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Abstract. A transport theory for atomic matter waves in
low-dimensional waveguides is outlined. The thermal fluctu-
ation spectrum of magnetic near fields leaking out of metal-
lic microstructures is estimated. The corresponding scatter-
ing rate for paramagnetic atoms turns out to be quite large
in micrometer-sized waveguides (approx. 100/s). Analytical
estimates for the heating and decoherence of a cold atom
cloud are given. We finally discuss numerical and analytical
results for the scattering from static potential imperfections
and the ensuing spatial diffusion process.

PACS: 03.75.-b; 32.80.Lg; 05.60.C; 05.40.-a

Atom optics, the coherent manipulation of atomic matter
waves, is currently heading towards miniaturization and inte-
gration. Atom guides in both one and two dimensions have
been demonstrated [1–5]. Recent experiments have studied
atoms trapped in electromagnetic solid-state hybrid surface
guides (or ‘atom chips’) [6–9]. The near future may be
expected to see the trapping and manipulation of Bose-
condensed atoms in such microtraps [10]. Decoherence is an
intriguing issue in this context because of the close prox-
imity of the cold atom cloud to the macroscopic substrate,
typically being held at room temperature. Thermal electro-
magnetic fields thus perturb the atoms, leading to heating,
trap loss and scattering [11, 12]. The thermal noise spec-
tra are much larger than the blackbody spectrum because
the characteristic distances are much smaller than the pho-
ton wavelengths for the relevant transition frequencies: the
atoms are subject to thermal near fields [13]. It is therefore
of much interest to estimate the length and time scales over
which the transport of matter waves in atom chips remains
coherent.

In this paper, we outline a transport theory for matter
waves in low-dimensional waveguides close to metallic mi-
crostructures. Such structures are used in current experiments
to generate magnetic fields or to reflect optical fields. We
focus on paramagnetic atoms and their perturbation by the
thermally excited magnetic near field. Scattering rates and
noise spectra are computed for a few generic geometries:

a metallic half-space, a layer and a cylindrical wire. A self-
consistent transport theory for the atomic Wigner distribution
is formulated for a dilute, non-condensed cloud. In the case
of a white-noise spectrum (that turns out to be an excel-
lent approximation for the magnetic near field), the transport
equation is solved analytically and the atomic decoherence
rate is determined. We finally present analytical and numeri-
cal calculations for a waveguide with static roughness (due to
imperfections in the guiding field, for example).

1 Model

1.1 Perturbation of a trapped spin

We start from an atom trapped in a waveguide potential that
restricts its motion to one or two dimensions. We suppose
that the transverse degrees of freedom are ‘frozen out’, the
atom being in the transverse ground state. In the remain-
ing directions, we assume a free motion. Examples of such
waveguides are linear magnetic quadrupole guides formed
by currents in one or several parallel wires [1, 6–9] or pla-
nar guides mounted above a surface ‘coated’ with repul-
sive optical [3] or magnetic [5] fields. Trapped paramagnetic
atoms couple to thermal fluctuations of the magnetic field
and will scatter from these at a rate given by Fermi’s golden
rule

γi→f = 1

h2

3∑
i, j=1

〈i|µi |f〉〈f|µj |i〉Bij(ωif ), (1)

whereBij(ωif ) is the magnetic cross-correlation tensor (spec-
tral density) andhωif is the energy difference between the
initial and final states|i〉, |f〉. The correlation tensorBij(ω)
is calculated in Sect. 1.2, where we shall see that it depends
on the distance to the metallic microstructures. Its frequency
dependence is quite weak, however, because the relevant tran-
sition frequencies are at most in the GHz range. Magnetic
noise at these frequencies drives spin-flip transitions that,
in a magnetostatic trap, put the atom onto a non-trapping
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potential surface. The concomitant loss rate has been dis-
cussed previously [12]. We focus here on the scattering
between quasi-plane waves in the same spin state that re-
main trapped in the waveguide. These transitions corres-
pond to much lower frequencies, of the order of the tem-
perature of the atomic cloud (typically in the kHz range).
The corresponding photon wavelengths are much larger
than the characteristic size of the waveguide structures. For
this reason, we may adopt the magnetostatic approxima-
tion in order to compute the thermal magnetic field spectral
density.

1.2 Magnetic near field

1.2.1 The method. Fluctuation electrodynamics (or source
theory) is a convenient tool to compute the spectral correla-
tion tensor of the electromagnetic field in an inhomogeneous,
dissipative environment. Basically, one introduces a fluctu-
ating current density whose spectral density is determined
from the imaginary part of the dielectric function. The field
radiated by these currents is computed from the Green tensor
for the chosen geometry [14, 15]. It has been shown that this
scheme also provides a consistent way to quantize the electro-
magnetic field in dispersive and absorbing dielectrics [16–19]
(see [20] for further references).

1.2.2 Low-frequency noise. For our present purposes, a sim-
plified Green tensor is sufficient: we focus on nonmagnetic
media and low frequencies where the magnetostatic approx-
imation is valid. As outlined in Appendix, we find the follow-
ing expression for the scattering rate (1)

γ = C0Ynn, (2)

where the prefactor is

C0 = |〈s|µn |s〉|2
h2

kBT

4π2ε2
0c4


. (3)

Here,µn is the projection of the magnetic moment along
a static bias field,|s〉 is the trapped spin state andT , 

are temperature and specific resistance of the metallic mi-
crostructures. Finally,Ynn is the matrix element along the bias
field of a geometric tensorYij defined in (A.5). The scattering
rate ((2)) is of the order of

γ ∼ 75 s−1 (µ/µB)
2(T/300 K)

(
/
Cu)
(Yij ×1µm). (4)

(We have taken the specific resistance of copper
Cu =
1.7×10−6 Ω cm [21].) The geometric tensorYij (A.5) has di-
mension (1/length), and its magnitude is the inverse of the
characteristic scale of the waveguide. As a consequence, the
scattering rate (4) is quite large for a typical micrometer-size
waveguide.

1.2.3 Typical geometries. We now give the results of the eval-
uation of the geometric tensor (A.5) for three generic geome-
tries. For a metallic half-space, we find that

Yij = πtij
4z
, (5)

where the diagonal tensortij has elements(3
2,

3
2,1). Note the

long-range 1/z dependence on distancez [11].
For a metallic layer of thicknessd above a nonconducting

substrate, we find

Yij = πtijd

4z(z +d)
. (6)

This expression reproduces the result (5) for the metallic half-
space when the distancez from the upper interface is much
smaller than the layer thicknessd. On the other hand, at large
distances a faster decreased/z2 takes over.

Finally, for a cylindrical wire of radiusa, we found a cum-
bersome expression involving an elliptic integral. Neverthe-
less, simple results are obtained for the trace of the geometry
tensor in the following limits: (1) If the distanceR from the
wire axis is large compared to the wire radius,

tr Yij ≈ π2a2

2R3

[
1+ 9

4

( a

R

)2 + 225

186

( a

R

)4 +O[(a/R)6]
]
. (7)

Note the even stronger power-law decreasea2/R3 to leading
order compared to the planar geometries. The three-term ex-
pansion (7) is reasonably accurate down toR ≥ 1.6a. (2) In
the short-distance limitR −a � a, we recover the flat half-
space result (5)

tr Yij ≈ π

R−a
. (8)

In Fig. 1, we plot the corresponding scattering rates as a func-
tion of distance (i.e.,z for the planar guides,R −a for the
wire guide). The static bias field at the waveguide center is
taken perpendicular to the metallic surface. The scattering
rate for the wire is actually overestimated because the trace of
the magnetic correlation tensor is used.

1.3 Transport equation

The evolution of a trapped matter wave in the waveguide is
conveniently described in terms of a transport equation. This

Fig. 1. Scattering rate in awaveguide at distancez from three metallic
structures: half-space, thin layer, thin wire. Thedashed line gives the large-
distance limit (7) for the wire. The metal is copper at room temperature.
Both the layer and the wire have a thickness 1µm
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equation allows us to characterize the evolution of the single-
particle spatial density matrix (or coherence function)


(x; s)= 〈ψ∗(x+ 1
2s) ψ(x− 1

2s)〉, (9)

where the average〈. . . 〉 is taken over the spatial and tempo-
ral fluctuations of a perturbing potential. Instead of working
with the coherence function (9), we formulate the transport
equation for the Wigner transform of the density matrix

W(x,p)=
∫

dDs

(2πh)D
eip·s/h
(x; s), (10)

which may be interpreted as a quasi-probability distribution
in phase space. Here and in the following, the coordinates
x and p describe the motion in theD = 1, 2-dimensional
waveguide.

The quasi-free wavefunction for the trapped spin state|s〉
in the waveguide is perturbed by the magnetic potential

V(x, t)= 〈s|µn |s〉Bn(x, t), (11)

whereBn is again the field component along the static bias
field. We now have to take into account both energy and mo-
mentum changes in the scattering process. This may be done
in terms of a master (or transport) equation for the Wigner
distribution. It is derived using second-order perturbation the-
ory with respect toV , assuming thatV has Gaussian statistics
and doing a multiple-scale expansion of the Bethe–Salpeter
equation for the coherence function [22]. We find:

(
∂t + 1

m
p ·∇x +Fext ·∇p

)
W(x,p)

=
∫

dD p′ SV (p−p′; Ep − Ep′)
[
W(x,p′)− W(x,p)

]
, (12)

with the de Broglie dispersion relationEp = p2/2m and
whereS(q; ∆E) is the spectral density of the perturbation

SV (q; ∆E) = 1

h2

∫
dDs dτ

(2πh)D
〈V(x+ s, t + τ) V(x, t)〉

× e−i(q·s−∆Eτ)/h. (13)

The average〈. . . 〉 is again taken with respect to the magnetic
noise field. We assume for simplicity that the noise is statis-
tically stationary in time and along the waveguide directions.
This is actually the case for linear or planar waveguides paral-
lel to planar structures and for a linear guide parallel to a wire.

Fig. 2. Spatial (normalized) correla-
tion function of the thermal magnetic
near field above a metallic surface at
frequency ω/2π = 30 MHz (copper at
300 K). The separations gives the dis-
tance between two observation points
at the same heightz above the sur-
face.Dots: exact evaluation,solid lines:
asymptotic expansions in the short-
distance regime, discussed in [13]. For
lower frequencies, the correlation func-
tion remains essentially unchanged

The left-hand side of the transport equation (12) describes
the ballistic motion of the atom subject to the external (de-
terministic) forceFext. The right-hand side describes the scat-
tering off the magnetic field fluctuations. As a function of
the momentum transferq, for example, the spectral density
SV (q; ∆E) is proportional to the spatial Fourier transform of
the potential, as to be expected from the Born approxima-
tion for the scattering processp′ → p = p′ +q. The transport
equation thus combines in a self-consistent way ballistic mo-
tion and scattering processes.

The frequency dependence of the magnetic field noise has
already been treated in Sect. 1.2. We saw that the spectral
density is flat in the magnetostatic approximation. The mag-
netic perturbation can therefore be treated as a white noise.
To get the wavevector dependence, we have to evaluate the
spatial Fourier transform of the two-point correlation func-
tion Bij(x1, x2). In the magnetostatic limit, it turns out that
above a planar metallic layer, the correlation function is simi-
lar to a Lorentzian, with a correlation lengthlc parallel to the
layer given by the distancez perpendicular to the layer (see
Fig. 2). More details are discussed elsewhere [13]. As a con-
sequence of the finite correlation length, the scattering kernel
S(q; ∆E) in the transport equation (12) exhibits a cutoff for
momentum transfers|q| ≥ h/lc ≈ h/z. The spatial smooth-
ness of the magnetic field thus limits the possible scattering
processes, although arbitrary energy transfers are available
from the white-noise perturbation.

In the following, we assume a constant forceFext and
focus on two limiting cases of the transport equation (12):
(1) ‘Inelastic transport’ under the influence of white-noise
perturbations. This is the appropriate limit to estimate the
detrimental effects of thermal magnetic fields. (2) ‘Elas-
tic transport’ where a time-independent perturbation is as-
sumed. This allows us to describe in the same framework
the influence of static roughness in the waveguide poten-
tials from which the atoms scatter. In optical potentials,
roughness of this type occurs when the optical fields are
scattered from small-scale inhomogeneities in the microstruc-
ture [23]. In planar gravito-optical traps based on a planar
evanescent wave mirror, the rough optical potential cou-
ples efficiently the atomic motion normal and parallel to
the mirror [24]. The transport equation is valid as long as
one is interested in the evolution on length scales large
compared to the correlation length of the roughness. In
rough evanescent fields, we find again that this length is
typically of order z [23], because high spatial frequen-
cies K � 2π/λ give rise to exponentially damped fields
∝ exp(−Kz).
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2 Results

2.1 Inelastic transport

2.1.1 Analytic solution of the transport equation. For a broad-
band spectrum of the perturbation, we may neglect the depen-
dence ofSV (q,∆E) on∆E. The transport equation (12) then
simplifies because the integration over the initial momentum
p′ is not restricted by energy conservation. Taking the Fourier
transform of the Wigner functionW(x,p)with respect to both
variablesx andp (with conjugate variablesk ands), it is sim-
ple to derive the following solution

W̃(k, s; t)=W̃0(k, s−hkt/m) e−iFext·st/h

×exp


−γ

t∫
0

(
1−C(s−hkt′/m)

)
dt ′


. (14)

Here,W̃0(k, s) is the double Fourier transform of the Wigner
function at initial timet = 0, andγ and the normalized spatial
correlation functionC(s) are related to the correlation func-
tion of the perturbation by

γC(s)= 1

h2

+∞∫
−∞

dτ 〈V(s, τ) V(0,0)〉, C(0)= 1. (15)

We also note thatγ is the scattering rateγ(p′ → p) for
‘forward-scattering’ processes with zero energy transfer (final
momentump approaches the initial onep′). For a waveguide
above a metallic surface, the estimate (4) is hence applicable
for the rateγ .

From the analytic solution (14), it is easily checked that
in the absence of the perturbation, the spatial width〈δx2(t)〉
of a cloud increases ballistically according to〈δx2(t)〉 =
〈δp2(0)〉 t2/m2, where 〈δp2(0)〉 is the initial width of the
cloud in momentum space (this latter width remains constant
in this case, of course).

2.1.2 Spatial decoherence. More interesting information may
be obtained for a nonzero scattering rateγ . Note that the spa-
tially averaged atomic coherence function is given by

Γ(s)=
∫

dDx 
(x; s)= W̃(k = 0, s). (16)

The solution (14) therefore implies that the spatial coherence
decays exponentially with time:

Γ(s; t)= Γ0(s) exp
[
−γt(1−C(s))− iF · s t/h

]
. (17)

The decoherence rate depends on the spatial separation be-
tween the points where the atomic wavefunction is probed,
and is given byγ(s) = γ(1− C(s)). It hence saturates to
the valueγ at large separations and decreases to zero for
s → 0. The decay of the coherence function (17) is illus-
trated in Fig. 3. One observes that at time scalest ≥ 1/γ ,
the spatial coherence is reduced to a coherence length
ξcoh ∼ lc. After a few collisions with the fluctuating mag-
netic field, the long-scale coherence of the atomic wavefunc-
tion is thus lost and persists only over scales smaller than

Fig. 3. Illustration of spatial decoherence in an atomicwaveguide. The spa-
tially averaged coherence functionΓ(s, t) is plotted vs. the separations for a
few timest. Space is scaled to the field correlation lengthlc and time to the
scattering time 1/γ . A Lorentzian correlation function for the perturbation
is assumed

the field’s correlation length (where different points of the
wavefunction ‘see’ essentially the same fluctuations). For
larger timest � 1/γ , decoherence proceeds at a smaller
rate that is related to momentum diffusion, as we shall see
now.

2.1.3 Momentum diffusion at long times. The behavior of the
atomic momentum distribution at long times may be extracted
from an expansion of the analytic solution (17) for small
values ofs. Assuming a quadratic dependence of the field’s
correlation function,C(s) ≈ 1− s2/l2

c, as one would expect
for Lorentzian correlations, we find that the atomic momen-
tum distribution is Gaussian at long times; it is centered at
p0 +Fextt due to the external force, and its width increases
according to a diffusion process in momentum space

〈δp2(t)〉 ≈ 〈δp2(0)〉+ h2γt

l2
c
. (18)

This was to be expected: the atoms perform a random walk
in momentum space, exchanging a momentum of orderh/lc
per scattering time 1/γ . The momentum-diffusion coefficient
Dp = h2γ/l2

c that may be read off from (18) is consistent with
this intuitive interpretation. Physically speaking, the atomic
cloud is ‘heated up’ due to the scattering from the fluctuating
potential. We note that the rate of change of the atomic ki-
netic energy in the waveguide plane is the same as the one for
the tightly bound motion perpendicular to the metallic surface
(see [12] for a calculation of this rate).

Translating the width of the momentum distribution into
a spatial coherence length, we find a power-law decay at
long times,ξcoh = lc/

√
γt. Finally, a similar calculation yields

the width of the atomic cloud in position space: it increases
‘super-ballistically’ at long times,〈δx2(t)〉 ∝ t3, as a conse-
quence of heating.

2.2 Elastic transport

A waveguide potential with static roughness leads to energy-
conserving scattering. The integration over the initial mo-
menta p′ in the transport equation (12) is then restricted,
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Fig. 4. Numerical calculation of the temporal evolution of an atomic cloud in a one-dimensionalwaveguide. The cloud is subject to a positive external force
and elastic scattering by a static rough potential, with a negative initial average velocity. The twolower curves in the left graph show the evolution of the
average position〈x(t)〉 determined numerically (solid line) and the ballistic short-time behavior (dotted line). The upper left curve displays the simulated
variance〈δx2(t)〉 of the width in position space. The twolower curves on theright are the numerical values (solid line) for the average momentum〈p(t)〉
of the cloud and the corresponding short-time ballistic acceleration (dotted line). Theupper curve on theright illustrates the numerically computed width in
momentum space〈δp2(t)〉. The scattering rate is taken asγ(p)= γ0e−|p|lc with lc = 0.1 units,γ0 = 1 unit

which complicates the analytic solution. We discuss in the
following numerical results and an analytic solution for van-
ishing external force.

2.2.1 Numerical results. The transport equation may be
solved using a split-step propagation method. We alternate
between ballistic motion and the scattering. In one dimension,
for example, the transport equation reads
(
∂t + p

m
∂x + Fext∂p

)
W(x, p, t)

= γ(p) (W(x,−p, t)− W(x, p, t)) , (19)

where the scattering rateγ(p) depends on momentum via the
wavevector transfer|2p/h|. The solution for pure ballistic
transport is described by

W(x, p, t +∆t)=W(x − (p/m)∆t

+ (Fext/2m)∆t2, p− Fext∆t, t) , (20)

while the scattering kernel gives
(

W(x, p, t +∆t)
W(x,−p, t +∆t)

)

= e−γ(p)∆t

(
coshγ∆t sinhγ∆t
sinhγ∆t coshγ∆t

)(
W(x, p, t)

W(x,−p, t)

)
. (21)

For sufficiently small time steps∆t, the combination of these
two steps gives an efficient way to compute the time evolution
of the Wigner distribution.

We present results for the two cases of an atomic sample
moving in a waveguide with a static rough potential with and
without an external force applied that accelerates the sample.
In the first case we observe that for short times the aver-
age motion is ballistic, which is shown in Fig. 4: the cloud
is accelerated according to〈x(t)〉 = 〈x(0)〉+ 〈p(0)/m〉t +
(Fext/2m)t2. However, at longer times a different behavior
takes over and the average position shows a linear drift. We
also observe a monotonic increase with time of the spa-
tial width 〈δx2(t)〉 of the atomic cloud. Figure 4 shows that

this increase is approximately linear, as would be the case
for a spatial diffusion process. The transient ballistic regime
may be understood qualitatively by inspection of the aver-
age momentum〈p(t)〉 and momentum width〈δp2(t)〉, also
shown in Fig. 4, as well as of the snapshots of the tempo-
ral evolution in phase space (Fig. 5): the elastic scattering
transfers atoms from negative velocities to positive veloci-
ties until the average velocity vanishes. This is accompanied
by an increase of the momentum spread. At the end of
the transient regime, the momentum-spread increase slows
down and the motion in position space is no longer ballis-
tic. Note that the deceleration by the scattering potential is
faster than expected from the short-time acceleration〈p(t)〉 =
〈p(0)〉+ Fextt.

Fig. 5. Snapshots of four stages of the temporal evolution of a Wigner distri-
bution accelerated by an external force. The underlying dataset is the same
as the one used for Fig. 4
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For the case of a vanishing external force we now show
that the characteristic behavior of the atomic cloud can also
be obtained analytically. The discussion is restricted toD = 1
for simplicity.

2.2.2 Analytical estimate of the diffusion coefficient. In the
absence of an external force, the momentump enters the
transport equation only as a parameter, and we are left with
a coupled system for the Wigner functionsW(x,±p, t) (cf.
also (21)). Using a spatial Fourier transform and a temporal
Laplace transform (with conjugate variablesk and ζ), it is
straightforward to obtain the following solution

W̃(k,±p; ζ)
= (γ(p)+ ζ− ik p/m)W̃0(k,+p)+γ(p)W̃0(k,−p)

ζ2 +2γ(p)ζ+ k2p2/m2
, (22)

whereW̃0(k,+p) is the initial (Fourier-transformed) Wigner
function. The smaller of the denominator’s rootsζ1, 2 deter-
mines the long-time behavior of the Wigner function. For
small values ofk (corresponding to large spatial scales), it is
given by

ζmin ≈ − k2 p2

2m2γ(p)
. (23)

For a Wigner function with Gaussian initial data, we thus find
the following long-time asymptotics:

t → ∞ :
〈x(t)〉 = 〈x(0)〉+ p

2mγ(p)
, (24)

〈δx2(t)〉 = 〈δx2(0)〉+ p2t

2m2γ(p)
. (25)

The average position thus tends to a constant, which is dis-
placed by the free-flight distance during the scattering time
1/γ(p). For longer times, the ‘forward’ and ‘backward’ mov-
ing Wigner distributionsW(x,±p, t) have the same weight,
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Fig. 6. A free evolving Wigner distribution subject to elastic scatter-
ing, the distribution having initially a negative average velocity. The two
lower curves show the evolution of the average position 〈x(t)〉 determined
numerically (solid line) and from the analytical solution (24) (dotted line),
whereas the upper curves display the numerical average width 〈δx2(t)〉 of
the distribution (solid line) and its analytical estimate from (25) (dotted line)

Fig. 7. Snapshots of four stages of the temporal evolution of a Wigner dis-
tribution only subject to static roughness and vanishing external force. The
underlying dataset is the same as the one used for Fig. 6 and 8

and there is no spatial displacement on average. The spatial
width increases linearly with time, in accordance with a ran-
dom walk: for each scattering time 1/γ(p), a position step
∼ p/mγ(p) is performed in a random direction.

In Fig. 6, we compare these results to a numerical so-
lution of the transport equation without an external force.
The predictions (24) for the average position and (25) for the
spatial width show a quite good agreement especially for
the average position. The transient regime that is responsi-
ble for equilibration of the velocity classes however is not
captured by the analytical solution and thus the spatial width
is only a good estimate for the numerical solution, but def-
initely both exhibit the predicted linear behavior. Figure 7
shows the dynamical evolution of the Wigner distribution,
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Fig. 8. Illustration of spatial decoherence in an atomic waveguide, caused
by elastic scattering due to static roughness (no external force). The spa-
tially averaged coherence function Γ(s, t) is plotted vs. the separation s for a
few times t. Space is scaled to the field correlation length lc and time to the
scattering time 1/γ0 = 1/γ(0). The curves were extracted from the dataset
underlying also Fig. 6
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illustrating the growth of momentum classes with opposite
signs.

The structure of the Wigner distribution in phase space
when the second momentum class builds up also modifies
the spatially averaged coherence function (16), as can be seen
in Fig. 8. Since the scattering conserves energy, the momen-
tum width of the cloud and hence the spatial coherence length
remain constant in time, in distinction to the inelastic scatter-
ing shown in Fig. 3. The oscillations of the coherence func-
tion are a reminiscence of the standing wave formed by the
two velocity classes. Note, however, that this interference is
‘classical’ in the sense that the Wigner function is positive all
over phase space in this case.

3 Conclusion

In this paper, a transport theory for matter-wave transport in
low-dimensional waveguides has been formulated and solved
in a few interesting limiting cases. We have shown that the
scattering from thermal magnetic near fields that ‘ leak out’
of metallic microstructures at room temperature limits the co-
herence of a cold atomic cloud. After a few scattering times,
the spatial coherence of the ensemble gets reduced to the cor-
relation length of the magnetic noise. This length scale is
typically comparable to the distance of the waveguide from
the metallic structures. Our results indicate that decoherence
may be reduced by working with smaller metallic structures,
reducing their temperature and their specific conductivity.
Hopefully, a reasonable compromise between these conflict-
ing requirements may be found.

The decoherence rates obtained in the present frame-
work are quite large and should give rise to measurable
effects when interference experiments with trapped matter
waves are performed. From the theoretical point of view,
it is imperative to generalize the transport theory to Bose-
condensed samples: the transport equation then becomes non-
linear, and the potential fluctuations may expel particles out
of the condensate. This issue is currently under study and
results will be reported elsewhere. Finally, it is well known
that in one dimension, static noise suppresses spatial dif-
fusion, leading to Anderson localization [25]. This effect
is beyond the scope of the present (semiclassical) theory,
and its observation in atomic waveguides would be a clear
manifestation of quantum-mechanical interference in multi-
ple scattering.
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Note added in proof

The destruction of Anderson localization by continuously
monitoring the particle’s position has been discussed re-
cently [26, 27]. These authors have used master equations
similar to our (12), though on a discrete lattice. We thank
J. Cesar Flores for bringing this work to our attention.

Appendix: Low-frequency magnetic noise

As outlined in Sect. 1.2, we model the thermal excitations of
the metallic structure by currents with a correlation function

〈 j∗
i (x1;ω) jj(x2;ω′)〉

= 4πhε0ω
2n̄(ω) δij δ(ω−ω′)Im ε(x1) δ(x1 −x2), (A.1)

where n̄(ω) is the Bose–Einstein occupation number. The
current correlation is δ-correlated in space provided the di-
electric function is local. In the magnetostatic approximation,
the vector potential generated by the currents is given by (in
SI units)

A(x;ω)= µ0

4π

∫
d3x ′ j(x′;ω)

|x−x′| . (A.2)

The cross-correlation tensor of the vector potential is then
simply obtained from the thermal average of A∗

i (x1;ω)
Aj(x2;ω′). Taking the curl with respect to both x1 and x2, we
get the magnetic cross-correlation tensor:

〈B∗
i (x1, ω)Bj(x2, ω

′)〉 = 2πδ(ω−ω′)Bij(x1, x2;ω), (A.3)

Bij(x1, x2;ω)= S(bb)
B (ω)

3 Im ε

4πω/c
Yij, (A.4)

Yij = (
δij tr (Xij)− Xij

)
, (A.5)

Xij =
∫
V

d3x ′ (x1 −x′)i(x2 −x′)j

|x1 −x′|3|x2 −x′|3 . (A.6)

We have normalized the spectral density to Planck’s black-
body formula

S(bb)
B = hω3

3πε0c5(ehω/kBT −1)
. (A.7)

The integration in (A.6) runs over the volume V occupied
by the thermal currents (where the imaginary part of ε(x ′, ω)
is nonzero). Putting x1 = x2 = x and using the scattering
rate (1), we find from (A.4) that the scattering rate is of the
form (2).

For homogeneous metallic structures, the dielectric func-
tion is ε(x′, ω) = i/(ε0
ω), where 
 is the DC conductivity.
In addition, the relevant frequencies are so low that the high-
temperature limit of the Planck function is applicable. The
prefactor in (A.4) then approaches the constant value

ω→ 0 : S(bb)
B (ω)

3 Im ε

4πω/c
→ kBT

4π2ε2
0c4


, (A.8)

and we find the prefactor in (3). We have compared the re-
sults of the magnetostatic approximation to exact calculations
using the retarded Green function for a layered medium. Both
calculations agree in the short-distance limit where the dis-
tances are small compared to both the wavelength and the
skin depth δ= √

2ε0c2
/(ω). However, the magnetostatic ap-
proximation overestimates the field components parallel to
the layer by a factor of three. This is related to the fact that
the noise currents (A.1) are not divergence-free at the surface.
Possible improvements will be discussed elsewhere in more
detail.
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