2)→0 and|γ |→ ∞
with χ(2)γ =const. the reduced density operator�̂′

ab=Trc�̂
′
abc

reads

�̂′
ab =ÛA�̂abÛ†A, (3)
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whereÛA =e−i ĤA t/h is a U(1,1) transformation realized by
a non-degenerate parametric amplifier,

ĤA = hωaâ†â +hωbb̂†b̂+hχ(2)
(
γ â†b̂†+γ ∗b̂â

)
. (4)

Introducing the quantities

φ0 = −(ωa −ωb)t, K̂0 = 1
2(ââ†− b̂†b̂),

φ1 = −(γ +γ ∗)χ(2)t, K̂1 = 1
2(b̂†â†+ âb̂),

φ2 = −i(γ −γ ∗)χ(2)t, K̂2 = 1
2i(b̂

†â†− âb̂),

φ3 = −(ωa +ωb)t, K̂3 = 1
2(ââ†+ b̂†b̂),

(5)

where the commutation relation

[K̂ j, K̂k] = i
3∑

l,m=0

ε0 jklglm K̂m (6)

is valid ((glm)=diag(1, 1, 1,−1), εijkl is the four-dimensional
Levi–Civita symbol), and applying the respective disentan-
glement theorem [12], we may factorisêUA as follows:

ÛA = e−i ĤA t/h = eiωatei(φ0K̂0+φ1K̂1+φ2K̂2+φ3K̂3)

= e−i(φ0+φ3)/2eiφ0K̂0ei(ϕT +ϕR)K̂3e2iϑ K̂2ei(ϕT −ϕR)K̂3

= T̄ ∗−1(P T )∗−â†âe−P∗ Rb̂†â†ePR∗âb̂(P T ∗)−b̂†b̂, (7)

where

T = coshϑeiϕT = cos
φ

2
+ i

φ3

φ
sin

φ

2
, (8)

R = sinhϑeiϕR = φ2 + iφ1

φ
sin

φ

2
, (9)

P = eiφ0/2 (10)

and T̄ = Te−iφ3/2 (φ=
√

φ2
3 −φ2

2 −φ2
1). Note the hyperbolic

behaviour of (8) and (9) for|χ (2)γ |>(ωa +ωb)/2. Forφ0=0
we haveP = 1 andÛA in (7) reduces to a SU(1,1) transform-
ation operator; compare [13].

1.2 U(2) mixing of modes a and c: frequency conversion

If, alternatively, we assume that the modeb is prepared in
a coherent state,�̂abc=�̂ac ⊗|β〉〈β|, then in the limitχ(2)→0
and|β|→∞ with χ(2)β=const. the reduced density operator
�̂′

ac = Trb�̂
′
abc reads

�̂′
ac = ÛC�̂acÛ

†
C, (11)

whereÛC=e−i ĤCt/h is a U(2) transformation realized by a fre-
quency converter,

ĤC = hωaâ†â+hωcĉ†ĉ+hχ(2)
(
βĉ†â+β∗â†ĉ

)
. (12)

In order to factoriseÛC, we introduce the quantities

ϕ0 = −(ωa +ωc)t, L̂0 = 1
2(â†â + ĉ†ĉ),

ϕ1 = −(β∗ +β)χ(2)t, L̂1 = 1
2(â†ĉ+ ĉ†â),

ϕ2 = −i(β∗ −β)χ(2)t, L̂2 = 1
2i(â

†ĉ− ĉ†â),

ϕ3 = −(ωa −ωc)t, L̂3 = 1
2(â†â − ĉ†ĉ),

(13)

where now

[L̂ j , L̂k] = i
3∑

l=0

ε0 jkl L̂l. (14)

We apply the respective disentanglement theorem [12] to
obtain

ÛC = e−i ĤCt/h = ei(ϕ0L̂0+ϕ1L̂1+ϕ2L̂2+ϕ3L̂3)

= eiϕ0 L̂0ei(ϕT +ϕR)L̂3e2iϑ L̂2ei(ϕT −ϕR)L̂3

= (PT )â†âe−PR∗ ĉ†âeP ∗Râ† ĉ(P ∗T )−ĉ† ĉ, (15)

where

T = cosϑeiϕT = cos
ϕ

2
+ i

ϕ3

ϕ
sin

ϕ

2
, (16)

R = sinϑeiϕR = ϕ2 + iϕ1

ϕ
sin

ϕ

2
, (17)

P = eiϕ0/2 (18)

(ϕ=
√

ϕ2
3 +ϕ2

2 +ϕ2
1). For ϕ0 = 0 we haveP = 1 and ÛC

in (15) reduces to a SU(2) transformation operator; com-
pare [14].

1.3 Transformation properties of U(1,1) and U(2)

From (7) and (15) the transformation matrices for the respec-
tive mode operators are deduced to be

Û†A

(
â
b̂†

)
ÛA = P

(
T −R

−R∗ T ∗
)(

â
b̂†

)
, (19)

Û†C

(
â
ĉ

)
ÛC = P

(
T R

−R∗ T ∗
)(

â

ĉ

)
. (20)

In turn, (19) and (20) can themselves be used to define the
four-parametric action of a parametric amplifier and a fre-
quency converter. In this case we considerT , R, P andT , R,
P as six complex numbers that satisfy the four conditions

|T |2 −|R|2 = |P|2 = 1 = |P |2 = |T |2 +|R|2 (21)

and are otherwise arbitrary. Using (19) and (20), it is not dif-
ficult to verify that

[â†â− b̂†b̂, ÛA] = 0 = [â†â+ ĉ†ĉ, ÛC]. (22)

The inverse transformations are obtained by replacingφ j with
−φj andϕj with −ϕj in (8)–(10) and (16)–(18), respectively,
i.e.,

Û−1
A (T, R, P ) = ÛA(T ∗,−R, P∗), (23)

Û−1
C (T ,R,P ) = ÛC(T ∗,−R,P ∗), (24)

and interchanging signal and idler modes leads to

ÛA(b̂, â; T, R, P ) = ÛA(â, b̂; T, R, P∗), (25)

ÛC(ĉ, â; T ,R,P ) = ÛC(â, ĉ; T ∗,−R∗,P ). (26)
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1.4 Coherent displacement of mode a

If we assume that modesb andc are simultaneously prepared
in coherent states,̂�abc = �̂a ⊗|β〉〈β|⊗ |γ 〉〈γ |, then in the
limit χ(2) →0, |β|→∞, |γ |→∞ with χ(2)βγ ∗ =const. the
reduced density operator�̂′

a = Trbc�̂
′
abc reads�̂′

a = ÛD�̂aÛ†D,
where

ÛD = e−i[ωaâ†â+χ(2)(β∗γ â†+βγ ∗â)]t

= e−iωatâ†â D̂(α)eiζ (27)

can be written as the product of a U(1) transformation
e−iωatâ†â and a coherent displacement̂D(α = iF∗) = ei F̂ ,
where F̂ = Fâ + F∗â† and F = iχ(2)βγ ∗ω−1

a (1− e−iωat)
(eiζ is an irrelevant phase factor).

1.5 U(p,q) mixing of p+q modes

Linear coupling of more than two modes can be reduced to
a successive application of two-mode couplers. For instance,
as a generalization of (19) and (20), let us consider a U(p,q)-
coupling of two sets of modesa1, · · · , ap and ap+1, · · · , aN
(N = p+q),

e−iâ†H ââeiâ†H â = eiG H â, (28)

whereâ is a column vector whose elements areâ1, · · · , âp,
â†p+1, · · · , â†N and â† is a row vector with elementŝa†1, · · · ,

â†p, âp+1, · · · , âN . H is a HermitianN × N matrix, andG is
N × N diagonal matrix whose upperp (lower q) diagonal
elements are equal to 1 (−1) (see Appendix A) Correspond-
ing to a factorisation of eiâ

†H â, (28) can be implemented by
successive application of

(N
2

)
two-mode couplers, each con-

necting two of theN modes by either a U(2) transformation
(if the two modes belong to the same set) or a U(1,1) trans-
formation (if the two modes belong to different sets). The
special case of implementing U(N) = U(N, 0) by means of
beam splitters is discussed in [15]. Note that eiâ†H â can al-
ternatively be factorised into U(2) transformations and single-
mode squeezing operations [16].

2 Conditional measurement at U(1,1) and U(2) couplers

Let us consider the scheme in Fig. 1. The signal modea (in-
dex 1) prepared in a statê�1 and the idler mode (b or c,
index 2) prepared in a state|F〉 are mixed at a U(1,1) para-
metric amplifier or a U(2) frequency converter, and a device D
performs some measurement on the output idler mode. (The
pump modec or b, respectively, prepared in the strong coher-
ent state is not shown in the figure.) Under the condition that
D has detected a state|G〉, the reduced state of the output-
signal mode becomes

�̂′
1 = 1

p
Tr2(Û�̂1 ⊗|F〉〈F|Û†Π̂), (29)

whereΠ̂=|G〉〈G|. The normp=Tr1Tr2(. . . ) is the proba-
bility of measuring the state|G〉 and thus the probability of

Fig. 1. Scheme of controlled quantum-state engineering by conditional
measurement at a U(1,1) or U(2) coupler realizing the transformationÛ =
ÛA or Û = ÛC, respectively. If Alice’s measurement device has detected
a desired state|G〉, she informs Bob who opens the aperture S and ‘stores’
the pulse in the medium M until needed [17]

generating the statê�′
1. Introducing the non-unitary (condi-

tional) operator

Ŷ = 〈G|Û|F〉 (30)

acting in the signal-mode Hilbert space, we can rewrite (29)
as

�̂′
1 = 1

p
Ŷ �̂1Ŷ†, (31)

where the probability now readsp = Tr1(Ŷ �̂1Ŷ†). In prac-
tice, synchronized sequences of light pulses could be fed into
the input ports of the two-mode coupler, each pulse being
prepared in the respective state, and the modes are thus non-
monochromatic ones. In what follows we assume that the
U(1, 1) and U(2) transformations do not vary with frequency
within the spectral bandwidth of the pulses, so that the formu-
las given in Sect. 1 directly apply.

In order to writeŶ as function of the signal-mode oper-
ators, we first represent the states|F〉 and |G〉 in the form
of

|F〉 = F̂(b̂†)|0〉 =
∞∑

m=0

Fmb̂†m |0〉, (32)

|G〉 = Ĝ(b̂†)|0〉 =
∞∑

n=0

Gnb̂†n|0〉 (33)

(or with b̂† being replaced bŷc†) and substitute these expres-
sions into (30). Using (7) and (15), applying thes-ordering
rule [18]

{â†mân}s =
min[m,n]∑

k=0

k!
(

m

k

)(
n

k

)(
t − s

2

)k

× {â†m−kân−k}t, (34)
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and introducinĝn = â†â, we obtain (see Appendix B)

ŶA =〈0|Ĝ†(b̂†)ÛA F̂(b̂†)|0〉
=
{

Ĝ†
(−R∗T−1â

)
F̂(P∗ R∗â)

}
sA
T̄ ∗−1(P T )∗−n̂, (35)

ŶC = 〈0|Ĝ†(ĉ†)ÛCF̂(ĉ†)|0〉
=
{

Ĝ†
(−RT ∗−1â†

)
F̂(PRâ†)

}
sC
(PT )n̂, (36)

where the respective ordering parameters are given by

sA = (|T |2 +1) |R|−2, (37)

sC = (|T |2 +1) |R|−2. (38)

A consequence of (21)) is|T |2≤1≤|T |2, from which we see
thatsA, sC≥1. Note that the arguments ofF̂ andĜ in (36) are
the adjoints of the corresponding arguments in (35).

Coherent displacements can be separated from the order-
ing procedure. To see this, we derive from (19) and (20)
together with (23) and (24) the transformation formulas for
the displacement operators of the signal and idler modes,

ÛA D̂1(α)D̂2(β) Û†A
= D̂1[P(Tα− Rβ∗)]D̂2[P∗(−Rα∗ + Tβ)], (39)

ÛC D̂1(α)D̂2(β) Û†C
= D̂1[P (T α+Rβ )]D̂2[P (−R∗α+T ∗β)]. (40)

Combining (39) and (40) with (35) and (36), respectively,
yields

Ŷ ′
A = 〈0|Ĝ†(b̂†)D̂†2(β)ÛA D̂2(α)F̂(b̂†)|0〉

= D̂1

(
Pα∗ − Tβ∗

R∗

)
ŶA D̂1

(
P∗β∗ − T ∗α∗

R∗

)
, (41)

Ŷ ′
C = 〈0|Ĝ†(ĉ†)D̂†2(β)ÛCD̂2(α)F̂(ĉ†)|0〉

= D̂1

(
Pα−T β

R∗

)
ŶCD̂1

(
P ∗β −T ∗α

R∗

)
, (42)

i.e., a coherent displacement of the idler mode is equivalent to
a corresponding coherent displacement of the signal mode.

Since each trial in Fig. 1 yields a desired measurement
outcome only with some probability, a lockable aperture S
is needed in order to extract the properly transformed out-
going signal modes and dump the others. The desired output
states are thus available at random times. It may however
be demanded to provide them at certain times. In this case,
a quantum-state memory M has to be used into which the
pulses can be fed and released when desired. One possibil-
ity to realize M is offered by electromagnetically induced
transparency [17]. If, in particular, a pulse train of a certain
repetition frequency is required, one may apply, e.g., an ar-
ray of delays with variable optical path lengths which step
by step adjust the waiting periods between the pulses to each
other. Besides electromagnetically induced transparency, the
cross-Kerr effect should also offer a way to realize a variable
optical delay. In the latter case the outgoing signal mode in
the statê�′

1 is mixed with a reference mode (indexr) prepared
in a coherent state|α〉 at a cross-Kerr medium̂U=eiκn̂1n̂r . For

κ → 0 and|α| → ∞ with κ|α|2 = const., the reduced signal
state becomeŝ�′′

1 = Trr(Û�̂′
1|α〉〈α|Û†) = eiκ|α|2n̂1�̂′

1e−iκ|α|2n̂1.
By choosing|α|2 we can therefore control the refractive in-
dex and with it the optical length and time delay caused by the
cross-Kerr medium.

3 Preparation of single-mode quantum states

3.1 Displaced photon-adding for generating qubits

In order to illustrate the general results derived in Sect. 2, let
us first study the generation of a single qubit. When a para-
metric amplifier as described in Sect. 1.1 is fed with an idler
pulse prepared in a single-mode coherent state|F〉=|α1〉 and
a single photon is detected,|G〉=|1〉, then (35) and (41) yield
the non-unitary (conditional) operator

Ŷ (k)
A =− RP∗T̄ ∗−1D̂

(
PR∗−1α∗

k

)
× (P T )∗−n̂ â† D̂

(−T ∗ R∗−1α∗
k

)
(43)

(the indexk =1 is introduced for later purposes). Let us fur-
ther assume that the signal input channel is unused,�̂=|0〉〈0|
(for notational convenience we omit the mode index). The
outgoing signal pulse is then prepared in a state

�̂′ = 1

p
Ŷ (1)

A |0〉〈0|Ŷ (1)
A
† = |Ψ 〉〈Ψ |, (44)

where

|Ψ 〉 = |0〉+q|1〉√
1+|q|2 (45)

is a superposition of the vacuum and a single-photon Fock
state. The parameterq =−PR/α1 can be controlled by vary-
ing R or α1. It is however convenient to choose|R| and|α1|
such that for a desiredq the probability

p = ‖Ŷ (1)
A |0〉‖2 = (|R|2 +|α1|2)|T |−4e−|α1|2 (46)(‖|Φ〉‖=√〈Φ|Φ〉) of generating the qubit (45) attains a max-

imum. This is the case for

|R|2 =
√

(|q|−2 +1)2 +4|q|−2− (|q|−2 +1)

2|q|−2
. (47)

The maximum values ofp together with the corresponding
values of|R| and|α1| are shown in Fig. 2.

3.2 Repeated displaced photon-adding for generating
arbitrary superpositions of Fock states

The scheme can be extended to the generation of an arbitrary
superposition of a finite number of Fock states

|Ψ 〉 =
N∑

n=0

|n〉〈n|Ψ 〉. (48)

Since the states of that type are completely determined by the
N zeros of theQ-function, i.e., theN solutionsβ1, · · · , βN
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Fig. 2. The maximized probability (46) of generating a qubit (45) and the
corresponding values of the parameters|R| and |α1| as functions of|q|

of the equation〈Ψ |β〉 = 0, they can be generated from the
vacuum by alternate application of the coherent displacement
operator and the creation operator,

|Ψ 〉 = 〈N|Ψ 〉√
N!

N∏
k=1

(â†−β∗
k )|0〉

= 〈N|Ψ 〉√
N!

N∏
k=1

[
D̂(βk)â

† D̂†(βk)
]
|0〉, (49)

which may be realized repeating the procedure in Sect. 3.1
according to Fig. 3. The pulse prepared in the state (45) is
sent back through a ring resonator to the amplifier and used
as a signal input. Simultaneously, an idler pulse prepared in
a coherent state|α2〉 is fed into the second input port of the
amplifier. If the detector again registers a single photon, then
the outgoing signal pulse is prepared in a state∼ Ŷ (2)

A Ŷ (1)
A |0〉.

Under the condition that in each round trip a single photon is
detected, afterN round trips the signal pulse is prepared in
a state

|Ψ 〉 ∼ ŶA|0〉 = Ŷ (N)
A · · · Ŷ (2)

A Ŷ (1)
A |0〉. (50)

If the preparation of the desired state has been successful, the
mirror M1 in Fig. 3 can be removed in order to open the cavity
and release the pulse. Otherwise the pulse is dumped in order
to start the next trial from the very beginning, with the signal-
input port of the amplifier being unused.

Inserting (43) and rearranging the operator order such that
the photon-creation operators are on the left of the exponen-
tial operators, we derive

ŶA |0〉 = eiξ |R|N |T |−N(N+3)/2 exp

(
−1

2

N∑
k=1

|αk|2
)

×
N∏

k=1

[
â†− (P T )∗N

R

N∑
l=k

P∗αl − Tαl+1

(P T )∗l

]
|0〉 (51)

(αN+1 = 0; eiξ is an irrelevant phase factor). In the deriva-
tion of (51) we have used the relationŝD(α) f(â, â†)D̂†(α)
= f(â−α, â†−α∗) andαn̂ f(â, â†)α−n̂ = f(α−1â, αâ†). Com-

Fig. 3. Scheme for preparing a travelling optical field in a quantum state
(48). A parametric amplifier A is fed with a sequence of idler pulses pre-
pared in appropriately chosen coherent states|αk〉. The idler pulses arrive
at A simultaneously with the produced signal pulse circulating in the ring
resonator consisting of mirrors M2, M3 and a (removable) mirror M1. (The
pumping of A by a synchronized sequence of pump pulses is not shown in
the figure.) The desired quantum state is generated if in each round trip of
the signal field the detector D registers a single photon

paring (51) with (49), we see that for

βk = (P T )N

R∗

N∑
l=k

Pα∗
l − T ∗α∗

l+1

(P T )l
(52)

or equivalently

αk = PR

(P T )k(P T )∗N

N∑
l=k

|T |2l(β∗
l −β∗

l+1) (53)

(βN+1=0) the desired state|Ψ 〉 is just realized. The probabil-
ity of generating the state is given by

p = ‖ŶA |0〉‖2

= N!
|〈N|Ψ 〉|2

|R|2N

|T |N(N+3)
exp

(
−

N∑
k=1

|αk|2
)

, (54)

as is seen by comparing the norms of both sides of (51) and
inserting (49). It decreases rapidly with increasingN in gen-
eral, so that the applicability of this method is effectively
restricted to low numbers of round trips.

3.3 Possibility of generating Fock states independently of
coincidence measurements

In order to generate a Fock state|n〉, no feeding with idler
modes is necessary, since all theβk in (49) are zero. Accord-
ing to (54), the probability of detecting one photon at each of
then round trips is

p = n!|R|2n|T |−n(n+3) (55)

and becomes maximal for fixedn if |R|2 = 2/(n + 1). Sub-
stituting this expression into (55) and applying Stirling’s for-
mula yields the asymptotic behaviourpmax ≈ ae−bn, where
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a=√
2π/e andb=2− ln 2, i.e., the probability of preparing

ann-photon Fock state decreases exponentially with increas-
ing n. Note that exactly the same asymptotic behaviour is
observed when the state is generated by conditional measure-
ment at a beam-splitter array [9].

However, the scheme considered here offers the possibil-
ity of circumventing the problem of low preparation prob-
ability. Since the idler field remains in the vacuum state,
|αk〉 = |0〉, the circulating signal pulse is always in a Fock
state whose number is simply the sum of detected idler pho-
tons. This means that every trial sooner or later results in the
desired state|n〉, provided that the respectiven is not skipped,
and thus there is no need to wait for a sequence ofn consecu-
tive single-photon clicks. The idler detector is simply used for
photon book-keeping and the cavity is opened in that moment
when the sum of all detected idler photons has reached the
desired valuen.

3.4 Influence of non-perfect photodetection and non-perfect
cavity feedback on Fock-state generation

If the idler detector and the feedback mirrors are not perfect,
the situation becomes more complicated. Let us assume that
the state of the signal pulse after thej th round trip is a sta-
tistical mixture of Fock states described by a density operator
�̂( j ). This pulse now enters the signal-input port of the para-
metric amplifier whose idler-input port is unused,|F〉= |0〉.
Whenk outgoing idler photons are detected with efficiency
ηD, then the statê�( j )′ of the outgoing signal field is given by
(29), where now

Π̂(k) = :
(
ηDn̂

)k

k! e−ηDn̂ : = b̂kn̂(ηD). (56)

Here, the symbol: : introduces normal ordering, and

bkn(z) =
(

n

k

)
zk(1− z)n−k. (57)

Inserting (56) into (29), we find that the prepared state is
a mixture of Fock states with

�( j )′
mm = 1

|T |2 p(k)

∑
l

bk,m−l(ηD)blm(|T |−2)�
( j )

ll , (58)

where

p(k) = |T |−2
∑
l,m

bk,m−l(ηD)blm(|T |−2)�
( j )

ll (59)

is the probability of detectingk photons. Next, the pulse pre-
pared in the statê�( j )′ is fed back by the mirrors M1, · · · , M3
into the signal-input port of the amplifier. If the reflectances
of the mirrors M1, M2, M3 are given byR1,R2,R3, the state
of the pulse after the( j +1)th round trip is still a mixture of
Fock states with

�( j+1)
mm =

∑
l

bml(ηF)�
( j )′
ll , (60)

whereηF = |R1R2R3|2 determines the feedback efficiency.
Combining (60) and (58), we obtain the recursion relation

�( j+1)
mm = 1

|T |2 p(kj+1)

∑
l,n

bml(ηF)

× bkj+1,l−n(ηD)bnl(|T |−2)�( j )
nn . (61)

If we start from the vacuum state,�(0)
nn = δn0, and measure

the numberskj of (outgoing) idler photons detected at thej th
round trip, the circulating pulse therefore evolves into a mix-
ture of Fock states, which depends according to (61) on the
respective sequence{k1, k2, · · · }. For this reason, some arbi-
trariness has to be introduced if the state evolution needs to be
simulated.

Let us therefore first consider the evolution of themean
photon number of the circulating pulse, which can be ob-
tained by considering the case when no measurement is per-
formed in the idler-output channel. Equation (61) together
with ηD =0 andkj+1=0 (and the initial condition�(0)

nn =δn0)
then yields a thermal state

�̂(N ) = 1

〈n̂〉(N ) +1
b̂0n̂

(
1

〈n̂〉(N ) +1

)
, (62)

where the mean photon number

〈n̂〉(N ) = ηF|R|2
(
ηF|T |2) N −1

ηF|T |2 −1
(63)

can be deduced from the (general, compare (19) and (20))
recursion relation

〈n̂〉( j+1) = ηF
[|T |2〈n̂〉( j ) +|R|2] . (64)

If ηF|T |2 > 1, then 〈n̂〉(N ) increases exponentially with
N, while for ηF|T |2 < 1 a stationary value is observed,
limN→∞〈n̂〉(N ) = ηF|R|2/(1− ηF|T |2). The critical value
ηF|T |2=1 leads to a linear increase,〈n̂〉(N )=|R/T |2N.

To give an example, let us now consider the generation
of the state|n =4〉. Since the amplification is typically weak
(|R|2 � 1), a large number of round trips is likely and a high-
quality cavity is demanded. Note that|R|2 = s〈vac|â†â|vac〉s

= s〈vac|b̂†b̂|vac〉s characterizes the mean photon numbers
of a two-mode squeezed vacuum|vac〉s = ÛA |0, 0〉 that is
generated by means of a parametric amplifier. In order to
provide a rough estimate of the required efficiencyηF, we
approximate the numberN of cycles needed on average by
identifying〈n̂〉(N) in (63) with n and assume a linear increase
〈n̂〉(N) = |R/T |2N (we have |T |2 ≈ 1 and further assume
ηF ≈ 1; thereforeηF|T |2 ≈ 1), so that N ≈ |R|−2n. We
now estimateηF from the requirement that after that num-
ber of round trips in an empty resonator (i.e., without the
amplifier) an initially present photon can still be found with
probability 1

2; thusηF=2−|R|2/n. Forn=4 and|R|2=3×10−3

this yieldsηF ≈ 0.999. We insert these quantities into (63)
and (arbitrarily) consider the case when the first idler photon
is detected ifηF〈n̂〉 exceeds 1, the second ifηF〈n̂〉 exceeds
2 and so on, until eventually the cavity is opened after de-
tecting the 4th idler photon. The resulting density matrix
is then obtained from (61) together with�(0)

nn = δn0. Exam-
ples are shown in Fig. 4. The plots confirm the sensitivity
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Fig. 4a–d. Computer simulation of the preparation of a desired Fock state
|n = 4〉. The density-matrix elements�(N)

nn obtained according to (61) are
shown for|R|2 =3×10−3 and different feedback efficienciesηF and detec-
tion efficienciesηD. The cavity is assumed to be opened after detecting the
4th idler photon, which determines the number of round tripsN. a ηF = 1
andηD = 1 (N = 538), b ηF = 0.999 andηD = 1 (N = 652), c ηF = 1 and
ηD = 0.7 (N = 636), d ηF = 0.999 andηD = 0.7 (N = 788)

to cavity loss for small|R|2. Note that the Mandel param-
eter Q=〈(∆n̂)2〉/〈n̂〉− 1 of the mixture plotted in (d) is
Q=−0.527.

4 Conclusion

In this paper we have studied conditional quantum-state en-
gineering at parametric amplifiers and frequency converters,
regarding each apparatus as being effectively a two-port de-
vice, whose action in conditional measurement can be de-
scribed by a non-unitary operator̂Y defined in the Hilbert
space of the signal mode. We have presentedŶ for arbitrary
quantum states of the incoming idler mode and arbitrary de-
tected quantum states of the outgoing idler mode ass-ordered
products of the operators that generate the quantum states
from the vacuum,s being entirely determined by the device
parameters.

To illustrate the results, we have proposed a scheme al-
lowing the generation of arbitrary finite single-mode quantum
states of travelling waves by a parametric amplifier equipped
with a ring resonator as an optical feedback loop. We have
applied the method to the problem of Fock-state preparation,
for which we have also addressed the influence of non-perfect
photodetection and non-perfect cavity feedback.

Acknowledgements. This work was supported by the Deutsche Forschungs-
gemeinschaft.

Appendices

Appendix A Derivation of equation (28)

The commutation relation betweenâ andâ† is invariant under
a U(p,q) transformation, i.e., forU −1 = G†U†G we have

[(U â)λ, (U â)†µ] = [âλ, â†µ] = Gλµ. (A.1)

After writing

âeiâ†H â = U−1U âeiâ†U†U†−1HU−1U â

= U−1(U â)ei(U â)†(U−1†HU−1)(U â), (A.2)

we chooseU such thatU−1†HU−1 becomes diagonal, i.e.,
(U−1†HU−1)λµ = (U−1†HU−1)λλδλµ. Now making use of
αn̂ f(â, â†)α−n̂ = f(α−1â, αâ†), we see that the relation
âµeiαâ†λ âλ =eiαâ†λ âλeiGλµαâµ holds. Inserting it into (A.2) with
α = (U−1†HU−1)λλ, we obtain together with (A.1)

âeiâ†H â = U−1(U â)
∏
λ

ei(U−1†HU−1)λλ(U â)
†
λ(U â)λ

= U−1eiâ†H âeiG(U−1†HU−1)(U â)

= eiâ†H âU−1eiGU−1†HU−1
U â

= eiâ†H âeiG H â. (A.3)

Note that eiG H itself is just a U(p, q) matrix, because
(eiG H)−1 = G†(eiG H)†G.

Appendix B Derivation of equation (35)

Applying (19), we first write

b̂nÛA = ÛA(Û†A b̂†ÛA)†n = ÛA(−P∗ Râ†+ P∗Tb̂)n . (B.1)

Usingαn̂ f(â, â†)α−n̂ = f(α−1â, αâ†), we see from (7) that for
|0〉 ≡ |0〉2

〈0|ÛA = T̄ ∗−1(P T )∗−â†â〈0|eR∗
T∗ âb̂. (B.2)

With the help of (B.1) and (B.2) we now get

ŶA =
∑
m,n

Fm G∗
n〈0|b̂nÛA b̂†m |0〉

=
∑
m,n,k

Fm G∗
n T̄ ∗−1(P T )∗−â†â〈0|eR∗

T∗ âb̂

×
(

n

k

)
(P∗Tb̂)k(−P∗ Râ†)n−kb̂†m |0〉

=
∑
m,n,k

Fm G∗
n T̄ ∗−1(P T )∗−â†âk!

(
m

k

)(
n

k

)
(P∗T)k

× (R∗T ∗−1â)m−k(−P∗ Râ†)n−k

=
∑
m,n,k

Fm G∗
n T̄ ∗−1k!

(
m

k

)(
n

k

)
(P∗T)k

× (P∗ R∗â)m−k(−RT ∗−1â†)n−k(P T )∗−n̂

=
∑
m,n

Fm G∗
n(P∗ R∗)m(−RT ∗−1)n

×
∑

k

k!
(

m

k

)(
n

k

)(
−
∣∣∣∣TR
∣∣∣∣
2
)k

âm−kâ†n−k

× T̄ ∗−1(P T )∗−n̂. (B.3)
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Applying (34) with t = −1 (denoting antinormal order) and
s = sA gives

ŶA =
∑
m,n

Fm G∗
n(P∗ R∗)m(−RT ∗−1)n

×{â†nâm}sA T̄ ∗−1(P T )∗−n̂

=
{∑

m,n

G∗
n(−R∗T−1â)†n Fm(P∗ R∗â)m

}
sA

× T̄ ∗−1(P T )∗−n̂, (B.4)

from which (35) directly follows. Equation (36) can be de-
rived analogously.
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