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Abstract. The measurement of the spectral width of ultra-
short light pulses using a Fabry–Pérot interferometer (FPI)
is investigated. It is shown, numerically and experimentally,
that the measured width critically depends on the pulse prop-
erties (such as pulse shape, pulse duration, frequency chirp
and wavelength) and on the properties of the FPI (such as the
mirror spacing and the mirror reflectivities). The obtained re-
sults are of particular importance if the spatial length of the
short light pulses is comparable or even shorter than the dis-
tance between the FPI mirrors. The derived guideline indicate
that the actual spectral width of the ultrashort light pulses is
measured with good accuracy only if the finesseF ≥ 40 and
the round trip time of the light pulses inside the Fabry–Pérot
interferometer is approximately one to three times the pulse
duration.

PACS: 06.60.J; 07.60.L

Ultrashort light pulses with pulse durations in the pico- or
femtosecond regime are usually characterized by measuring
their temporal and spectral width and by deducing from these
data the time–bandwidth product. While the pulse duration
is measured by using a fast photodiode, a streak camera or
an autocorrelator the spectral width can be determined with
a grating spectrometer or a Fabry–Pérot-type interferometer.

The spectral width of pulses with durations in the range
of 10 fs to 1 ps (and a wavelength of for example 500 nm)
is in the range of 0.4 nm to 40 nm. This broad spectrum
can be measured with good accuracy using a grating spec-
trometer. For these ultrashort pulses techniques exist to de-
termine both phase and amplitude, for example FROG. For
longer pulses (1 ps to 100 ps) the spectral pulse width (of
0.4 nm to 0.004 nm) is much narrower. These widths are be-
low the resolution limit of most grating spectrometers. It is
thus more appropriate to use for example piezo-driven Fabry–
Pérot spectrum analyzers. These devices offer the advantage
that the free spectral range and the spectral resolution can

be adjusted to the spectral pulse width by choosing an ap-
propriate mirror spacing and mirror reflectivity. Whereas the
spacing determines the free spectral range, the reflectivity
determines the finesse, that is the ratio of the resolution-
limited width of a transmission maximum to the free spectral
range. Moreover the Fabry–Pérot interferometer (FPI) allows
us to monitor on-line the pulse spectrum on for example
an oscilloscope.

The purpose of the investigations reported in this paper is
to determine the influence of the limited spatial pulse length
on the spectral width as measured with a FPI of a given mirror
spacing and reflectivity. The investigations include a numer-
ical simulation of the dependence of the measured spectral
pulse width on the pulse properties (such as pulse shape, pulse
duration, frequency chirp and wavelength) as well as on the
properties of the FPI (such as mirror spacing and the finesse,
calculated from the mirror’s reflectivity). The results obtained
by these calculations are then verified in an experimental
investigation in which the spectral width of Fourier-limited
50-ps-long pulses of a mode-locked Nd:YLF laser is meas-
ured with a FPI using different mirror spacings.

An interferometer with a limited number of interfering
waves described in the literature is for example the Lum-
mer–Gehrcke interferometer [1]. The response of a FPI to
short light pulses was investigated in respect to interpulse in-
terference effects [2] and pulse stretching [3]. More general
calculations of the response of a FPI to short pulses were per-
formed in the time domain [4–6].

Both, the time and frequency response of a Fabry–Pérot
interferometer to short light pulses have been considered so
far only in a qualitative way [7, 8] or are calculated for rect-
angular and sinc2-shaped pulses [9]. A corresponding method
to FROG for time-resolved spectral measurements based on
a Fabry–Ṕerot interferometer is described and modeled for
rectangular pulses [10]. But there are no quantitative re-
sults that describe the influence of a short pulse duration
on the width of the measured spectrum for Gaussian and
sech2-shaped pulses. This is the subject of the investigations
reported here.



186

1 Numerical simulation of the measured spectral pulse
width

The intensityI(φ) transmitted by a scanning Fabry–Pérot in-
terferometer is given by the Airy formula

I(φ) = T

1+F sin2 (φ/2)
, (1)

whereT = [T/(1− R)]2, F = 4R/(1− R)2, T andR are flux
transmittance and reflectance, respectively,φ = 4πd/λ, d is
the mirror spacing andλ the wavelength. For a limited num-
berm of interfering waves the transmissionI(φ) is approxi-
mately given by [7]

Im(φ) =
∣∣∣∣∣
m−1∑
n=0

TRneinφ

∣∣∣∣∣
2

. (2)

I is equal toIm if m → ∞. For a short pulsem is given by the
number of round trips in the Fabry–Pérot interferometer. For
a mirror spacingd the round trip time is simply

t0 = 2d/c .

For a pulse with durationτ the number of round trips is given
by

m = τc/2d .

If m is larger than≈ 2F, i.e. twice the value of the total fi-
nesseF, the value ofI given by (1) and the approximate value
Im are almost equal. Ifm is larger than twice the value of the
finesse, the measured spectrum should be the same for pulsed
or continuous wave (cw) radiation [7]. The finesseF, which
is proportional to the FPI’s resolving power, is defined as the
ratio of the free spectral range to the half-width of the Airy
curve.

With a decreasing number of round trips, that is for shorter
light pulses, the difference betweenIm and I increases. The
precise knowledge of this difference should allow us to de-
termine the spectral width also for pulses with a spatial pulse
length comparable to the FPI’s mirror separation. In the fol-
lowing this difference and the required correction factor for
the measured spectral shape are calculated.

In the simulation the transmission of a scanning Fabry–
Pérot interferometer is calculated by considering the propaga-
tion of a single pulse within the Fabry–Pérot interferometer
with fixed mirror spacing. The transmitted pulse power is then
calculated for other mirror spacings in order to obtain the
complete spectrum of the pulse.

In the following we consider Gaussian and sech2-shaped
pulses which are typical for ultrashort pulses generated by
actively or passively mode-locked lasers. The temporal enve-
lope of these pulses is given by the following expressions:

f gaus
τ (t) = exp

(−2 ln 2× t2/τ2) , (3)

f sech
τ (t) = sech(1.763× t/τ) , (4)

whereτ is the full width at half maximum (FWHM) of the
pulse duration.

The calculation is started at the time−ts when the pulse
intensity is at a level of 10−3 of its maximum and stopped

at ts when the intensity has decreased by the same factor
(see Fig. 1). The pulse duration is divided into intervals
which correspond to the round trip timet0 in the Fabry–Ṕerot
interferometer.

Starting at the time−ts only one beam leaves the Fabry–
Pérot interferometer during the first round trip. Therefore the
transmitted intensityI1(d ) can be calculated using (2) with
m = 1:

I1(d ) =
∣∣∣∣∣∣

−ts+t0(d )∫
−ts

T f(t)dt

∣∣∣∣∣∣
2

= T 2

∣∣∣∣∣∣
t0(d )∫
0

f(t − ts)dt

∣∣∣∣∣∣
2

. (5)

After the second round trip two beams have left the Fabry–
Pérot interferometer, one beam which is only transmitted and
one beam which was reflected twice inside the Fabry–Pérot
interferometer. These two beams must be taken into account
in (2) with m = 2, the corresponding phase relationφ and an
amplitude given by the pulse shapef(t). The resulting inten-
sity I2(d ) is then given by

I2(d ) =
∣∣∣∣∣∣

−ts+t0(d )∫
−ts

{
TReiφ(d ) f(t)+ T f(t + t0(d ))

}
dt

∣∣∣∣∣∣
2

= T 2 ×
∣∣∣∣∣∣

t0(d )∫
0

{
Reiφ(d ) f(t − ts)+ f(t − ts+ t0(d ))

}
dt

∣∣∣∣∣∣
2

. (6)

This procedure is repeated until the pulse propagatedm-times
in the FPI and−ts+mt0(d ) > ts. In this case the recorded
intensity is given by

Im(d ) = T 2

×
∣∣∣∣∣∣

t0(d )∫
0

m∑
n=0

Rneinφ(d ) f(t − ts+mt0(d )−nt0(d ))dt

∣∣∣∣∣∣
2

. (7)

After the tail of the pulse has passed the first FPI mirror no ad-
ditional light will enter the FPI. The energy stored at this time
inside the FPI will leave the interferometer because of the
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Fig. 1. Pulse of 50 ps length divided into intervals which correspond to the
round trip time in an air-spaced Fabry–Pérot interferometer with a mirror
separation of 6 mm
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small but finite mirror transmission. Additional losses caused
by absorption, scattering or by misalignment are not taken
into account. The finesse of this Fabry–Pérot interferometer
is thus determined only by the reflectivity of the mirrors. In
order to calculate the fading of the energy stored in the FPI
the sum given by (7) has to be modified. After each round trip
start and stop values of the sum are increased by 1, thus the
sum starts atn = 1, 2, . . . , j, . . . instead ofn = 0 and ends at
m +1, m +2, . . . , m + j, . . . with a constant difference ofm.
To simplify this expression, the contributions of the increas-
ing powers ofR are separated. The rest of the sum remains
constant which is equal to (7) with an additional factor of
powers ofR. This is given by

Im+ j(d ) = T 2 ×∣∣∣∣∣∣
t0(d )∫
0

m+ j∑
n= j

Rneinφ(d ) f(t − ts+mt0(d )+ jt0(d )−nt0(d ))dt

∣∣∣∣∣∣
2

= R2 j T 2 ×∣∣∣∣∣∣
t0(d )∫
0

m∑
n=0

Rneinφ(d ) f(t − ts+mt0(d )−nt0(d ))dt

∣∣∣∣∣∣
2

= R2 j Im(d ) . (8)

For the calculation of the total transmitted intensity for
a given mirror separationd all summandsIi (i → ∞) have
to be added, i.e. until the light intensity in the Fabry–Pérot
interferometer is zero. In this caseI(d ) is given by

I(d ) =
∞∑

i=1

Ii(d ) =
m−1∑
i=1

Ii(d )+
∞∑

i=m

Ii(d )

=
m−1∑
i=1

Ii(d )+
∞∑

i=0

Im(d )R2i

=
m−1∑
i=1

Ii(d )+ Im(d )
1

1− R2
. (9)

This sum can be written as a sum ofm different terms. The
first part stands for the increase of energy while the pulse en-
ters the Fabry–Ṕerot interferometer whereas the second part
describes the decrease of the stored energy at times larger
thants (8).

Equation (9) gives the intensity for a fixed spacingd. By
varying the distanced the transmission of the Fabry–Pérot
interferometer is obtained as a function ofd. The distance
between two successive transmission maxima corresponds to
the free spectral range. Thus the transmission of the Fabry–
Pérot interferometer can be described also as a function of
frequency.

The parameters that have to be known for the calcula-
tion are the reflectivities of the mirrors, the wavelength, the
pulse duration, the temporal pulse shape, a possible frequency
chirp and the mirror separation. The calculation performed
for a successively increasing mirror separation then provides
the transmission maxima, the distance between two adjacent
maxima and the full width at half maximum (FWHM). The
calculated FWHM is the parameter of interest, that is the
spectral width∆ν of the light pulse.

With this procedure the spectral width of Gaussian and
sech2-shaped pulses were investigated using the following
parameters: The mirror spacing wasd = 100µm, varied by
±3.5µm. The mirror distance of 100µm corresponds to
a round trip time oft0 = 667 fs. The free spectral range is
νFSR = 1.5 THz. The center wavelength of the pulses was
λ = 5µm. The pulse duration was varied from 0.15 ps to
60 ps.

The results of the numerical calculations are shown in
Figs. 2 and 3 for Gaussian and in Figs. 4 and 5 for sech2-
shaped pulses, respectively. In addition, relevant data are
listed in Tables 1 and 2 for the two different pulse shapes.
In Figs. 2 and 4 the normalized spectral width∆ν/νFSR is
plotted as a function of the normalized pulse lengthτ/t0 for
different values of the finesseF. The solid diagonal line in
each figure represents the spectral width of Fourier-limited
pulses. Using the normalized parameters allows a more gen-
eral discussion of the results obtained for different values of
the pulse length, the finesse and the free spectral range.

The time–bandwidth product is calculated by multiply-
ing the spectral width∆ν with the corresponding pulse du-
rationτ. The dependence ofτ∆ν on the normalized pulse

Fig. 2. Ratio of the spectral width (∆ν) to the free spectral range (νFSR) in
dependence of the ratio of the duration (τ) of Gaussian pulses to the round
trip time (t0) calculated for different values of the finesse (F)

Fig. 3. Time–bandwidth product (τ∆ν) in dependence of the ratio of the
duration (τ) of Gaussian pulses to the round-trip time (t0) calculated for
different values of the finesse (F)
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Fig. 4. Ratio of the spectral width (∆ν) to the free spectral range (νFSR) in
dependence of the ratio of the duration (τ) of sech2-shaped pulses to the
round-trip time (t0) calculated for different values of the finesse (F)

Fig. 5. Time–bandwidth product (τ∆ν) in dependence of the ratio of the du-
ration (τ) of sech2-shaped pulses to the round-trip time (t0) calculated for
different values of the finesse (F)

duration (τ/t0) is shown in Figs. 3 and 5 for different values
of the finesseF.

As seen in Fig. 2 for pulses that are short compared to
the Fabry–Ṕerot round-trip time (area A) the ratio∆ν/νFSR
does not depend on the finesseF. If the pulse duration is
less than 20% of the round-trip time the pulse is simply re-
flected at the two surfaces of the Fabry–Pérot interferometer
and no interference occurs. WithI0 the intensity of the in-
put pulse, the transmitted intensity is given byT 2/(1− R2)×
I0. Because there is no interference, it is not possible to de-
termine a spectral width. If the pulse duration increases but

Table 1. Values of the ratio of the spectral width (∆ν) to the free spectral
range (νFSR) and the time–bandwidth product (τ∆ν) calculated for Gaus-
sian pulses and different values of the finesse (F)

F = 155 F = 30 F = 14
τ/t0

∆ν
νFSR

τ∆ν ∆ν
νFSR

τ∆ν ∆ν
νFSR

τ∆ν

0.45 0.497 0.224 0.497 0.224 0.497 0.224
1.50 0.297 0.446 0.309 0.464 0.325 0.487
4.50 0.103 0.461 0.117 0.528 0.140 0.631

15.00 0.0335 0.503 0.0513 0.770 0.0813 1.22
45.00 0.0145 0.654 0.0363 1.63 0.0718 3.23

Table 2. Values of the ratio of the spectral width (∆ν) to the free spectral
range (νFSR) and the time–bandwidth product (τ∆ν) calculated for sech2-
shaped pulses and different values of the finesse (F)

F = 155 F = 30 F = 14
τ/t0

∆ν
νFSR

τ∆ν ∆ν
νFSR

τ∆ν ∆ν
νFSR

τ∆ν

0.15 0.499 0.075 0.499 0.075 0.499 0.075
0.45 0.473 0.213 0.475 0.214 0.477 0.215
1.50 0.221 0.332 0.236 0.355 0.257 0.385
4.50 0.0773 0.349 0.0947 0.426 0.121 0.544

15.00 0.0262 0.393 0.0463 0.695 0.0787 1.18
45.00 0.0131 0.592 0.0355 1.60 0.0715 3.22

is still shorter than the round-trip time only those parts of
the pulses will contribute to the interference with intensities
less than half the pulse maximum. The transmitted average
intensity is still in the order ofT 2/(1− R2)× I0, but the con-
structive or destructive interference of the pulse wings leads
to some modulation of the transmitted intensity as a func-
tion of mirror spacingd. This results in a very low contrast
ratio. The calculated spectra look like a sine function with the
zero-line atT 2/(1− R2)× I0 and with a period of the free
spectral range. Therefore the ratio of∆ν to νFSR is 1/2. This
value is indicated in Figs. 2 and 4 by the upper horizontal
line.

For longer pulse widths (area B) the numerically deter-
mined spectral width is correct until the spectral width ex-
pected for a Fourier-limited pulse is smaller than the resolv-
ing power of the FPI (area C). For large values ofτ/t0 the
measured spectral width is equal to the resolving power and
is independent of the pulse length. In Figs. 2 and 4 the values
of the resolving power determined by the finesse are drawn as
horizontal lines. As a result with a Fabry–Pérot interferometer
the correct spectral width can be measured only ifτ/t0 ≈ 1.
The upper tolerable limit ofτ/t0 depends on the accuracy re-
quired in the measurement. For example for a ratio ofτ/t0 = 5
and a finesseF = 30 the measured spectral width will deviate
by 20% from the width of the assumed Fourier-limited pulses.
With increasing finesse this deviation decreases. If the finesse
is increased to 155, for example, the deviation is reduced to
5% for the same ratio ofτ/t0. Therefore the accuracy required
in the measurement limits the maximum value allowed for the
ratio ofτ/t0.

Figures 3 and 5 show the time–bandwidth productτ∆ν
given by the spectral width∆ν (determined from the numeri-
cal simulation) and the pulse durationτ. The horizontal lines
are drawn at a value of 0.4413 and 0.3148, which are the
Fourier limits forτ∆ν for Gaussian and sech2-shaped pulses,
respectively. For short pulses (τ/t0 < 1) the values forτ∆ν
are independent of the finesse. The determined value of the
time–bandwidth product is smaller than the Fourier limit. For
intermediate values of the ratioτ/t0 (1 < τ/t0 < 3) the value
for τ∆ν is rather accurate, whereas for longer pulses the value
is too large. In this case the resolving power of the Fabry–
Pérot interferometer is too small to resolve the narrow spec-
trum of the longer pulses. The time–bandwidth product thus
increases with increasing pulse length because the spectral
pulse width remains constant because it is equal to the value
of the resolving power. This result indicates that the range in
which the Fabry–Ṕerot interferometer could be used critically
depends on the finesseF.
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In the simulation only the finesse as calculated from the
reflectivity R (FR = π

√
R/(1− R)) is considered. The fi-

nesse of real Fabry–Pérots is smaller due to for example mir-
ror surface distortion, mirror misalignment, scattering losses,
and absorptions in the mirror coatings, etc. The contributions
of these effects which reduce the finesse could be consid-
ered, however, in the calculation. The total finesseF is then
given by the equation 1/F2 = 1/F2

R +∑
1/F2

i , whereFi are
the contributions by the effects mentioned above [11]. On the
other hand the reduced value of the finesse can be consid-
ered in the calculations simply by assuming an appropriate
reduced mirror reflectivity. In this way the results obtained
by the numerical simulation and in the experiment can be
directly compared. The effective finesse is determined ex-
perimentally in a measurement with a small mirror spacing,
which results in a large ratio of pulse duration to Fabry–Pérot
round-trip time. In this case the measured spectral width is
only determined by the finesse and is equal to the free spectral
range divided by this finesse.

Since the results are presented as a function of the nor-
malized pulse durationτ/t0 and the normalized spectral width
∆ν/νFSR they are valid for pulses with durations in the whole
temporal range extending from ns to fs.

Besides Fourier-limited pulses Gaussian pulses with lin-
ear frequency chirp were investigated. The parameters chosen
for the numerical simulations were the same as those used
for the calculations shown in Fig. 2 (d = 100µm, λ = 5µm,
0.15 ps< τ < 60 ps,F = 30). The chirp factora for a linear
chirp is defined by the following equation [12]:

E(t) = E0 exp
(−t2/2T 2) cos

(
ωt + at2

T 2

)
. (10)

The chirp factora was varied between 0 and 20. The time–
bandwidth product of a chirped Gaussian pulse depends on
the chirp factora and can be calculated with a Fourier trans-
formation. The result is

∆ν∆τ = 0.4413
√

1+4a2 . (11)

The numerical simulations were performed in the same way
as for chirp-free pulses. The chirp is considered in (7) and (8)
by an additional term in the phaseφ(d ). The results of the nu-
merical calculations are shown in Fig. 6 for chirp factorsa in
the range of 0 to 20. For increasing values ofa the normalized
spectral pulse width increases. The general behavior, how-
ever, characterized by starting horizontally at a value of 1/2,
decreasing linearly and leveling off horizontally at a value of
1/30, corresponds to the results shown in Fig. 2 for chirp-free
pulses.

In order to allow an easy comparison with Fourier-limited
pulses an effective pulse duration can be defined as

τeff = τ√
1+4a2

. (12)

If this pulse duration is used the dependence of∆ν/νFSR is
the same for all chirp factors (as is seen from Fig. 7). Using
the effective pulse duration it is thus possible to determine
the optimum mirror spacing required for a reliable measure-
ment of the spectral width of pulses with known durationτ
and frequency chirp factora.

Fig. 6. Ratio of the spectral width (∆ν) to the free spectral range (νFSR) in
dependence of the ratio of the duration (τ) of Gaussian pulses to the round-
trip time (t0) calculated for values of the chirp factor ranging froma = 0 to
a = 20

In general, it is desirable to use a Fabry–Pérot interferom-
eter with a high finesse. At a finesse of 30 the mirror spacing
should be set to a length that a pulse performs 1 to 3 round
trips. If the pulse is chirped, however, the effective pulse du-
ration is shorter compared to a pulse without chirp. In this
case the ratio of the effective pulse duration to Fabry–Pérot
round-trip time would be smaller than 1 and the measurement
would result in a wrong value for the spectral width. This can
be avoided by decreasing the mirror spacing.

2 Experimental investigation

To compare the calculated results with measured data the
spectral width of ps pulses from a cw mode-locked Nd:YLF
laser (repetition rate 75.4 MHz, wavelength 1053 nm, pulse
duration 50 ps±10%) was measured for several mirror spac-
ings with a home-built scanning Fabry–Pérot interferometer.
The mirror spacing was increased in steps from 55µm to
8890µm. In this way the spectral width was measured and

Fig. 7. Ratio of the spectral width (∆ν) to the free spectral range (νFSR) in
dependence of the ratio of the effective duration (τeff) of Gaussian pulses to
the round-trip time (t0) calculated for the same values of the chirp factor as
given above
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Fig. 8. Ratio of the measured spectral width (∆ν) to the free spectral range
(νFSR) in dependence of the ratio of the 50-ps-long pulses from a Nd:YLF
laser to the round-trip time (t0) (for details: see text)

analyzed for 22 different mirror spacings. The obtained ex-
perimental values are shown in Fig. 8. This figure shows in
addition a horizontal line at a ratio of the spectral width to the
free spectral range of 1/2, a horizontal line at the resolving
power for a finesse of 30 and a horizontal line at the resolv-
ing power for a finesse of 40. Furthermore a line indicates the
ratio of the spectral width to the free spectral range as calcu-
lated from the product∆ν∆τ = 0.4413 for a pulse duration of
50 ps and mirror spacings of 0.25 mm to 15.0 mm which pro-
vide a ratio ofτ/t0 from 0.5 to 30. The experimental values
are compared with the data of a numerical simulation assum-
ing a finesse of 40.

At small mirror spacings which provides values of the
ratioτ/t0 ≥ 10, the measured spectral width equals the resolv-
ing power of the Fabry–Ṕerot interferometer. With increas-
ing mirror spacing (decreasing value ofτ/t0) the measured
results are close to the spectral width calculated from the
time–bandwidth-product. At large mirror spacing (τ/t0 < 1)
the measured values approach the constant value of 1/2
as the calculations predict. All measured data are slightly
shifted to smaller values ofτ/t0. This cannot be explained
by uncertainties in the determination of the mirror spac-
ing. However, an increase of the duration of the Nd:YLF
laser pulses by 10% could account for this shift. In fact,
increasing the value for the pulse duration from 50 ps to
55 ps which is in the range of the error of the determin-
ation of the pulse duration resulted in a very good agree-
ment between the measured and the calculated spectral pulse
widths.

3 Discussion

The results from the numerical simulation and their good
agreement with measured data allow us to calculate the op-
timum mirror spacing of a Fabry–Pérot interferometer for
measuring the spectral width of short light pulses. The mir-
ror spacing should be chosen such that the ratio of effective
pulse duration and Fabry–Pérot round-trip time is between 1
and 3. In this case the measured spectral width is nearly inde-
pendent of the finesse of the Fabry–Pérot interferometer (see
for example Fig. 2) and the difference between the measured

and the actual spectral width is minimized. If the finesse is
known accurately any value between 1 and 10 or even higher
can be chosen. For a chirp-free pulse or a small frequency
chirp (a ≤ 1) and a known pulse length (determined by an au-
tocorrelation measurement) only a ratio between pulse length
and round-trip time in the range of 1 to 3 should be used in
order to measure the spectral width with no or only a small
error.

The results from the numerical simulation are also useful
to measure the spectral width of chirped pulses and to de-
termine the chirp factor using the following procedure: First
the pulse duration is measured and the finesse of the Fabry–
Pérot interferometer has to be determined. To measure the
finesse, the mirror separation should be as small as possible.
The measured spectral pulse width of the pulses is then equal
to the free spectral range divided by the finesse. Then the mir-
ror separation of the Fabry–Pérot interferometer is increased
to one to three times the spatial pulse length. If the spectral
width measured with such mirror separation is equal or close
to half of the free spectral range, the pulse is strongly chirped
(see Fig. 6). The mirror separation has thus to be reduced un-
til the measured spectral width is 0.2 times the free spectral
range. In this case the ratio between the effective pulse length
τeff and the Fabry–Ṕerot interferometer round-trip timet0 is
2.25 (see Fig. 7). From the measured spectral width the ratio
between the effective pulse length and Fabry–Pérot interfer-
ometer round trip time can be determined from Figs. 7, 2 or
4 depending on the finesse and the pulse shape. With the use
of (12) the unknown chirp factora can be obtained and equa-
tion (11) provides the time–bandwidth-product.

Because the measured spectral width depends on the fi-
nesse of the FPI and on the number of round trips of the
light pulses in the Fabry–Ṕerot resonator the measured spec-
tral width can be different from the spectral width calculated
from the time–bandwidth product (see (11) and Fig. 2). In
order to obtain the actual width a correction factor which de-
pends on the pulse durationτ, pulse chirpa, mirror spacingd,
finesseF and pulse shape has to be applied. This correction
factor is shown in Fig. 9 for Gaussian pulses in dependence of
the ratioτeff/t0 and for different values of the finesseF. The
measured spectral width has to be divided by this correction
factor to obtain the actual spectral width.

Fig. 9. Correction factor between the measured and the actual spectral width
in dependence of the ratio of the effective duration (τeff) of Gaussian pulses
to the round-trip time (t0) calculated for different values of the finesse (F)
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4 Conclusion

Guidelines and limitations for the use of a scanning Fabry–
Pérot interferometer for the measurement of the bandwidth
of ultrashort light pulses have been presented. The spectral
response of a scanning Fabry–Pérot interferometer is numer-
ically simulated taking into account the pulse shape, the mir-
ror spacing, the pulse duration and the mirror reflectivities.
These simulations are performed also for chirped pulses. The
results indicate that the actual spectral width of the ultrashort
light pulses is measured with good accuracy only if the fi-
nesseF ≥ 40 and the round-trip time of the light pulses inside
the Fabry–Ṕerot interferometer is approximately one to three
times the pulse duration.
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