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Abstract. We have studied the accuracy of ultrashort-pulse
reconstruction using SPIDER (spectral phase interferometry
for direct electric-field reconstruction) with noisy data. Spe-
cifically, we have looked at the effects of additive noise,
multiplicative noise, and quantization of the interferogram on
the reconstruction of the intensity and phase, and discovered
that the inversion routine is relatively insensitive to noise.
In particular, with10% additive noise, SPIDER is able to
recover the optical phase to an accuracy of approximately
0.04 radiansand recover the intensity pulse shape to an accu-
racy of approximately1.5%. Further, we have identified the
optimal parameters for pulse reconstruction from noisy data
with which SPIDER should operate.

PACS: 07.60.Ly; 42.65.Re; 42.30.Rx

In the last few years, progress in the measurement of ul-
trashort optical pulses has led to the development of sev-
eral techniques that can be used to characterize laser pulses
completely, easily, and rapidly: FROG [1], SPIDER [2],
DOSPM [3], ENSTA [4], XPM [5], MIFROG [6], IAC-
Spectrum [7], etc. Several of these methods have been known
to yield the complete time-dependent electric field, usually
given as amplitude and phase, of pulses approaching a few
fs in duration [8, 9]. Such information is an invaluable tool
for experimentalists in a variety of applications, not least
of which is the optimization of the laser system itself. In-
deed, complete information is critical for laser designers hop-
ing to control higher order dispersion and reach the single-
cycle regime. But full characterization is likewise important
for applications such as quantum control, where the spec-
tral or temporal components and their corresponding phases
play a critical role in controlling, for example, the produc-
tion rates of chemical reactions [10] or the rate of two-photon
ionization [11].

Of critical importance to the usefulness of any measure-
ment tool is how well it performs in real laboratory settings.
It is therefore a useful exercise to examine the merits of an
ultrafast measurement scheme under less-than-ideal condi-
tions. Important questions are: How well can it reconstruct the
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field in the presence of noise? How well does it perform with
limited precision? What are the optimum parameters for the
technique in the presence of noise?

In this paper we address these questions in the context
of spectral phase interferometry for direct electric-field re-
construction (SPIDER) [2]. The SPIDER method is a self-
referencing interferometric technique for measuring ultra-
short optical pulses, and is characterized by being concep-
tually straightforward and easy to implement. Moreover, it
uses a noniterative inversion algorithm. SPIDER is extremely
flexible: It can be used over a wide range of wavelengths,
from infrared to blue [12]; it can measure pulse durations
from roughly a ps down to less than6 fs [9]; it can measure
pulses from amplifiers or oscillators [2, 13]; and it can run
in real time with20-Hz update rates [13] or in a single-shot
configuration [14].

Our study is modeled after the thorough investigation
of the performance of frequency-resolved optical gating
(FROG) in the presence of noise presented in a paper by
Fittinghoff et al. [15]. We have adopted their strategies for
modeling additive noise, multiplicative noise, and quantiza-
tion, and for measuring the fidelity of pulse reconstruction.
(Others have recently suggested different fidelity measures.
See [16].)

Aside from testing the robustness of the inversion al-
gorithm in the presence of noise, we also address the is-
sue of optimizing the parameters involved in configuring
SPIDER (namely the pulse delay, the spectral shear, and the
window width). In this paper we will not address system-
atic errors such as beam misalignment, inaccurate SPIDER
calibration traces, or spatial chirp. Other sources of error,
such as miscalibration of the spectrometer, have been studied
recently, and it was shown that SPIDER is insensitive to
these errors [17]. It is important to note that we also as-
sume that the spectrum of the input pulse can be meas-
ured to high accuracy since it requires no nonlinear pro-
cess. In this study we measure the fundamental spectrum
to 8-bit precision, although6 bits is also adequate. There-
fore, the noise is applied only to the interferogram itself,
which is consistent with experimental implementations of
SPIDER.

The rest of this paper is organized as follows. Section 1
will present the SPIDER inversion routine and a description
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of its experimental implementation. Section 2 will describe
the five different pulse shapes we will consider for this in-
vestigation. Section 3 will address the issue of optimizing
the parameters for the SPIDER inversion. Section 4 will ex-
plain the procedures used for simulating noise in this study.
Section 5 will present the results of the noise simulations.
Section 6 will discuss other issues such as one-bit quantiza-
tion, interferogram averaging, and a qualitative discussion of
the reconstruction. Finally Sect. 7 will offer some concluding
remarks.

1 SPIDER apparatus and inversion routine

The SPIDER apparatus and inversion algorithm are fairly
simple to execute, and they are described in this section.
We will briefly outline the implementation of upconversion
SPIDER (for measuring infrared pulses) to provide a frame-
work for the discussion that follows. However, it should be
kept in mind that these results are general and apply equally
well to any incarnation of the SPIDER method. (For a much
more detailed description of SPIDER, see [2].) We will exam-
ine the inversion routine in detail as this provides important
insights into the role of noise and the parameter adjustment.

SPIDER is an embodiment of the technique of spectral-
shearing interferometry, in which two pulsed fields of iden-
tical temporal shape but different center frequency are spec-
trally resolved [18, 19]. The key ingredient for spectral-
shearing interferometry to work with ultrafast pulses is the
ability to generate a shear of the required magnitude. Typic-
ally, ultrafast pulses have bandwidths of many THz and the
required shear is of the order of a few THz. Since current
state-of-the-art electro-optic and acousto-optic modulators
cannot shift carrier frequencies by this amount, SPIDER uses
nonlinear optics to achieve the necessary shear. In the upcon-
version mode of SPIDER, two replica pulses are combined
with a third stretched (chirped) pulse and upconverted in
a type-II second-harmonic crystal. The resulting two second-
harmonic pulses have a spectral shear that is dictated by the
time delay between the incident pulse pair and the amount
of chirp on the stretched pulse. This method provides the re-
quired spectral shear, which is in fact adjustable over a wide
range from essentially zero to the available bandwidth in
the incident pulse. The two second-harmonic pulses are then
spectrally resolved in a spectrometer and an interferogram
is recorded. This interferogram contains the phase informa-
tion, encoded into the positions of the peaks and valleys in the
interferogram. Extraction of this information is direct using
Fourier analysis.

An apparatus for implementing upconversion SPIDER in
the laboratory is shown in Fig. 1. The setup provides a method
of generating the pulse pair and a means for stretching a third
replica. The input pulse is first split into two beams. One
beam is sent through a device that will create two identical
pulses, separated in time byτ. This can be achieved either
with a Michelson interferometer, or from the first and sec-
ond facet reflections from a flat uncoated etalon (the multiple
reflections that follow are considerably lower in energy and
may be neglected). The other beam is sent through a stretcher,
either a grating pair stretcher or, in the case of very short
pulses (<10 fs), a piece of glass. These two orthogonally
polarized beams are then recombined and focused into a type-

Fig. 1. Experimental apparatus for upconversion SPIDER. The chirped
pulse and pulse pair are upconverted in aχ(2) nonlinear crystal. The result-
ing sheared pulses are measured with a spectrometer and detector array. The
measured interferogram is sent to the computer for analysis

II nonlinear crystal. The upconverted pulses propagate to
a spectrometer, at the output of which is a 512-element photo-
diode array. The signal from the photodiode array is read and
analyzed by a computer.

The interferogramS(ω) has a form given by

S(ω)= I(ω)+ I(ω+Ω)+2
√

I(ω)I(ω+Ω)
×cos{φ(ω+Ω)−φ(ω)+ωτ}, (1)

where I(ω) is the input power spectrum,Ω is the spectral
shear, andτ is the pulse delay. The phase information we wish
to recover isφ(ω). One can see that knowledge of the spec-
tral shear and the pulse delay is key to recovering this spectral
phase. Both of these quantities are easily measured in the lab-
oratory [2]. For the purposes of this study, interferograms are
simulated by samplingS(ω) calculated fromI(ω) andφ(ω)
using (1) on a 512-element array of real numbers.

The inversion routine is shown in Fig. 2. The frequency-
domain interferogram is first Fourier transformed to a pseudo-
time domain. This procedure yields a function of three
peaks (in time), separated by the pulse delayτ. The peak
at t = +τ is selected using a “super-duper” Gaussian win-
dow (an eighth-order super Gaussian). This peak is then
inverse-Fourier transformed back to the frequency domain.
The argument of this function is the spectral phase of the
interferogram (which is discontinuous, due to the principal-
value calculation [20], but can be easily unwrapped). We
subtract the linearωτ term (obtained in the laboratory from
a separate [2] or simultaneous [14] calibration trace), leaving
the phase difference between two different frequency compo-
nents of the input pulse,

θ(ω)= φ(ω)−φ(ω+Ω). (2)

To recover the phaseφ(ω) a concatenation procedure is used.
Setting the phase at the center frequency to zero (it is impos-
sible to measure the “absolute” phase using SPIDER), we can
write the phase at a discrete set of frequencies{(ωc±nΩ),
n an integer number} as

...

φ(ωc−2Ω)= θ(ωc−2Ω)+ θ(ωc−Ω) ,
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Fig. 2. SPIDER inversion algorithm. The intensity and phase (in frequency
or time) can be reconstructed from the measured interferogram by means of
simple Fourier transforms

φ(ωc−Ω)= θ(ωc−Ω) ,
φ(ωc)= 0 , (3)
φ(ωc+Ω)=−θ(ωc) ,

φ(ωc+2Ω)=−θ(ωc+Ω),
whereωc is the “center” frequency of the pulse spectrum. The
measured phase differencesθ(ω) are summed to recover the
true spectral phaseφ(ω) at points separated by the spectral
shear. Obviously, the choice of this spectral shear is important
for the reconstruction, a topic discussed in a later section.

The final step of the SPIDER inversion algorithm is re-
turning to the temporal domain. Now that we have the spectral
phase, we merely need the spectrumI(ω) to recover the com-
plete pulse information. The temporal electric field is simply
given by the Fourier transform of the spectral electric field,
namely

E(t)= 1

2π

∞∫
−∞

dω
{√

I(ω)eiφ(ω)
}

eiωt . (4)

There is one point that needs consideration, however. The
spectrum and spectral phase are defined on a 512-element
array which typically covers a spectral range four times the
bandwidth of the input power spectrum∆ω. This means that
a direct Fourier transform will yield a temporal pulse of reso-
lution≈ 1/(4∆ω). Although the sampled spectrum provides
a complete specification of the pulse, this is not high enough
temporal resolution to give an intuitive time-domain picture
for some pulse shapes. Thus we adopt the usual method of

padding the spectral electric-field array with zeros before tak-
ing the Fourier transform. We generally increase the array to
2048 elements before going to the time domain. This gives
an adequate temporal resolution even for fairly complicated
pulse shapes.

2 Test pulse shapes for reconstruction simulations

Now that we have described SPIDER’s operation, let us turn
our attention to the five different pulse shapes we wish to con-
sider in our noise studies. Since SPIDER naturally returns the
spectral phase of the pulse, we will consider pulses that dif-
fer by their input spectral phase. This is also consistent with
the most commonly used pulse-shaping apparatuses, such as
the devices that use a spectrally resolved liquid-crystal [21]
or acousto-optic [22] modulator. These pulse shapers operate
directly on the spectral phase and amplitude of the pulse.

The pulses we will consider are shown in Fig. 3a–e, where
we have plotted the temporal intensity and phase. The inset
of each graph shows the corresponding spectral intensity and
spectral phase. All five pulses have Gaussian spectrums with
FWHM given by 10.3 THz (∆ω = 65×1012 rad/s, ∆λ =
24 nm), corresponding to a transform-limited temporal dura-
tion (FWHM) of 43 fs. The phases are given by a fourth-order
polynomial:

φ(ω)= a(ω−ωc)
2+b(ω−ωc)

3+c(ω−ωc)
4, (5)

where the coefficientsa,b, andc indicate the quadratic, cubic,
and quartic components of the spectral phase (the zeroth
order term is the so-called “absolute” phase and the first-
order term gives rise to a time shift of the pulse, neither of
which is recoverable from a SPIDER measurement). The first
pulse (3a) has a flat phase (transform-limited pulse,a= b=

Fig. 3a–e. Pulse shapes used in this study. Graphs show intensity (solid
line) and phase (dashed line) as a function of time (inset shows corres-
ponding spectrum and spectral phase). All pulses have a Gaussian spectrum
with: a zero phase;b quadratic phase;c quadratic and cubic phase;d quartic
phase; ande quadratic, cubic and quartic phase
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c= 0), the second (Fig. 3b) is quadratic (a= 5×10−4 ps2,
b= c= 0), the third (Fig. 3c) is quadratic plus cubic (a=
1×10−4 ps2, b= 5×10−6 ps3, c= 0), the fourth (Fig. 3d) is
quartic (a= b= 0, c= 6×10−8 ps4), and the fifth (Fig. 3e)
is quadratic plus cubic plus quartic (a= −3×10−4 ps2, b=
−1×10−5 ps3, c= 9×10−8 ps4). This complicated phase
on the fifth pulse leads to interesting behavior in the tempo-
ral domain as is seen in Fig. 3e. The intensity shows a strong
second lobe and a large phase jump. It is this last pulse which
will be the benchmark for the robustness of the SPIDER
inversion.

3 Choice of optimum parameters

There are two free parameters in the SPIDER apparatus and
one in the inversion algorithm that require careful consider-
ation. The first parameter is the pulse delayτ. The require-
ments on this parameter are twofold. First,τ must be large
enough that the resulting interferogram has a decent num-
ber of interference fringes (we typically operate with 20 to
30 fringes). Second,τ must be small enough that the reso-
lution in the spectrometer and detector array is able to satisfy
the Nyquist sampling criterion [23]. Namely, the detection
scheme must be able to “resolve” the interferogram, with
greater than two points per fringe (in the lab one would ar-
range the spectrometer and photodiode array to record about
15 points per fringe).

To find a good value forτ, we ran our numerical simu-
lation of SPIDER under the following conditions. We added
10% noise to our interferograms (as described in the next
section) for five different input pulse shapes (as described in
the previous section) and ran the SPIDER inversion routine.
We reconstructed the pulse shapes in time, compared them
to the original input pulse shapes, and calculated the aver-
age error in temporal intensitȳεI (also discussed later). We
then changed the pulse pair delayτ and repeated the error
calculation. Since the noise was random on each realization,
we ran the calculation repeatedly and averaged the ensuing
pulse shape errors. The results are shown in Fig. 4, where
we have plotted the average temporal intensity errorε̄I (in
percentage) versus pulse delayτ. There is a broad minimum
from 0.2 ps to 6 ps, with the error increasing at either ex-
treme. This finding is consistent with what we would expect
from the Nyquist criterion: For largeτ the spectral resolution
is not high enough to record two points per fringe and for
small τ the number of fringes drops dramatically, leading to
the intermingling of the Fourier transform peaks att = +τ
andt = 0.

The second free parameter is the spectral shearΩ. This
shear is determined by the overlap of the chirped pulse and
the pulse pair. For example, in an experimental apparatus
using a grating pair stretcher, the shear would be given by
Ω =−τ/(2φ2), whereφ2 is the second-order dispersion in the
stretcher arm [2, 24]. AlthoughΩ is dependent on the pulse
delay τ, it can be adjustedindependentlysince the chirped
pulse can be stretched to an arbitrary value (φ2 can be cho-
sen at will). The choice forΩ is a little trickier than the
choice forτ, since the shear must be chosen such that the re-
quirements of the Whittaker–Shannon sampling theorem are
met [23]. The situation is as follows. According to Whittaker–
Shannon, only a pulse that is contained entirely within a time

Fig. 4. Error in temporal intensity reconstruction as a function of pulse pair
separation

intervalT ≤ 2π/Ω can be accurately reconstructed. Accord-
ingly, one should chooseΩ such thatT is considerably longer
than the input pulse durationτp. Generally, we use a spec-
tral shear such thatT is at least ten times greater than the
transform-limited input pulse duration, i.e.T ≥ 10τp. How-
ever, as discussed earlier, the reconstructed spectral phase is
recovered only at spectral phase points separated by the spec-
tral shearΩ. Hence a choice forΩ that is too small will likely
lead to errors in the reconstruction in the presence of noise,
since the difference between the spectral phases atφ(ω) and
φ(ω+Ω) will tend to zero asΩ decreases. In this case only
pulses whose spectral phase varies greatly withω would be
reconstructed. For complicated pulse shapes, this can lead to
errors. IfΩ is too small, the interferogram’s fringes will not
vary much with respect to the nominal (≈ 1/τ) spacing. In the
presence of noise, this will lead to reconstruction errors.

To find an optimal spectral shear we ran the algorithm as
described above, but this time with a fixedτ and a variable
spectral shear. The results are shown in Fig. 5, where we have
plotted the average temporal intensity errorε̄I versus rela-
tive spectral shearΩ/∆ω (given in terms of the fraction of
the input pulse spectrum). Also, we stepped the shear in in-
teger multiples of pixel frequency separation since the phase
is reconstructed at steps of the shear. The plot shows a fairly
flat region fromΩ/∆ω≈ 4% toΩ/∆ω≈ 35% with a min-
imum atΩ/∆ω≈ 23%. This corresponds to support in the
temporal domain of425 fs, which is roughly ten times the
duration of our (zero phase) input pulse, consistent with the
Whittaker–Shannon sampling theorem. The error increases at
higher spectral shears because the support in the time do-
main becomes shorter than the actual pulse. The error also
increases at lower spectral shears, due to the noise. In our
noise studies, we chose a spectral shear of13% which is small
enough to give accurate reconstruction of our most compli-
cated test pulses.

The third and final parameter that can be optimized is in
the inversion algorithm itself: The temporal width of the win-
dow applied to the transform of the interferogram (see Fig. 2).
This window must be centered at one of the sidebands±τ, but
its width may be chosen independently. The choice is rather
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Fig. 5. Error in temporal intensity reconstruction as a function of relative
shear between the uopconverted pulses

intuitive, however. It should be narrow enough to not over-
lap the strong peak att = 0, but broad enough to completely
enclose the peak att =+τ. If the window is too narrow, the
peak neart =+τ will be distorted, and the fidelity of recon-
struction will decrease. On the other hand, if the window is
too wide, the total noise power may be sufficient to reduce
the recontruction fidelity. To test this, we ran the SPIDER in-
version as described above with varying window width. The
results of these calculations are shown in Fig. 6 as plots of
the temporal intensity error̄εI versus window width. There is
a broad minimum in the error which rises sharply at either ex-
treme of the window width, i.e. in the cases where the window
either includes thet = 0 term or cuts off part of thet =+τ
term. One might expect the optimal window width to depend
on the signal-to-noise ratio of the interferogram, yet surpris-
ingly we have found it to be fairly independent of the noise
value. This indicates that the choice for window width is not
critical; we typically operate with a width≈ τ/3.

Fig. 6. Error in temporal intensity reconstruction as a function of window
width in selection of temporal sideband in the SPIDER inversion algorithm

4 Sources of error: noise and quantization

There are three sources of error we consider for this study:
additive noise, multiplicative noise, and quantization error.
Additive noise can arise from electronic or thermal noise
in the detector. Multiplicative noise is indicative of pixel-
to-pixel gain variation in the photodiode array. Quantization
error comes about because of the limited precision of the de-
tection system (photodiode array and A/D board). Since the
interferogram is the primary measured entity in SPIDER, it
is this signal to which we apply the noise and quantization
discretization.

Additive noise is the first source of error we consider. To
simulate it, we simply add a pseudorandom number to each
element of our interferogram and run this noisy interfero-
gram through the SPIDER algorithm. Following Fittinghoff
et al. [15], we use noise that is Poisson distributed since this
resembles thermal noise and has the benefit of being positive
definite (we do not expect negative voltages from our pho-
todiodes). We are using a 512-pixel array, and the resulting
noisy interferogram has a form given by

Sadd
noisy(ωi )= Sinput(ωi )+ α

n
ηi , (6)

whereSadd
noisy(ωi ) is the interferogram resulting from additive

noise,ωi is the optical frequency associated with pixel elem-
ent i , Sinput(ωi ) is the input noiseless interferogram,α is the
noise fraction, andηi is a pseudorandom number obtained
from a Poisson distribution of mean valuen. In this study,
n= 5. An example of an interferogram with10% (α= 0.1)
additive noise is shown in Fig. 7a.

For multiplicative noise, we simply multiply the input in-
terferogram by a pseudorandom numbermi that varies around
unity by an amount given by the noise fractionα. The noisy
interferogram is then given by

Smult
noisy(ωi )= Sinput(ωi )(1+αmi ), (7)

whereSmult
noisy(ωi ) is the interferogram arising from multiplica-

tive noise, andmi is a pseudorandom number drawn from
a Gaussian distribution with zero mean and unit variance. An
example of an interferogram with10% (α= 0.1) multiplica-
tive noise is shown in Fig. 7b.

Quantization error results from the limited precision of
the detection apparatus, which includes the photodiode ar-
ray and A/D computer board. The output voltages from the
photodiodes or CCD array is discretized into one of 2“bitdepth”

levels. The speed of A/D conversion decreases as “bitdepth”
increases, so that in many cases, one does not want to use
16-bit precision if it is not necessary. In fact, most CCD arrays
are limited to8 bits, which corresponds to 256 voltage lev-
els. The resulting quantization of the interferogram will lead
to errors, and it behooves us to determine how great these are.
To model this effect, we begin with a noiseless interferogram
and then “quantize” it to the prescribed bit depth. The new
interferogram is then given by

Squant(ωi )= 1

(2bitdepth−1)

〈
Sinput(ωi )(2

bitdepth−1)
〉
, (8)

whereSquant(ωi ) is the quantized interferogram resulting from
a detection system of precision bitdepth, and〈x〉 represents
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Fig. 7a–c. Examples of interferograms used in this study, with:a 10%
additive noise,b 10% multiplicative noise, andc 3-bit quantization

x rounded to the nearest integer. The available levels are
then given by 2bitdepth. The prescription is to multiply the in-
put interferogram by the maximum level(2bitdepth−1) and
then round this value to the nearest integer (for example,
a bit depth of 2 will give us integers 0, 1, 2, 3). By di-
viding again by the maximum level we scale the peak of
the interferogram to unity. An example of quantization is
given in Fig. 7c for a bit depth of 3 (eight levels, which
is unrealistic for a real detection system, but illustrates the
procedure).

To quantify the errors in the recovered fields induced by
level quantization, we evaluated the reconstruction fidelity of
the temporal intensity and phase. In each case, we used error
definitions similar to those of Fittinghoff et al. [15]. The tem-
poral intensity error is defined by

εI =
√√√√ 1

N

N∑
j=1

[
I input(tj )− ISPIDER(tj )

]2
, (9)

whereN is the number of elements in our (padded) temporal
list, I input(tj ) is the input temporal intensity for thej th elem-
ent of the list corresponding to time slottj , and ISPIDER(tj )
is the recovered temporal intensity from SPIDER for thej th

element. The input pulse was scaled so that the peak had unit
amplitude. The errorεI may therefore be regarded (approxi-
mately) as a percentage error. Since the SPIDER algorithm
returns a temporal pulse that has no defined absolute temporal
position or peak height, we have shifted and scaledISPIDER(tj )
to minimize the error.

The phase error is somewhat more difficult to define, be-
cause it is impossible to define a percentage error when the
input phase is zero. It is useful, therefore, to use a rms error
for the phase. However, since the phase is not defined where
the intensity is zero, it is not useful to simply calculate a rms
phase error across the entire range of elements. Instead we
multiply the phase error by the intensity at the correspond-
ing points to construct a “weighted” error,I(t)[φinput(t)−
φSPIDER(t)]. The rms phase error is then given by

εφ =
√

1
N

∑N
j=1 I 2

input(tj )[φinput(tj )−φSPIDER(tj )]2√
1
N

∑N
j=1 I 2

input(tj )
, (10)

where I input(tj ) and φinput(tj ) are the input pulse temporal
intensity and phase for thej th element, respectively, and
φSPIDER(tj ) is the recovered SPIDER phase for thej th elem-
ent. Note that the phase error has units of radians. Further-
more, there is an equivalence principle (Parseval’s theorem)
between the representation of the electric field in frequency
and in time which mandates that the recorded errors have
similar magnitudes in either representation. Thus we will re-
port the errors in temporal phase, but find similar errors for
the weighted spectral phase.

5 Results

We studied the effects of additive noise, multiplicative noise,
and quantization for the five pulse shapes shown in Fig. 3. We
ran the simulations for the five different pulse shapes individ-
ually, with the error at each noise fraction averaged over one
hundred runs, each of which used a new noise realization. The
error can vary significantly from shot to shot since the noise is
random. Because the reconstruction fidelity was nearly identi-
cal for the five different pulses studied, we averaged the error
from the five pulse shapes to produce “global” error figures
ε̄I and ε̄φ. These are shown in Figs. 8–10 and give a flavor
of the expected performance of SPIDER in the presence of
experimental noise, regardless of pulse shape.

Figure 8 shows the intensity errorε̄I and the phase errorε̄φ
versus noise fraction for the average of the five pulses in the
presence of additive noise. Although we averaged over one
hundred noise runs, there is still some spread in error values
due to the randomness of the noise. This graph gives a good
indication of the range of errors one might expect with a given
amount of noise. The noise fraction ranges from 0.001 (0.1%
noise) to 0.5 (50% noise). The results show that SPIDER
performs well over a broad range of values, with an inten-
sity error ofε̄I ≈ 0.15% at the lowest noise tōεI ≈ 3% at the
highest. The phase error ranges fromε̄φ ≈ 0.07 radiansat the
lowest noise tōεφ ≈ 0.1 radiansat the highest. A good testbed
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Fig. 8. Error in reconstructed temporal intensity (solid circles) and phase
(open circles) versus noise fraction for the case of additive noise

for the performance of SPIDER is given by the error at10%
noise. Here we find that the recovered intensity is accurate to
ε̄I ≈ 1.5% and the phase is accurate toε̄φ ≈ 0.04 radians. This
is an acceptable level of accuracy for most applications.

The results for multiplicative noise are shown in Fig. 9,
where we have again plottedε̄I and the phase errorε̄φ versus
noise fraction for the average of the five pulses. These results
indicate that SPIDER is much more resilient to this type of
noise. In fact for noises up to50% the recovered intensity is
still accurate tōεI ≈ 1%. The main reason is that the signal-
to-noise ratio is constant across the spectrum, so that the noise
in the wings of the interferogram is significantly less than that
when additive noise is used. Instead, multiplicative noise acts
primarily in the central region. Since SPIDER is essentially
insensitive to the amplitude of the interferogram, but is in-
stead concerned with the spacing of the fringes, multiplicative
noise causes little error in reconstruction.

The results of discretization are shown in Fig. 10. At
eight-bit resolution the reconstructed intensity is accurate to
ε̄I ≈ 0.15% and the phase is recovered toε̄φ ≈ 0.07 radians.
Higher precision is unnecessary since there is no significant
improvement in the errors for higher bit depths. Clearly these
results show that eight-bit resolution (256 gray levels) is ad-

Fig. 9. Error in reconstructed temporal intensity (solid circles) and phase
(open circles) versus noise fraction for the case of multiplicative noise

Fig. 10. Error in reconstructed temporal intensity (solid circles) and phase
(open circles) versus quantization bit depth

equate for accurate pulse reconstruction in most cases. This
is an important result, since most CCD arrays are nominally
eight-bit and at this precision can operate with reasonably fast
readout.

It is important to note that these results were obtained
without prefiltering the raw data. The inversion routine was
performed with the noisy interferograms directly. However,
the SPIDER algorithm has an implicit “filtering” procedure
built into it, namely the windowing of the interferogram’s
Fourier transform. In this study, the noise in the interfero-
gram is taken to be uncorrelated from pixel to pixel and to
be present across the entire array. As a consequence, noise
in the time domain is also uniform and uncorrelated. There-
fore, because the filtering occurs in the time domain, much of
the noise in the interferogram is removed. It is only the noise
that occupies the temporal region around the window that is
detrimental.

6 One-bit SPIDER, interferogram averaging, and pulse
reconstruction

An interesting feature of Fig. 10 is that the reconstruction
error for a bit depth of one is still only about10%. This is
quite startling considering that this implies that each pixel
in the array be either “on”[S(ωc)= 1] or “off” [S(ωc)= 0].
There are no gray levels. This result begs explanation.

The answer lies in the power of the interferometry it-
self. The SPIDER algorithm is not concerned with the am-
plitude of the interferogram. It is concerned only with the
spacingof the interference fringes. Provided there are a suf-
ficient number of pixels per fringe, a one-bit signal will
still have fringes that are spaced correctly. Referring back
to (8), which describes the procedure for quantizing the
interferogram, it is clear that a one-bit interferogram will
have non-zero values across only the FWHM of the pulse
spectrum since the “threshold” is set at50%. (By thresh-
old we mean the level above which an individual pixel
turns on.) However, one can actually do much better by
setting the threshold to a different level. (This is equiva-
lent, for example, to changing the input light level.) Setting
the threshold lower effectively extends the spectral range of
the quantized interferogram. In fact, the threshold should
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be set optimally at about twice the noise amplitude. For
instance, we added10% additive noise to our interfero-
gram, set the threshold for the pixel “on” state to20%, and
were able to recover the temporal intensity toε̄I ≈ 2% ac-
curacy and the phase tōεφ ≈ 0.04 radians. So pulse recon-
struction with high fidelity is possible even with a one-bit
detector!

Of course this is not quite the whole story: to recover
the complete temporal envelope and temporal phase requires
the spectrum of the incident pulse. We assume that one can
measure this spectrum to moderately high accuracy (six bits
or better). However, if one is only interested in the spectral
phase, which is often useful for applications such as laser ad-
justment, then knowledge of the spectrum is not required and
a one-bit detector is adequate. This is a dramatic reduction
in the amount of information that needs to be collected and
processed, and could lead to vast improvements in SPIDER’s
update rates.

In practical terms the small size of the SPIDER data set
means that another avenue to improved performance is pos-
sible: averaging several interferograms. Because SPIDER has
no moving components, data can be acquired very rapidly.
In this study we have considered data acquisition for the
noise present on a single measurement of the SPIDER inter-
ferogram. Since SPIDER is rather quick (it takes a few ms
to read out a single interferogram), it is possible to numer-
ically average several interferograms before processing in
order to reduce the noise. If the noise is truly random from
shot to shot, the signal-to-noise ratio of the interferogram
is improved by roughly

√
M, where M is the number of

interferograms averaged. This averaging would correspond
to a slower update rate. For instance, in the demonstrated
real-time SPIDER at20 Hz [13], the data acquisition time
was 10 ms and the algorithm inversion took40 ms. Aver-
aging five interferograms would increase the data acquisi-
tion time to 50 ms, but the inversion time stays the same.
The total time is then90 ms, corresponding to an update
rate of 11 Hz. For example, consider the case of10% ad-
ditive noise. In Fig. 11 we have plotted the intensity error
and phase error for10% additive noise as a function of the
number of interferograms averaged. We find that with10%
additive noise, averaging five interferograms (lowering the

Fig. 11. Error in reconstructed temporal intensity (solid circles) and phase
(open circles) versus number of interferogram averages for the case of10%
additive noise

Fig. 12a,b. Reconstructed pulse shape for the pulse of Fig. 3e with10% ad-
ditive noise:a temporal intensity for original (solid line) and reconstructed
(dashed line), b temporal phase for original (solid line) and reconstructed
(dashed line)

update rate to11 Hz), we can lower the intensity error to
ε̄I ≈ 0.8% (an error reduction of nearly a factor of two) and
reduce the phase error toε̄φ ≈ 0.014 radians(a factor of three
improvement).

While the noise results presented above are a quantitative
answer to the question of SPIDER’s robustness in the pres-
ence of noise, a more useful indicator is a qualitative one.
What does the reconstruction “look” like? The benchmark
pulse in Fig. 3e with10% additive noise is plotted in Fig. 12,
where we show the original and reconstructed intensity and
phase. Visually it appears that SPIDER does quite well at
recovering the profile, including the intensity node and the
second lobe. The phase is also reconstructed quite well, in-
cluding the phase jump. For this particular example,ε̄I ≈ 2%,
andε̄φ ≈ 0.03 radians.

7 Conclusions

In this paper we have analyzed the fidelity with which ultra-
short optical pulses can be reconstructed from noisy SPIDER
interferograms. We did this by simulating noisy interfero-
grams and using the standard SPIDER algorithm to recon-
struct the pulse shape. In order for SPIDER to operate ef-
fectively it is necessary to ensure that the shearΩ and pulse
delayτ are correctly adjusted, and the effect of varying these
parameters on accurate pulse reconstruction was also studied
numerically. To optimize the parameter settings, we ran simu-
lations to measure the reconstructed pulse accuracy with10%
additive noise. We found that the error vs. temporal pulse
delay τ can be quite uniform over a wide range of values
of τ, with a value ofτ = (2π/∆ω)(Ns/Nf) giving excellent
results, where∆ω is the FWHM of the input pulse spectrum,
Ns is the number of pixels across the FWHM, andNf is the
number of pixels per fringe. For the pulses we considered,
τ = 1–2 psgave good results. The error with varying spectral
shearΩ has a minimum at about half the Whittaker–Shannon
limit of Ω/∆ω= 1/d, whered is the degree above transform
limit of the pulse duration. For our pulses, this corresponds
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to nearΩ/∆ω≈ 1/4. Finally, the algorithm was found to be
fairly insensitive to window width, with a good value given
by≈ τ/3.

The role of noise on pulse reconstruction in SPIDER has
been studied numerically. We looked at the effects of additive
noise, multiplicative noise, and quantization on the recon-
structed intensity and phase. The most deleterious source of
error came from additive noise, primarily due to the increas-
ingly low signal-to-noise in the wings of the interferogram.
Typically for the case of10% noise we found that the inten-
sity profile can be reconstructed toε̄I ≈ 1.5% and the phase
can be recovered tōεφ ≈ 0.04 radians. While these results
are quite acceptable in most circumstances, a much better
performance can be achieved by averaging the noisy interfer-
ograms at the expense of slower update rates. For example,
with 10% additive noise an average of only five interfero-
grams improves the recovered intensity to an accuracy of
ε̄I ≈ 0.8% and the recovered spectral phase improves toε̄φ ≈
0.014 radians.
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