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Abstract. We propose a new criterion for the assessment ofFourier-transformations [11]. This becomes invaluable in ex-
ultrashort pulse reconstruction quality. Our idea is based operiments in which the outcome crucially depends on whether
the use of a two-dimensional Wigner representation of theach individual pulse meets the preset requirements.

electric field. This allows introducing a single measure to  Although ideally both methods allow the precise ampli-
represent the quality of both phase and amplitude retrievatude-phase retrieval of an ultrashort pulse, in practice specific
The new criterion is employed to examine two contempoexperimental conditions such as phase-matching, geometry,
rary pulse characterization techniques: FROG (Frequenajetector noise, etc., affect the reconstruction quality. This par-
Resolved Optical Gating) and SPIDER (Spectral Interferometicularly concerns phase information, since in any type of
try for Direct Electric-field Reconstruction). For SPIDER, the pulse-characterization experiment only the spectral intensity
influence of reference pulse stretching on the quality of phasean be measured directly, from which spectral phase extrac-
extraction is investigated. Next, we ascertain the limitations inion follows. Therefore, to assess the correctness of pulse
the use of a Fabri-Perrot etalon in the SPIDER apparatus fggarameter retrieval, one needs a criterion that monitors the
producing delayed pulse replicas. For the FROG techniquguality of pulse reconstruction. Besides the optimization of
we examine the impact of the doubling crystal orientatiorreconstruction methods, the criterion should also be useful for
on the quality of the amplitude-phase retrieval of &ufs  relative comparison of different techniques.

pulses. The introduced criterion is also applied to study the Several such criteria have been proposed to date [17]. First
respective sensitivity of FROG and SPIDER to the limitedof all, the rms error between temporal intensities of ideal
phase-matching bandwidth of the non-linear medium and deand reconstructed pulses can be employed as a measure of

tector noise. the retrieval quality of pulse shape. However, pulses with
different spectral amplitudes and phases may have identical
PACS: 42.30.RX temporal profiles. Hence, thieisintensity error can not suf-

fice alone and should be complemented by phase information.
The problem with the latter is that a simpias phase error
is inappropriate, since the retrieved phase is poorly defined
Modern applications of ultrashort laser pulses require relifor low-intensity components where it usually exhibits large
able knowledge of their amplitude and phase [1-5]. Amongut meaningless variations. To avoid substantial distortions
several techniques that provide access to phase-amplitude inkthermsphase error, an intensity-weighted phaseserror
formation, frequency resolved optical gating (FROG) [6—9]has been suggested [17, 18]. Therefore, two different criteria,
and spectral phase interferometry for direct electric-field reene for the pulse amplitude and the other for the pulse phase
construction (SPIDER) [10—13] are the most advanced nowahould be used simultaneously.
days. Both methods have a number of distinguished features In this paper we introduce a new, general criterion based
that determine their applicability under certain experimentabn Wigner representation [19] of ultrashort pulses. The cri-
conditions. For instance, the main advantage of FROG is thagrion embraces both phase and amplitude information in
it utilizes excite-probe geometry, common in most nonlineaa mixed time-frequency domain, has a high validity, and in-
spectroscopic applications. Therefore, it is ideally suited t@orporates a number of aspects of the previously used criteria.
characterize pulses precisely at the sample position by simpBased on the proposed criterion, we examine the limitations
interchanging the latter with a nonlinear medium for opticaland optimal conditions of two pulse-reconstruction tech-
gating [14]. On the other hand, SPIDER has the advantage @iques that utilize the second-order nonlinearity: SPIDER and
real-time pulse measurement at high repetition rates [15, 168fecond harmonic generation (SHG) FROG. We also compare
since its phase-recovery algorithm involves only a couple ofhe technigues on the basis of their sensitivity to the limited
phase-matching bandwidth and detector noise. The results il-
*Corresponding author. lustrate the strength of the criterion in the assessment of the
(Fax: +31-50363-4441, E-mail: M.S.Pshenichnikov@chem.rug.nl) pulse reconstruction quality.
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The paper is organized as follows: in Sect. 1 the criterior Time, fs Intensity
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of the reconstruction quality based on Wigner representatio 44 e 11000

of ultrashort pulses is introduced. In Sects. 2 and 3 we im | )
plement this criterion to optimize SPIDER and SHG FROG & gg¢ ) 4900 E
techniques. The relative comparison of these two methoc ~ o
from the viewpoint of phase matching and sigimalise ratio E“soo ' 200 2
is presented in Sect. 4. Finally, in Sect. 5 we summarize oL &~ [ : o
findings. g 2
= : | =
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The Wigner representation of an ultrashort puld&t, o) is
straightforwardly calculated from the (complex) electric field 5,
in frequencyE(w): %

/ / 5
W(t, ) = / E* <a)+ %) E <a)— %) exp—io'thde (1)

. (©) 2
or time domain E(t): 50 0 S0 100 130
v v Time, fs
W(t, @) = / E* <t + —> E <t — —> exp(—iwt’)dt’ (2)  Fig. 1la—c. Wigner representation of a Gaussian pulse with cubic spectral
2 2 phase ). The corresponding intensity and phase in the frequency and time

. ) . domains are shown i and c, respectively.Dotted contour linesin a
Equations (1) and (2) show that the Wigner trace is a tworepresent negative values

dimensional distribution in the time-frequency domain and
therefore takes into account both temporal and spectral prop-

erties of light pulses. It has been introduced using the anal,, 1q precise lateral overlap of the two Wigner traces in
ogy of ultrashort light pulses and quantum particles MOVip e time space is required to correctly compergue to un-

ing in a combined position-momentum phase space [20, 21 ‘ertainty of the absolute pulse position in time. This can be

The Wigner distribution was used in pulse-characterization _ o ; ]
methods [22, 23] and recently, it has also been applied for tT%Iasny arranged by optimizing the respective overlap of tem

interpretation of coherent optical Spectroscopy such as phot oral marginals. Note that the scaling factois chosen in
Interp ' pti P Py su P uch a way that the Wigner trace error is minimized. Alter-

and Raman echoes [24-26]. natively, one can require the equality of energies (i.e. double

An example of a Wigner trace of a pulse with the Gaussiar. : : ;
spectrum and cubic spectral phase is shown in Fig. 1a. As fongtegrals of the Wigner matrices over time and frequency)

| ¢ 1) int Hon ofV(t ith t10 i f the ideal and reconstructed pulses. Indeed, the particular
ows from (1), integration oW(t, ) with respect to time pro- ., yico o normalization does not affect the interpretation of
vides the pulse spectrum (Fig. 1b). Subsequently, integrati

. . 1% e calculated Wigner trace error.
of W(t, w) over frequency yields the temporal pulse intensity The Wigner trace erros takes values from 0 to 1, the

(Fig. 1c). The Wigner representation is quite intuitive sinceupper limit being the worst case, in which the difference be-

the shape of the contour (Fig. 1a) generally follows the 9rouRyeen the two matrices equals the value of the initial matrix

delay, i.e. the first derivative of the spectral phase with 'iself. A valuable property of is its insensitivity to the matrix

spect to frequency. Beside this intuitiveness, the Wigner tracaéoeN and to the sampling along the time and frequency axes.

contains a delicate balance between the amount of phase 3Pfbm extensive numerical simulations on different pulses we

Zn;‘églggeb'niﬁ;"::gog'cyvg'le Izre] gr:;eengse_?t c_)tfsa :/g(':gsneelrotégﬁconcluded that Wigner trace error belovt 6 0.15 represents
! y pective pulse Ity, IS preci ! cceptable reconstruction quality.

in the time-frequency domain is fully determined by phase Together with the introduced criterion based on Wigner

Info,gg]aa?ocr;:ter'on to iudae the pulse-reconstruction al_representation, it is possible to consider other similar two-
: Ieri Judge pu uction qualyinmensional distributions both in the time and frequency do-
ity, we propose a normalized error between Wigner ma

) : - mains, for instance, the FROG trace [27]. However, the latter
:ggez(\:/t\./ogl’ ‘_‘)) and W(t, ») of ideal and retrieved pulses, criterion is less sensitive, due to the fact that FROG relies
pectively: on non-linear frequency conversion and, therefore, a contri-
N bution at a given delay and frequency from a weaker spectral
2 component can be hidden beneath the pile-up of contributions
_ 0 (¢ Y . (T . .
&€= Z [W' j (G ) — oW (T, “’J)] / from more intense spectral components.

i

3 I:\Ni(,)j (ti wj)]z, (3) 2 Optimization of the SPIDER technique

i
SPIDER is a relatively new method, which can be regarded as

wherea is a scaling factor and\ is the size of the matrix. a version of the self-referencing interferometry with spectral
The valuets as given by (3) will be called theévigner trace  shearing [28]. In SPIDER the spectral phase is reconstructed
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from a spectral interferogram produced by two replicas of thenodeling are summarized in Fig. 2a where the Wigner error
pulse to be characterized. Two replicas are identical but theis depicted as a function of reference pulse duration. The
carrier frequencies are shifted with respect to each other. Iquality of the reconstruction rapidly deteriorates as the ref-
practice, this is accomplished via nonlinear frequency mixingrence pulse shortens. For instance, the Wigner trace error
of the delayed replicas with a highly chirped reference pulsapproaches the upper acceptable limit of 0.15 when the du-
that is also derived from the same input pulse. Together withation of the reference pulse amountst@.5 ps The reason

the independently measured spectrum, the spectral phase fer the poorer reconstruction quality is found in the transfer-
trieved from the interferogram is sufficient for the completeence from the reference pulse quadratic phase, which begins
characterization of the pulse. In this Section we show howo overwhelm the initial cubic phase of the characterized
based on the Wigner trace error, the SPIDER technique can Ipeilse. Note that in this case the duration of the reference pulse

optimized for the best reconstruction quality. should be longer than the duration of the input pulse at least

The SPIDER interferogram, i.e. the signal that is measby a factor of 100 to obtain a reasonable reconstruction qual-
ured in the experiment, has the form ity. This pointis illustrated in Fig. 2b, where the Wigner error
is shown as a function of the width of the intensity autocor-

IspipER(S2) = |Eup(£2, —7) + Eup(£2, D)2 . (4)  relation of the input pulse. The reference pulse was stretched

- . .to 3.5 ps while the duration of the input pulse was varied
In (4), the electric field of up-converted pulses in the paif,, anging the size of the cubic phase. Figure 2b shows
IEUIP(Q’ +7) cgnhbe calculated in the fr1e4q.uency domain simi- 4t the quality of the phase reconstruction decreases almost
arly to second harmonic generation [14]: exponentially with the growth of the autocorrelation width.

Based on the analysis of the Wigner trace error, we

Eur(£2,7) o</da)E(w)E(Q—a)) conclude that the quality of phase reconstruction depends
T strongly on the reference pulse stretching. One should pay

X exp[i - +igref($2 — a))] (5)  special attention to this, particularly in the case of pulses with

high order phase distortions when the FWHM pulse or auto-
where E(w) is the complex spectral amplitude of the pulsecorrelation widths poorly reflect the actual extent of the pulse.
to be characterized; is the delay between two replicas of
the input pulse, angyes denotes the additional phase intro-
duced by a stretcher into the reference pulse (that is anoth~~ 15
replica of the input pulse). We assumed that the intensities ¢ ‘ (a)
the two pulses that form the interferogram (4) are equal an
that the stretcher does not modify the spectrum of the refel
ence pulse. The spectral phage) of the input pulse canbe & 0.10k —
derived from the interferogram using a simple algorithm [11]. §

The intrinsic property of SPIDER is that the quality of 8 |
phase retrieval depends on the degree of stretching of tt 5 anA
reference pulse. It is required that the frequency of the rel © 0.05
erence pulse does not change appreciably over the duratii & ™
of the pulse to be characterized. If the reference pulse he
been stretched insufficiently, the up-converted pulse (5) ac
quires an additional spectral phase. Clearly, the stretchin 0.00 ; ; ;
factor needed depends on the duration of the pulse to be me: 0 10 20 30
ured: the longer the input pulse, the longer the reference puls
should be. 015

To evaluate the influence of the reference pulse lengt ’
on the quality of phase reconstruction we numerically gen (b)
erated a SPIDER interferogram according to (4) and (5) an |
then performed the phase reconstruction as described in [1]
Briefly, we Fourier-transform the interferogram into the time
domain and filter out the peak centered around timthus
discarding the other two peaks around 0 and Then we
perform the Fourier transformation back to the frequency do % 0.05
main and subtract th@t term from the obtained phase. The § :
last step concatenates the spectral phase difference.

The stretching of the reference pulse was adjusted b
changing the amount of quadratic spectral phagsgw) o« w?. 0.00 . . .
As an input pulse, we have chosen the one presented in Fig. N5 20 75 30
The delayr was tuned withird00 fs-1 psin order to main- et lati dth.
tain the spectral shearingo = 150-250 cni! that exceeds | ICCONE GG R, 18 _
the Nyquist it by aacior of 2. Such avalue ke the e 225 s s e s s ot 6 et =
Eaeifggsbzvg]isrggg; ;L?er;lal_gg g;;ﬁgxeg]ﬁﬁ)geoalItgr:glésg:?r%reuction in SPIDER. Thénsetin a gives the temporal intensity profile of

test pulse. The reference pulsebihas a3.5-ps duration. Theansetsin
phase between the nodes (separated2y The results of b show test pulses belonging to the limiting cases

Reference pulse duration, ps

e

—
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Another issue of concern in the SPIDER technique is th& FROG optimization
way to produce two delayed replicas of the input pulse, since
the reconstruction algorithm relies on the fact that their specSHG FROG technique is based on the measurements of spec-
tral phases should be identical. For instance, for characteriztrally dispersed autocorrelation signal [8]:
tion of 6-fs pulses, a balanced Mach—Zander interferometer
had to be employed [12]. For longer pulses, reflection fro .
a Fabri—Rrrot etalon was suggested [11]. As the etalon, a th?r$dea'(9’ 0= ’f E(0)B(2 — ) exp—ion)do) . )
uncoated parallel optical flat can be used. The advantages of
the latter are simplicity and low sensitivity to environmen-The FROG trace is then used as an input to a numerical
tal perturbations. However, the pulse replicas, produced bglgorithm that retrieves the intensity and the phase of the
such an etalon, are not entirely identical because one of tHallse. However, the experimentally collected data deviate
pulses passes twice through the material of the etalon whilkom the ideal FROG trace as given by (7). In particular,
the other does not. The phase difference between the ufhe effect of the limited phase-matching bandwidth of the
converted pulses that forms the SPIDER interferogram has don-linear medium becomes increasingly important for sub-

2

additional contribution due to material dispersion: 10fs pulses [29]. In this Section we analyze two different
approaches to selection of a nonlinear crystal for the SHG

Ap(w) = p(w+ 20) — p(w) — ¢ (w) (6) FROG measurements 6#fs pulses that have been recently
suggested [14, 30, 31].

whereg(w) is the spectral phase to be found apfi(w) is The complete SHG FROG signal has the form [14, 30]:

the additional phase introduced by the etalon. Therefore, the

additional phase difference in (6) should be removed beforg(g 1) o 22 f E(w)E($2 — o) e or+idk2.o)L/2

concatenation is performed. For instance, one can calibrate

the etalon using conventional interferometry or simply calcu- 2

late the phase from known dispersion of the material. x sincfi Ak(£2, w)L/2] dw (8)
Figure 3 illustrates the influence of the etalon dispersion

on the quality of phase retrieval in the SPIDER technique .

when the standard calibration procedure based on the secoﬁﬁ%’eret qlenoieﬁ the delay between pulse((2, ) is the

harmonic signal [11] is used. We assumed that a spectrQ ase mismatc

limited pulse with the central frequency&Q20 nmis reflected _ N

off a 75um thick etalon made of BK7 glass. Therefore, AK($2, ©) = ko(@) + ko2 — ) —ke(82) ©)

one of the pulse replicas additionally passed through aboynq_js the thickness of the doubling crystal. Here we con-
150pum of glass. The separation between the two pulses insiger Type | phase-matching and neglect the effect of beam
troduced by the etalon is abot&0 fs Clearly, for the7/Sum  geometry and dispersion of the second-order non-linearity.
thick etalon thelO-fs pulses can be measured with a satisfacgquation (8) can be simplified to a product of an ideal,
tory accuracy without any need for the phase compensatiqiy perfectly phase-matched, SHG FROG and a spectral fil-
(Fig. 3). However, the Wigner trace error for shorter pulsesg, [14,29,31]:

becomes unacceptably high. Therefore, for pulses shorter

than10 fsthe aforementioned methods of etalon calibrationsg 2, 1) o« R(§2) Sgeal($2, 7) (10)
should be used. Alternatively, one can employ other means

of pulse replicas generation, like the balanced Mach—Zandevhere the expression for the spectral filter is given by:
interferometer.

R@m==929né[ (11)

/&, _ The transition from (8) to (10) and (11) involves the expan-
! sion of wave vector&y(w) andky(£2 — w) into Taylor series

AMQﬂ}

<
[\
T

up to the first order. There are two main approaches to such
an expansion. The first one [14, 29, 30] is to perform the ex-
- pansion around frequeney= £2/2, keeping the terms that
}, are linear with frequency. In this case we obtain the following
expression

<
p—
T

Wigner trace error

AK($2) =~ 2Ko(£2/2) — Ke(£2) (12)

in which the first-order terms containing first-order deriva-

0.0 . . tives cancel each other. In the second approach [31, 32], the

0 15 30 45 60 wave vectors are expanded around the central frequency of
Test pulse duration, fs the fundamental pulseo:

Fig. 3. The reconstruction quality of SPIDER in the etalon arrangement. ,  ,
The solid circlescorrespond to the calculation without any phase (:ompen-Ak ~ 2Ko(wo) — Ke(wo) + (£2 — 2w0)
sation while thesquaresrepresent the case when the third-order phase is |:3k0(w0) Bke(2w0)1|

(13)

introduced to precompensate for the material dispersion in the etalon. The

etalon is an uncoated5-um thick optical flat made of BK7 glass ow dw
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Note that in this case the first derivative terms do not cancdbr the spectral filter as given by (11), in agreement with
each other and therefore must be retained. The approximaRecipe I. Following Recipe Il no correction was applied to the
expressions (13) or (14) can be used for finding the oriensecond data set. Both FROG traces were then processed by
tation angle of the doubling crystal that provides the mostommercially available software (Femtosoft Technologies)
suitable spectral filter. to reconstruct the initial pulse. The error of the FROG re-

Two distinctly different recommendations on the phasedtrieval procedure was acceptable in both cases and did not
matching wavelength of the crystal have been suggestezkceed0.01% (Recipe I), and.2% (Recipe Il) for a 256«
based on (12) (called from now on Recipe I) and (13)256 FROG matrix. The results of the reconstruction along
(Recipe Il). Recipe | requires the phase-matching wavelengtith the respective Wigner traces are presented in Fig. 5c¢,d
to be shifted from the central to a higher frequency to en{Recipe I) and Fig. 5e,f (Recipe Il). The temporal amplitude
sure adequate up-conversion of the blue wing of the spectruand phase of the initial pulse are also shown by solid curves
(Fig. 4a, dashed curve). Subsequently, the FROG trace mufgir comparison.
be corrected for the frequency-doubling efficierRig?2) that The Wigner error of the reconstructed pulse amounts to
is appreciably important in the IR region due to f2é-factor  merely 0.035 for Recipe |, while for Recipe Il the error is
in (11) (Fig. 4a, solid curve). In contrast, from (13) Recipe Ilas high a€.24. Indeed, the Wigner trace of the recovered
recommends the use of an IR-shifted phase-matching waveulse in the case of Recipe | (Fig. 5d) is nearly identical to
length. In this case, the red wing of the up-conversion spectrahe input one (Fig. 5b). Consequently, the quality of pulse re-
efficiency (Fig. 4b, dashed curve) supposedly balances off theieval is excellent for both amplitude and phase (Fig. 5c¢). In
22 term in (11), which results in a nearly symmetric con-contrast, the result produced by Recipe Il exhibits an entirely
tour around the central wavelength of the pulse (Fig. 4b, solidifferent behavior (Fig. 5e,f). The pulse reconstruction has an
curve). Because of its large spectral width, it would seem thainacceptably poor quality (Fig. 5e) which is also reflected
no additional correction of the FROG trace is heeded. in considerable discrepancy in the spectral marginal [29, 35].

To test the implications of the two recipes and to verifyThe inspection of Wigner traces in Figs. 5b and 5f conspic-
the better approximation of the phase mismatch, we simuiously shows difference in instantaneous frequency spectra
lated FROG measurements of 485-fs pulse centered at
790 nm In order to follow a realistic scenario, we modeled
the spectrum by a super-Gaussian contour with the banc 1
width that supportd fs pulses (Fig. 5a). We next assume that
the pulse is not perfectly compressed, and a small amou
of quartic spectral phase (cubic group delay) broadens trz
pulse to~ 4.5fs. The chosen spectrum is a simplification E
of a typical fiber output [33] while phase distortions ap- =
proximately correspond to the residual phase of a compre:
sor consisting of a combination of prisms and chirped mir-
rors [34]. The Wigner representation of the test pulse is show
in Fig. 5b.

We computed the FROG traces according to (8) for ¢ 1400
a 10-um BBO crystal cut for the central wavelength of (©) 1200
700 nm(Recipe 1) and®@70 nm(Recipe II). Since (8) is exact, 1°
no approximations about the phase mismatch are made &
these calculations. Next, the first FROG trace was correcte §
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Fig.4a,b. Spectral filtering effect in the SHG FROG technique for Time, fs lime, fs

Recipe | @) and Recipe Illf). For details see text. Thehaded contour  Fig. 5a—f. The comparison of SHG FROG recovery ofd&-fs pulse for

shows autoconvolution of super-Gaussian intensity spectrum supportinBecipe | and Recipe Il. The spectrum and phase of the input pulse is de-

a 4-fs pulse.Solid anddashed curvesgepresent the total spectral filt&(£2) picted ina with the relevant Wigner distribution hown im The retrieved

and a siné term, respectively, calculated according (18)4nd (13) b) for pulses according to Recipe | and Recipe Il spectrum and plaeshdd

the central wavelength af00 nm(a), and970 nm(b). The thickness of the  curveg along with Wigner distributions are presentectjd andef, respec-

BBO crystal is10um. Dotted linein a shows the phase-matching curve tively. Solid curvesin ¢ ande show the parameters of the input pulse. The

calculated according to (12) for the central wavelengtB7d nm convention orcontour linesin b, d, andf is identical to Fig. 1
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of the two pulses, especially at times below and above theince frequency mixing occurs between two different pulses.
half-width of the pulse. Apparently, the intensity of frequencyTherefore, Type Il phase matching can be used in order to
components belonging to the spectral wings is not substantiloaden the spectral acceptance bandwidth.
enough to affect significantly the FWHM pulse duration. On  In our model calculations, we considered Type | of phase
the other hand, such intensities are still usable for a variety ahatching for FROG and both Type | and Type Il for the
spectroscopic applications [36]. Therefore, misjudgement c8PIDER technique. The orientation of the BBO crystal was
the phase distortions can lead to the erroneous interpretatichosen ag = 29 for Type | andd = 42 for Type Il that cor-
of experimental data. responds to the maximal efficiency at the central wavelength
Now we address the question why Recipe | is superioof the pulse 800 nn). As a test pulse we used the pulse pre-
to Recipe Il. The reason lies in the Taylor expansion of thesented in Fig. 1. The phase from the SPIDER interferogram
phase mismatch. Recipe | is based on (12) in which zeraand the amplitude and phase from the FROG trace were ex-
order terms are functions of second-harmonic frequency. Itracted using the algorithms described above.
contrast, the frequency dependence in (13) is purely quadratic The results of the pulse reconstruction quality for differ-
(Fig. 4b, dashed curve). However, crystal dispersion is lovent crystal lengths are presented in Fig. 6 for FROG and Fig. 7
in the infrared and rapidly increases as the UV absorption ifor SPIDER. Both techniques have quite similar sensitivities
approached [37]. Equation (13) fails to capture this featuréo the crystal thickness when Type | of phase matching is used
while (12) correctly predicts the high-frequency slope of the(solid circles in Figs. 6 and 7). For instance, for the accept-
phase-matching curve to be steeper than the low-frequenable Wigner trace error of 0.15, an~ 30-um BBO crystal
one (Fig. 4a, dashed curve). Therefore, tuning the centrahould be used. However, the use of Type Il phase matching
wavelength of the crystal to a longer wavelength, as Recipe ih the SPIDER technique allows lengthening the crystal up to
recommends, does not allow correction of the FROG trac&0-um (solid squares in Fig. 7).
for the imposed spectral filter since the conversion efficiency As we discussed in Sect. 3, the correction for the spectral
becomes extremely low in the blue wing (Fig. 4a, dottedilter in SHG FROG relaxes the requirements on the crystal
curve). This should be compared to Recipe | in which thdength and allows using much longer nonlinear crystals. In the
correction is readily applied (Fig. 4a, solid curve). Hencesame way, a similar correction can be introduced in SPIDER.
for FROG characterization of ultrashort pulses one shouldo do so, (14) is simplified to a product of an ideal, i.e. a per-
consider a crystal with the phase-matching wavelength bludectly phase-matched part and a spectral filter:
shifted with respect to the central frequency, as suggested by

ipe I. AK(2)L AK(Q)L
Recipe | Eup(£2, 1) x Qsinc( (2 ) >exp(—i (2 ) >
UP
4 Relative comparison of SHG FROG and SPIDER X Bigea(£2) (15)
techniques

whereEYP (2, 1) is given by (5),Ak(£2) is given by (12) for

ideal
In this Section we analyze the comparative performance ofype | phase-matching and

SHG FROG and SPIDER methods of pulse reconstruction.

Using the Wigner trace error as a criterion, we consider the\k(£2) ~ ko(£2/2) + ke(£2/2) — ke(£2) (16)
stgbility of thes_e techniques in face of the finite spectral band-
width of a nonlinear crystal and detector noise. for Type Il phase-matching. Equation (16) is derived similarly

to (12) with the only difference that the first derivative terms

4.1 Thickness of the nonlinear crystal do not cancel each other out and have been disregarded.

To evaluate the effect of phase matching in the nonlinear

crystal on the retrieval quality, we calculated a SPIDER inter: — T T T T T T T
ferogram and FROG trace according to (4), (5) and (8), re 0.6
spectively. However, (5) should be generalized to include th
finite thickness of the crystal:

5
=
o B -
Eup(£2,7) O(.Q/da)E(a))E(_Q—a)) sinc(w> § 04
X ia)f i o iAk(.Q, w)L g
Xep[?‘f‘ (Pref( —w) — f} @02_ |
14) =

Equations (8) and (14) illustrate the different role of the non-

linear crystal in FROG and SPIDER: the former method is (). L 1 !
based on thesecond harmonigeneration while the latter 0 20 40 60 80
one uses frequenayp-convertion For the FROG technique BBO Thickness, |um
the group velocities of the pulse replicas should be IdentlcaL’ig. 6. The dependence of the reconstruction quality of SHG FROG method

and, hence, the use of Type | phase matching is quite eSsefirine thickness of the nonlinear crysblidandopen symbolsorrespond
tial [14]. In contrast, SPIDER does not have such a limitatiorto the calculation without and with spectral correction, respectively

100
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T interferogram, and the spectral shear is found out from the
calculated dispersion of the stretcher. The other method is
to calibrate the SPIDER apparatus from the shift of inter-
ferograms while the time overlap between the reference pulse
and the test pair is changed. We point out that these methods
are not free from systematic errors related to either cali-
bration procedure or inaccuracy in the spectral dispersion
of the stretcher. Note that FROG does not require as many
calibration procedures as SPIDER. Also, FROG frequency
and time marginals are powerful tools to verify experimental
data [7-9].

0.6

T

04

0.2

Wigner trace error

4.2 Signalnoise ratio

(0 = .
0 20 40 60 80 100
BBO Thickness, pm Next we compare pgrformgnce of SPIDER and SHG FRQG
Fig. 7. The dependence of the reconstruction quality of SPIDER method o#mse rem-eval techniques in _the.presence (-)f d_etector NOISE.
the thickness of the nonlinear crystal for the Typeitdles) and Type I he q.ueStlon we .are addressing in this Section IS:.Wha.‘t noise
(square} of the phase-matchingsolid andopen symbolsorrespond to the  1€V€l in SPIDER interferograme and FROG trace is still tol-
calculation without and with spectral correction, respectively erable for acceptable pulse reconstruction quality? We chose
additive noise with a Gaussian distribution and a zero mean
value as an example of the noise that occurs in CCD cam-
eras. We considered the cases of ideal phase-matching (zero-

The results of the calculations with the spectral correcthickness nonlinear crystal) described by (4), (5) for SPIDER
tion for FROG are presented in Fig. 6 (open symbols) anénd (7) for FROG. The stretching of the reference pulse in
for SPIDER in Fig. 7 (open circles for Type | of the phaseSPIDER was sufficiently high to minimize the Wigner trace
matching and open squares for Type Il). First of all, the corerror corresponding to the noiseless reconstruction. As a test
rection allows choosing a much thicker crystal in both SHGpulse we again used the pulse presented in Fig. 1. The noise,
FROG and SPIDER techniques. Secondly, the correction iwith its rms amplitude normalized to the maximum value
the case of Type | phase matching in SPIDER gives mucbf the signal, was added to numerically generated FROG
better results than in the case of Type Il phase-matching béraces and SPIDER interferograms. Since the pulse spectrum
cause (16) presents a worse approximation than (12). Finallis measured separately in SPIDER, we added to the spectrum
the calculations show that in the case of Type | of phas¢he same noise fraction as to the interferogram. The pulse pa-
matching the correction is more efficient for SPIDER thanrameters were reconstructed using the algorithms described
for FROG. The explanation of this fact lies in the details ofin previous Sections, and the Wigner trace error was calcu-
pulse reconstruction. In contrast to FROG, where both th&ated for each noise fraction. The retrieval procedures were
spectrum and the phase are retrieved from a single FRO&pplied without any prior filtering of the data sets. However,
trace, the pulse spectrum in SPIDER is measured indepesince noise filtering is implicitly present in the SPIDER algo-
dently. Therefore, it is not distorted by up-conversion in therithm (when the peak centered around timis filtered out),
nonlinear crystal. Furthermore, it follows from (15) that thethe noise fraction was accordingly increased to ensure a fair
additional phase shift due to the phase mismatch does not deemparison.
pend on the delay between the two replicas and hence the The results of the simulations are presented in Fig. 8.
additional phase shift is canceled out in the interferogram (4)SPIDER and FROG show quite a similar stability to the ad-
Therefore, the only remaining source of error is the value
of the spectral sheaR, that is determined as the frequency
spacing between the maxima of the up-converted spectra of
the two pulse replicas. However, in the case of insufficien 0.3 T T T
bandwidth the up-converted spectra are skewed, which leau
to an incorrect estimation of2y. This is immediately re-
flected in the poor quality of the phase extraction. The corg
rection of the up-converted spectra for the amplitude filte|8 0.2r
almost entirely removes the error in the value of spectra g
shear and gives excellent pulse reconstruction. The residu+
error is due to the narrowing of the spectral region with ap- &
preciable intensities where the phase is defined reasonat@ 0.1
well.

Our simulations show that the main source of inaccurac'
in the SPIDER method lies in the incorrect determinatior
of the spectral shear as the nonlinear crystal distorts shap 0. ' : L :
of the up-converted spectra. Therefore, under such circun 0.0 0.2 ) 0.4 '0-6 ) 0.8 1.0
stances one should use different methods to determine tl Signal/noise ratio, %

spectral shear. |t.has been suggested [11] that the dela}’ .8. The reconstruction quality of SPIDER:i(cles, solid curvg and
tween pulse replicas can be measured from a conventioneROG gquares, dashed curyvas a function of signghoise ratio
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5 Conclusions

'Ry 40
57k The new way of assessing the reconstruction quality of ul-
= 2= | trashort pulses, introduced in this paper, fills in the deficit of
2] 0 25, P : .
B . = 800F a single measure accounting for both amplitude and phase
] % % recovery provided by various ultrashort pulse measuring tech-
B s niques. Since the Wigner trace error is based on the com-
40 Z 700 parison of two two-dimensional distributions that uniquely
g 7[.][.]'"""";{";;]““;-}“ To00 I H('} describe a complex electric field of the laser pulse, the pro-
Wavelength, nm Time, fs posed criterion has an extremely high validity. Unlike numer-

_ o N _ ous existing amplitude and phase errors that are computed
T orim o rbamarmespeora o e shaymog_ €iher i the tme or frequency domain, the proposed ciite-
curveswhile adashed linerepresents tr?e spec?ral phase of the test pulse.r,Ion aptly grasps th_e role of subtle amplltu_de-phase de\,”a'
Wigner representation of the retrieved pulse is depictell in tions, to which, for instance, the temporal intensity profile
remains largely insensitive. Furthermore, this criterion is sup-
plemented by an intuitive and comprehensive graphic repre-
sentation (Wigner trace) that is very useful for understanding
ditive noise. Thams noise level of approximatel§.5% can the character of the pulse distortions.
be considered as the upper limit when both algorithms give We have employed this criterion to study the performance
acceptable reconstruction quality. It is well known [17] thatof two techniques that utilize second harmonic generation:
the performance of FROG can be dramatically improved bysSHG FROG and SPIDER. In the case of SPIDER we have
a prior filtering of the measured trace. The same argument cajuantitatively analyzed the influence of the reference pulse
be applied to SPIDER as well. Particular noise-filtering stratstretching to the quality of phase reconstruction. Analysis of
egy depends on pulse peculiarities since it is coupled with thihe Wigner trace errors has revealed that insufficient stretch-
danger of wiping out essential information. ing of the reference pulse leads to essential distortions of the
Figure 9a presents an example of the pulse retrieved ngcovered phase, especially in the case of the pulses with the
the SPIDER technique in the casele¥% additive noise. The higher than second order of the spectral phase. The correct
relevant Wigner representation, depicted in Fig. 9b, should bamount of the reference pulse stretching should be estab-
compared with the Wigner representation of the initial pulsdished with respect to the measured pulse’s longest temporal
(Fig. 1a). The plots clearly demonstrate that the main sourckeature. The latter, especially in the case of a complicated
of the error is due to substantial phase distortions in areaspectral intensity ant@r phase pattern, can considerably ex-
where the spectral intensity is low and the relative fraction oteed the temporal FWHM. We have also shown the limita-
the noise increases. tions in the use of a Fabri—Perrot etalon for producing the
So far, we have considered the case of eqoa am-  delayed pulse replicas. Our numerical simulations also prove
plitudes of the additive noise in the SHG FROG trace andhat the use of an etalon in the SPIDER apparatus leads to
SPIDER interferogram. However, the SPIDER interferogranthe erroneous interpretation of the retrieved data in the case of
is a one-dimensional data set while the FROG trace is a twdhe broadband laser spectra that support the pulse duration of
dimensional one. Hence, during the measurement of a singld fsand shorter.
n x n FROG trace one can collentSPIDER interferograms In the analysis of the FROG technique, the distortions of
obtaining a considerably lower noise level. For instance, fothe amplitude-phase measurements of Sdibpulses have
a typical dimension of the FROG matrix of 128128 elem- been examined, which arise from different orientations of
ents this yields a better by a factorfL.28 signal-noise ratio. a doubling crystal. It has been shown that the proper angular
From the other hand, FROG utilizes second-harmonic genetuning of the crystal and the correction of the FROG trace for
ation while SPIDER uses up-conversion that requires a sulthe spectral filter can significantly reduce the problems of the
stantial (by at least a factor of 100, see Sect. 3) stretching diimited phase-matching bandwidth.
the reference pulse. As a result, intensities of the up-converted The SPIDER and SHG FROG techniques have been com-
replicas are 100 times weaker than those of second harmopared among themselves under similar conditions with re-
ics. Therefore, with a given noise level of the photodetectorspect to their sensitivity to the limited phase bandwidth. Spec-
SPIDER in general requires an order of magnitude more intral corrections have been introduced to minimize the effect
tense input pulse than FROG. of spectral filtering that is a direct result of the finite SHG
Up to now equal intensities of pulse replicas in bothcrystal thickness. The need for such a correction appears to
FROG and SPIDER were assumed. This situation, howevelbe more important for FROG than for SPIDER because for
is not always realized in an experiment. The difference in théhe truthful pulse retrieval the former method requires the
replica intensities leads to the decrease of modulation depttorrect intensity of the second harmonic signal, while the
in the SPIDER interferogram thus causing deterioration ofatter technique draws phase-sensitive information from inter-
the phase retrieval quality in the presence of noise. The sanfierence fringes filling the intensity envelope. Therefore, the
argument can be applied to SHG FROG where the secomarrowing of the up-conversion bandwidth in SPIDER re-
harmonic intensity is the highest if the initial pulse is splitinto sults in a smaller spectral interval on which the phase of the
two identical replicas. Our simulations show that, in the caseneasured pulse is recovered. The correction of individually
of uneven replica intensities and given camera noise, the relap-converted spectra in SPIDER is, nonetheless, very import-
tive performance of both techniques remains similar to tha&nt in order to recover the right amount of spectral shearing.
depicted in Fig. 8. Our simulations have convincingly shown that spectral fil-



tering in the SHG crystal is responsible for a shift of the 12
individual second- harmonic spectra of the two pulse repli-
cas with respect to each other. This shift appears as a sizab

addition to the true value of the spectral shearing. The failure 4

to account for this contribution compromises the subsequents,

use of concatenation routine. Finally, the impact of the fi-
nite signalnoise ratio has been examined in detail for both
SPIDER and SHG FROG. The simulations generally resulte
in the similar level of the Wigner trace error for both methods 4
within acceptable limits.

Concluding, we believe that the Wigner trace error, in- 18.

troduced in this paper, will find wide use in optimization
and relative comparison of already existing and emergin

techniques of full characterization of ultrashort pulses. Theyg,
strength of the new criterion makes is particularly useful 21.
for a quantitative analysis of performance of different pulse22.

measuring methods with respect to the experimental noise
systematic errors, dynamic range, etc. It allows finding the,,
optimal experimental conditions for various cases and also

constitutes a benchmark for comparison of different tech-25.

nigues among themselves. An entirely new promising field
of application of the proposed criterion can be found in
the comparison of results of phase-sensitive ultrafast spec,;
troscopy [38—44] and theoretical models [24].
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